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Constitutive modeling 
of an electro‑magneto‑rheological 
fluid
Deepak Kumar1,3* & Somnath Sarangi2,3

The present article deals with a continuum mechanics‑based method to model an electro‑magneto‑
rheological (EMR) fluid deformation subjected to an electromagnetic field. The proposed method 
follows the fundamental laws of physics, including the principles of thermodynamics. We start with 
the general balance laws for mass, linear momentum, angular momentum, energy, and the second 
law of thermodynamics in the form of Clausius–Duhem inequality with Maxwell’s equations. Then, 
we formulated a generalized constitutive model for EMR fluids following the representation theorem. 
Later, we validate the model with the results of an EMR rheometer and ER fluid valve system‑based 
configurations. At last, the possible simulation‑based velocity profiles are also discussed for parallel 
plate configuration. As a result, we succeed in providing more physics‑based analytical findings than 
the existing studies in the literature.

In the current scenario, electro-magneto-rheology established a new research direction, which potentially pro-
vides fruitful ideas for modern engineering and medical field applications. In line with that, new hybrid electro-
magneto-rheological (EMR) fluid systems that couple electro-magneto-mechanical properties of smart  fluids1–3 
are under development in laboratories worldwide. At the same time, there is a specific need to understand the 
deformation of such smart fluids due to their usage finding in various applications like clutches and brakes in cars, 
vibration-dampers, and absorbers, lubricating fluids in bearings, smart transducers for medical purposes, etc. In 
engineering applications, EMR fluids are generally used in hydraulic systems, which are inherently nonlinear. 
Therefore, their accurate model prediction became so essential that it will directly affect the system performance. 
The current work is motivated by our previous works on electro-magneto-active (EMA)  solids4–7. In brief, EMR 
fluids are colloidal suspensions of polar particles. Similarly, the particles are added as impurities in EMA solids. 
In EMR fluid, the particles undergo Brownian motion without external fields. While in EMA solids, the filler 
particles are randomly oriented in the absence of external fields. On the application of external field, the EMR 
fluid behaves as near-solid but not like a solid. This exceptional nature demarcates the EMR fluid from EMA solid. 
Thus, thermodynamic pressure is inevitable in the case of EMR fluid, irrespective of whether an external field 
is applied or not. One may readily appreciate that the constitutive relation of EMR fluid will be governed by the 
stretch rate, which is time-dependent. Conversely, the EMA solids are considered incompressible hyperelastic, 
which essentially exhibits the time-independent nature and constitutive relation associated with a Lagrange 
multiplier to address the  incompressibility8,9. In the current work, we focus on the constitutive modeling of 
EMR fluids specifically used in smart hydraulic systems. In general, EMR fluids are characterized by their ability 
to vary their mechanical properties with an electromagnetic field significantly. EMR fluids are smart, synthetic 
fluids that change their viscosity from liquid to semi-solid state within milliseconds if a sufficiently strong elec-
tric or magnetic field is  applied10,11. These fluids usually consist of micron-sized electro-magneto-active filler 
particles dissolved in a non-conducting liquid like mineral or silicone oil. EMR fluids also offer an innovative 
potential for quick and adaptively controllable electro-magneto-mechanical interfaces in control units when 
used in suitable  devices12,13. A coupled electro-magneto-rheological theory is needed to model such EMR fluids 
within the framework of the continuum mechanics-based approach. Also, the coupled theory must describe the 
electromagnetic field interaction with the moving deformable  media4,14–16 such as EMR fluids.

To mention some earlier works on electro-rheological (ER) and magneto-rheological (MR) fluids,  Winslow17 
made an initial attempt to understand the behavior of ER fluids under external gradient.  He17 investigated an 
electrically induced fibration of small particles in fluid liquid suspension. Nevertheless, their applicability in 
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fluid system modeling has not been fully explored for many years. Later, the first standardized approach to 
model such rheological behaviours under external gradients were presented by various researchers, namely, 
Atkin and  Bullogh18, Abu-Jdayil and  Brunn19–21,  Rajagopal10 along-with  Yalamanchili22 and  Wineman11. Herein, 
 they10,11,22 adopted the classical continuum mechanics-based approach to model the rheological behaviours of 
ER fluids under external gradient. Further, some researchers, namely, Conard et al.23, and Jordan et al.24 also 
proposed different one-dimensional models for ER fluids. Furthermore, Rajagopal and  Wineman10 developed 
three-dimensional models satisfying the appropriate invariance requirements. However, in these  models10, the 
electric field was treated as a constant field. In addition to the deformation modeling of ER fluid under external 
gradient, similar studies on the deformation modeling of MR fluid were also focused by the  researchers12,25,26 
followed by similar approaches. To mention some earlier works on EMR fluids, the theoretical foundations for 
the analysis of electro-magnetomechanical interactions in EMR fluids were developed in part during the 1990s 
and 2020s, and a detailed summary may be found, for example, in Hutter et al.27 and references therein. In addi-
tion, Fujita et al.1 investigated a combined electromagnetic field control effect on the rheological properties of 
a fluid. However,  they1 have not fully utilized the magnetic field for fine control of the rheological properties. 
Next, Minagawal et al.2 developed a new technique to measure the rheological properties of fluids under electric 
and magnetic fields. Further, Koyama et al.3 compared an EMR effect observed in fluids with the parallel and 
cross-field systems. Moreover,  they3 suggested that the parallel-field effect was more significant than the crossed 
one. At last, we observe that many works on the modeling of ER and MR fluids have been devoted. However, 
the deformation mechanics dedicated to an EMR fluid continua under an electromagnetic field is still not been 
reported to the best of our knowledge.

The present article aims to generalize the deformation concept of fluid continua to electro-magneto-rheology 
in contrast to the existing studies on ER and MR fluids. A constitutive model is developed here for an incom-
pressible isotropic non-Newtonian EMR fluid subjected to an electromagnetic field. To develop the same, a 
thermodynamically consistent classical continuum mechanics-based  approach14,28 is adopted. Additionally, the 
developed model is also experimentally validated in contrast to the existing  works10,11,22 aimed at the pure theo-
retical models for smart fluids.

The further part of the paper is organized as follows. In “Fundamentals of electro-magneto-rheology”, a brief 
review on electro-magnetorheology related to an isotropic EMR fluid continua is summarized. In “Constitutive 
modeling”, a generalized constitutive relation is developed for an incompressible isotropic non-Newtonian EMR 
fluid under an electromagnetic field. Next, in “Application to few standard fluid flow situations”, the developed 
constitutive relation is applied to an ER fluid valve system to validate the same. Further, in “Results and discus-
sion”, different velocity profiles are predicted from the developed constitutive equation for different forms of 
shear viscosity in the parallel plate configuration. At last, “Concluding remarks” explains about some concluding 
remarks.

Fundamentals of electro‑magneto‑rheology
In this section, a brief review on electro-magneto-rheology related to the deformation of EMR fluid continua is 
presented, followed by the fundamental laws of physics. These fundamental laws provide initial steps to model 
the exact electro-magneto-rheological behavior of EMR fluids under an electromagnetic field application.

Kinematics. Consider an EMR fluid occupying the material space β0 in a stress-free configuration. The 
material point in reference configuration β0 is represented by the position vector X with respect to an origin. 
With an application of electromagnetic field, the material deforms and a point X in the material occupies a new 
position x = κ(X, t) in the current configuration β . Wherein κ represents an one-to-one deformation mapping. 
Therefore, the corresponding velocity v and acceleration a of that material point in three-dimensional Euclidean 
space, at the instant of time t are defined as

The velocity gradient tensor L(x, t) is represented as

wherein ∇v represents the gradient operator on velocity field. This velocity gradient tensor L(x, t) may also be 
represented in the sum of symmetric part d and anti-symmetric part W as

Electromagnetic field equations. At reference configuration β0 , the fluid continua is assumed as a free 
of current and electric charge with the time-independent properties. Additionally, we consider the electric field 
vector E, the electric displacement vector D and the polarization density P as the electric field variables. Simi-
larly, the magnetic field vector H, the magnetic displacement vector B and the magnetization density vector M 
are considered as the magnetic field variables in the current configuration β . In condensed matter, these field 
variables are related as

(1)v = ∂x(X, t)

∂t
, a = ∂2x(X, t)

∂t2
.

(2)L = ∇v,

(3)L = d +W = 1

2

(

L + L
T
)

+ 1

2

(

L − L
T
)

.

(4)D = ε0E + P, B = µ0[H+M],
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wherein ε0 and µ0 represent the electric permittivity and magnetic permeability of free space, respectively. The 
electric field variables and the magnetic field variables both satisfy the given Maxwell’s  equations29 under our 
constant electric field as well as constant magnetic field application assumption as

wherein ∇ × E and ∇ .D denote the curl and divergence operators on E and D, respectively.

Balance laws. The mechanical balance laws for fluids are expressed in the local form as

Conservation of mass. 

Conservation of linear momentum. 

wherein S and fem denotes the Cauchy stress tensor and the electromagnetic body force (per unit volume), respec-
tively. The generalized electromagnetic body  force29 fem in terms of electromagnetic field variables is given as

Conservation of angular momentum. 

wherein [ε : S] represents εijkSjk and εijk is a permutation tensor. For the detailed discussion on electromagnetic 
interaction in deformable continua, we refer to the  literature30–32 and references therein.

Conservation of energy (first law of thermodynamics). 

wherein U is the internal energy (per unit mass) and wem is the electromagnetic power (per unit volume) in the 
absence of heat. The general expression of the electromagnetic power wem is given  as29

wherein the superposed dot (̇) in the corresponding variable represents the material time derivative. From the 
Lorentz’s theory of electrons, we have Me = µ0

−1
M+ v × P and Ee = E + v × B . Herein, the corresponding 

terms Me and Ee represent the effective magnetization and the effective electric field, respectively. Now, from 
Eqs. (6) and (7), the above Eq. (10) may be rewritten as

Clausius–Duhem inequality (second law of thermodynamics). 

wherein ϕ̇ term represents the material time derivative of Helmholtz free energy function for a given fluid sys-
tem. The above representation (13) is a systematic way of expressing the second law of thermodynamics used in 
the classical continuum mechanics in the absence of heat. This inequality is particularly useful in determining 
whether the constitutive relation of material is thermodynamically consistent or not.

Constitutive modeling
In this section, the concepts of an electro-magneto-rheological deformation of fluid continua presented in pre-
vious “Fundamentals of electro-magneto-rheology” are utilized to derive the constitutive relation for an EMR 
fluid under an electromagnetic field.

In order to define our EMR fluid system under an electromagnetic field, we first have to define a Helmholtz 
free energy function ϕ  as27

(5)∇ × E = 0, ∇ .D = 0, ∇ ×H = 0, ∇ .B = 0,

(6)
∂ρ

∂t
+∇ .(ρv) = 0.

(7)∇ .S− ρ
∂v

∂t
+ fem = 0,

(8)fem = qE + µ−1
0 ∇B.M+∇E.P+ ∂

∂t
(P× B)+∇ .[v ⊗ (P× B)].

(9)ε : S+ [µ−1
0 M+ v × P] × B+ P× E = 0,

(10)
d

dt

(

ρU + 1

2
ρv.v

)

= ∇ .(S.v)+ wem,

(11)wem = fem.v −Me .Ḃ+ ρ
d

dt

(

1

ρ
P

)

.Ee ,

(12)ρU̇ = S : L +Me .Ḃ+ ρ̇

ρ
(Ee .P+Me .B)+ Ṗ.Ee .

(13)S : L + ρϕ̇ � 0,
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through which a thermodynamic pressure Pth is defined for the given fluid system. By substituting (14) and (10) 
into (13), we obtain an expression of the dissipation inequality given as

Following the principle of Euclidean invariance, we may assume that all relativistic effects as well as the effect of 
Earth’s spin are neglected and there exist a generalized space vector k defined as

Based on the above space vector (16), we obtain an expression of ϕ̇ through the total derivative given as

In this regard, it is assumed that an objective part only of these time derivatives contributes to the rate of change 
of the Helmholtz free energy. By replacing the above ϕ̇ term in Eq. (15), we have

Using Eq. (6), we may rewrite the above dissipation inequality (18) as

In general, the above inequality (19) is expected to hold for real materials at all times and at every fixed point in 
space for a certain class of admissible thermodynamic processes, i.e., processes compatible with the balance laws 
and the constitutive response functions. By considering the quantities ḋ, Ėe and Ḃ as independent quantities in 
the above inequality (19), we obtain the different constitutive laws for an EMR fluid system as

Now, the reduced dissipation inequality may be re-written as

The above inequality (21) represents the Cauchy stress S as an isotropic in nature. In this regard, we may define 
a thermodynamic pressure acting on a homogeneous EMR fluid with an application of electromagnetic field as 
Pth = ρ2

∂ϕ

∂ρ
 . For a given EMR fluid that is not capable of dissipating, i.e., there is no entropy generation, a con-

stitutive law for Cauchy stress tensor in terms of thermodynamic pressure is given as S = −PthI . Further, we 
would like to point out that some of our assumptions in the present work are rather based on general observations 
than on careful experimental evidence. Accordingly, we assume that the considered EMR fluid is non-Newtonian 
and non-conducting in nature. From the invariance requirements, it follows that S : L = S : d . In addition, the 
Cauchy stress tensor S is an isotropic function of its arguments and has various mini-subspaces. This mini-
subspaces span can be utilized for the span required to map other tensors that functionally depend on the tensor 
S. Now, from the representation  theorem33, we consider that the tensors d,E ⊗ E and H⊗H belong to the 
subspace spanned by the mini-subspaces of tensor S. We may here now link our previous physical assumption 
(isotropic Cauchy stress) that is verified from the relation (21) as well. Hence, the corresponding representation 
 theorem33 yields

wherein α1,2,3...9 = f (I1, I2, I3, . . . I9) are functions of the following invariants that may be represented as

These functions are to be derived from the micro-mechanics model of the EMR fluids. Physically, such functions 
have significant potential to include the micro-mechanics-based physics of an EMR fluid. The material modeling 
ofits kind for EMR fluids differs from the literature. For brevity, we are not going towards the micro-mechanics-
based combined electro-magneto-mechanical field effect on EMR fluid in detail. But, what we anticipate is that 
these functional forms, whatever is to be given, may record the least material parameters.

(14)ϕ = U − 1

ρ
(Ee .P+Me .B),

(15)−ρϕ̇ + S : L −Me .Ḃ− Ėe .P ≥ 0.

(16)k = k̂(ρ, d,Ee ,B).

(17)ϕ̇ =
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∂ϕ

∂ρ
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ρ
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)
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(

ρ
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(19)
(

S+ ρ2 ∂ϕ

∂ρ
I

)

: L − ρ
∂ϕ
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ρ
∂ϕ

∂Ee
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ρ
∂ϕ
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(20)
∂ϕ

∂d
= 0, P = −ρ

∂ϕ

∂Ee
, Me = −ρ

∂ϕ

∂B
.

(21)
(

S+ ρ2 ∂ϕ

∂ρ
I

)

: L ≥ 0.

(22)

S = S(ρ, d,E,H) = α1I+ α2d + α3d
2 + α4E ⊗ E + α5(dE ⊗ E + E ⊗ dE)+ α6(d

2
E ⊗ E + E ⊗ d

2
E)+ α7H⊗H

+ α8(dH⊗H+H⊗ dH)+ α9(d
2
H⊗H+H⊗ d

2
H),

(23)

I1 = trd, I2 = trd2, I3 = trd3, I4 = tr[E ⊗ E], I5 = tr[dE ⊗ E], I6 = tr[d2E ⊗ E], I7 = tr[H⊗H],
I8 = tr[dH⊗H], I9 = tr[d2H⊗H].
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Finally, the above relation (22) combined with (23) represents a physics-based thermodynamically consistent 
generalized constitutive relation for an EMR fluid under an applied electromagnetic field. Our primary objec-
tive of the work was to derive the generalized constitutive relation for EMR fluids following the representation 
theorem. Aiming the same, the derived relations in the current section are the first of its kind to deal with the 
combined effect of electromagnetic field on rheological fluids where ER and MR fluids are the special case of 
the same.

Figure 1.  Case-I: Applied electric and magnetic fields are mutually parallel and normal to the EMR fluid flow 
direction.

Table 1.  Standard fluid flow situations.

Case-I: Applied electric and magnetic fields are mutually 
parallel and normal to the EMR fluid flow direction

Case-II: Applied electric field is mutually perpendicular 
to magnetic filed and parallel to the EMR fluid flow 
direction

Case-III: Applied electric and magnetic fields are 
mutually perpendicular and normal to the EMR 
fluid flow direction

For the defined Case-I as shown in Fig. 1, the forms of 
the velocity field vector v, electric field vector E and the 
magnetic field vector H are obtained as 
v = γ (t)X2e1, E = E0e2,
H = −H0e2,

         (24)

wherein γ (t) is the instantaneous shear rate and E0 , H0 are 
the corresponding electric and magnetic field components 
of an applied electromagnetic field. Now, the correspond-
ing symmetric part of the velocity gradient tensor d from 
the definitions (2) and (3) is given as

 d = γ

2
e12 +

γ

2
e21.         (25)

For the defined Case-II as shown in Fig. 2, the forms of 
the velocity field vector v, electric field vector E and the 
magnetic field vector H are obtained as 
v = γ (t)X2e1, E = −E0e1,
H = H0e2,

         (28)

For the defined Case-III as shown in Fig. 3, the forms of 
the velocity field vector v, electric field vector E and the 
magnetic field vector H are obtained as 
v = γ (t)X2e1, E = E0e2,
H = −H0e3,

         (31)

Further, the non-zero resulting components of the stress 
tensor from the generalized constitutive relation (22) are

 

S11 = α1 + α3
γ 2

4
,

S22 = α1 + α3
γ 2

4
+ α4E0

2

+α6
γ 2E0

2
+ α7H0

2 + α9
γ 2H0

2
,

S33 = α1,

S12 = α2
γ

2
+ α5γE0

2 + α8γH0
2,

S21 = α2
γ

2
,

S13 = S31 = S23 = S32 = 0.

         (26)

Now, the obtained symmetric part of the velocity gradient 
tensor d from (25) may be reused with the above defined 
field vectors (28) to formulate the non-zero resulting 
components of the stress tensor from the generalized 
constitutive relation (22) as 

S11 = α1 + α3
γ 2

4
+ α4E0

2

+α6
γ 2E0

2

2
,

S22 = α1 + α3
γ 2

4
+ α7H0

2

+α9
γ 2H0

2
,

S33 = α1,

S12 = α2
γ

2
+ α8γH0

2,

S21 = α2
γ

2
+ α5γE0

2,

S13 = S31 = S23 = S32 = 0.

         (29)

Next, the obtained symmetric part of the velocity gradi-
ent tensor d from (25) is reused with the above defined 
field vectors (31) to formulate the non-zero resulting 
components of the stress tensor from the generalized 
constitutive relation (22) as

 

S11 = α1 + α3
γ 2

4
,

S22 = α1 + α3
γ 2

4
+ α4E0

2

+α6
γ 2E0

2
,

S33 = α1,

S12 = α2
γ

2
+ α5γE0

2,

S21 = α2
γ

2
,

S13 = S31 = S23 = S32 = 0.

         (32)

The corresponding invariants for the defined field vectors 
(24) that help to express αi = f (I1, I2, I3, . . . I9) where 
i = 1, 2, 3 . . . 9 from their definitions (23) are given as 

I1 = 0, I2 =
γ 2

2
, I3 = 0,

I4 = E0
2, I5 = 0, I6 =

γ 2E0
2

4
,

I7 = H0
2, I8 = 0, I9 =

γ 2H0
2

4
.

         (27)

The corresponding invariants for the defined field vectors 
(28) that help to express αi = f (I1, I2, I3, . . . I9) where 
i = 1, 2, 3 . . . 9 from their definitions (23) are 

I1 = 0, I2 =
γ 2

2
, I3 = 0,

I4 = E0
2, I5 = 0, I6 =

γ 2E0
2

4
,

I7 = H0
2, I8 = 0, I9 =

γ 2H0
2

4
.

         (30)

The corresponding invariants for the defined field 
vectors (31) that help to express αi = f (I1, I2, I3, . . . I9) 
where i = 1, 2, 3 . . . 9 from their definitions (23) are 

I1 = 0, I2 =
γ 2

2
, I3 = 0,

I4 = E0
2, I5 = 0, I6 =

γ 2E0
2

4
,

I7 = H0
2, I8 = 0, I9 = 0.

         (33)
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Application to few standard fluid flow situations
In this section, the developed constitutive relation (22) for an EMR fluid is directly applied to few common fluid 
flow situations (e.g., shear flows) in order to formulate the associated non-zero components of the stress tensor 
for each of the considered cases.

In line with the shear flow applications, we consider three different standard cases as shown in Figs. 1 (Case-
I), 2 (Case-II) and 3 (Case-III), which are discussed in Table 1. In all of the considered fluid flow situations, 
an EMR fluid flows in the X1 − X2 plane of a Cartesian system. For the given configurations, an EMR fluid is 
assumed to be isotropic, incompressible, and isothermal. In the first Case-I, the applied electric and magnetic 
fields are mutually parallel and normal to the EMR fluid flow direction. Next, in Case-II, the applied electric 
field is mutually perpendicular to the magnetic field and parallel to the EMR fluid flow direction. At last, in 
Case-III, the applied electric and magnetic fields are mutually perpendicular and normal to the EMR fluid flow 

Figure 2.  Case-II: Applied electric field is mutually perpendicular to magnetic field and parallel to the EMR 
fluid flow direction.

Figure 3.  Case-III: Applied electric and magnetic fields are mutually perpendicular and normal to the EMR 
fluid flow direction.

Figure 4.  System configuration of a flat channel ER valve.
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direction. In addition, we herein assume that the fluid velocity varies only in one direction significantly, and the 
other directional variations are negligible.

Results and discussion
In this section, an analytical model for an ER fluid valve system configuration consistent  with34 is modeled 
through the developed constitutive relation (22) in order to validate the same. In addition, the different velocity 
profiles are also predicted from the same constitutive equation (22) for different forms of shear viscosity in the 
parallel plate configuration.

Experimental validation of the constitutive relation (ER fluid case). To check the validity of con-
stitutive relation (22) derived in “Constitutive modeling”, we compare our theoretical result obtained from (22) 
at zero magnetic field with the existing experimental work performed by Kamelreiter et al.34. Kamelreiter et al.34 
designed an ER valve geometry to measure the field-dependent yield stress of a typical ER fluid. This ER valve 
consists of a flat (or annular) channel of height h formed by two electrodes as shown in Fig. 4. The electrodes 
have the dimensions as length L and width B. The ER fluid in the channel is assumed to be isotropic, incom-
pressible, and isothermal. Herein, the volume flow was driven by the pressure difference between inlet and outlet 
pressures. With an application of electrical voltage U at a single electrode and by earthening the other electrode, 
an electric field was generated that changes the rheological properties of the ER fluid.

We begin our theoretical analysis of the same ER valve geometry used by Kamelreiter et al.34 as shown in 
Fig. 4. To obtain an analytical expression of the field-dependent shear stress model S12 , we first have to choose the 
appropriate functional forms of α2 and α5 based on the definitions of invariants (27) through ( 26)4 . In line with 
that, we may choose the corresponding appropriate functional dependency of α2 and α5 based on the simplest 
algebraic functions for the considered ER valve configuration as

Now, for the above simplest functional forms of α2 and α5 , the simplified component of the Cauchy stress tensor 
(22) through ( 26)4 at H0 = 0 is represented as

The above Eq. (35) represents a physics-based thermodynamically consistent analytical expression of the field 
dependent shear stress model derived from (22) for an ER fluid under an applied electric field. In addition, 
Kamelreiter et al.34 had developed an analytical model similar to our (35) for the same ER valve geometry as 
shown in Fig. 4 as

wherein a1 , a2 and a3 are the constant parameters, which were obtained from the measurements for the charac-
teristic behaviorof a typical ER fluid.

(34)α2 = α2(I1, I2, . . . I6) = K1γ
2E0

2, α5 = α5(I1, I2, . . . I6) = K2γ
2E0

2.

(35)S12 = K1

γ 3

2
E0

2 + K2γ
3E0

4.

(36)S12 = a1E0 + a2E0
2 + a3E0

3,

Figure 5.  Comparison of the model (35) derived from (22) with the kamelreiter et al. model (36) as well as the 
experimental  data34 on the field dependent shear (yield) stress of a typical ER fluid.
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To compare the proposed model (35) derived from (22) with the model (36) as well as the experimental data 
of a typical ER fluid  from34, we plot the same on Fig. 5 for K1 = 1 and K2 = 119.68 at a fixed strain-rate γ = 1 
based on the geometrical dimensions of the system configuration.

We here note that the theoretical predictions of the considered ER valve system through the model (35) are 
consistent with the experimental  data34. In addition, the success of the proposed model (35) in characterizing 
the considered system is evident in two aspects. Firstly, it may produce a simple closed-form analytical solution 
to the problem. Secondly, a comparison of the proposed model (35) with the experimental  data34 requires the 
determination of only two material constants: K1 and K2 even for an extensive range of the applied field. Whereas, 
another model (36) that compares favorably with the experimental data do so by fitting three parameters: a1 , 
a2 and a2 that lack, in most cases, any physical interpretation at all and also demand considerable computation. 
Also, the proposed model (35) considers zero slope condition at a null electric field which is evident from the 
experimental data. On the other side, Kamelreiter et al.34 model does not ensure the zero slope at null electric 
field condition. For more clarity, relations (35) and (36) are to be re-looked, especially the derivative with respect 
to the applied field.

Experimental validation of the constitutive relation (EMR fluid case). To further access the valid-
ity of constitutive relation (22), we compare the analytical findings at a non-zero electromagnetic field case with 
the experimental work performed by Koyama et al.3  They3 carried out rheological measurements of EMR fluid 
by the use of a parallel-plate rheometer equipped with electrodes and magnetic coils as shown in Fig. 6. In this 
rheometer, the magnetic coils were placed above and below the plates with a distance of 6 mm between the cores 
of two coils.

The electric field was applied to the system by the electrodes attached to the surfaces of the plates. At the 
same time, the magnetic field was generated through the motion of the coils toward the plates. The rheological 
measurements were taken as the stress increase induced by electric and magnetic fields.

Parallel‑field condition ( E ‖ H). Firstly, we model the above EMR fluid-based rheometer configuration used 
by Koyama et al.3 as shown in Fig. 6 in parallel-field condition. We choose an appropriate functional forms of α2 , 
α5 and α8 based on the definitions of invariants (27) through ( 26)4 before obtaining the expression of the field-
dependent shear stress model S12 . In line with that, we may choose the functional dependency of α8 similar to α2 
and α5 in (34) based on the simplest algebraic function as

Now, the simplified component of the Cauchy stress tensor (22) through ( 26)4 is represented as

The above Eq. (38) represents a physics-based electromagnetic field dependent shear stress model derived from 
(22) for an EMR fluid system under an applied electromagnetic field in parallel-field condition.

To compare the model (38) with the experimental data of a typical EMR fluid  from3 in parallel-field condition, 
we plot the same on Fig. 7 for a fixed strain-rate γ = 2.8 based on the system configuration shown in Fig. 6. In 
the plot 7, the shear stress S12 is plotted against applied magnetic field intensity H at different applied electric field 
intensities. Herein, an increase in the slope of the lines under higher electric fields indicates the ‘synergistic effect’ 
of the electric and magnetic fields on the EMR effect. This effect is taken care through our field dependent mate-
rial constant α8 mentioned in (37) that contains a simplest possible algebraic form. In addition, the theoretical 
predictions of the model (38) obtained from the constitutive relation (22) are consistent with the experimental 

(37)α8 = α8(I1, I2, . . . I6) =
K3γ

2(1+ E0/2)

H0

.

(38)S12 = K1

γ 3

2
E0

2 + K2γ
3E0

4 + K3γ
3(1+ E0/2)H0.

Figure 6.  System configuration of an EMR rheometer.
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 data3. The model (38) is validated with the experimental  data3 for the given set of parameters K1 = 5 , K2 = 0.25 , 
K3 = 14 . The parameters K1 , K2 and K3 are obtained from the evident linear nature.

Crossed‑field condition ( E ⊥ H). Secondly, we model the considered EMR fluid-based rheometer configura-
tion used by Koyama et al.3 as shown in Fig. 8 in crossed-field condition. We choose the functional forms of α2 
and α5 based on the definitions of invariants (27) through ( 26)4 to obtain the field-dependent shear stress model 
S12 in crossed-field condition as

(39)α2 = α2(I1, I2, . . . I6) = K1γ
2E0

√
E0, α5 = α5(I1, I2, . . . I6) = K2γ

5

[

H0
2(2+

√
E0)

E0
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Figure 7.  Comparison of the model (38) derived from (22) with Koyama et al.3 experimental data on the shear 
stress of a typical EMR fluid in parallel-field condition.
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Figure 8.  Comparison of the model (40) derived from (22) with Koyama et al.3 experimental data on the shear 
stress of a typical EMR fluid in crossed-field condition.
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Now, the simplified component of the Cauchy stress tensor (22) through ( 26)4 is given as

The above Eq. (40) represents a physics-based electromagnetic field-dependent shear stress model derived from 
(22) for an EMR fluid system under an applied electromagnetic field in crossed-field condition. The analytical 
findings of the model (40) are compared now with the experimental data of a typical EMR fluid from Ref.3 in the 
crossed-field condition in Fig. 8. The shear stress S12 is plotted here against applied magnetic field strength H at 
different applied electric field intensities for a fixed strain rate γ = 2.8 based on the  experiment3. In the plots, the 
stress reaches a nearly constant value after a particular magnetic field strength for each electric field strength. This 
saturation indicates that the clusters (enhancement of particle aggregation) induced by the cross-field condition 
in an EMR fluid system significantly affect the resistance against shear deformation compared to the parallel-field 
condition. In addition, the analytical predictions of the model (40) obtained from the constitutive relation (22) 
are consistent with the experimental  data3. At last, one may here note that the consistency between the model 
(40) and the experimental  data3 is obtained using the same set of parameters used in parallel-field condition 
with the same material composition.

Possible simulational results. In current discussion, consider the effect of the electric and magnetic field 
components E0 and H0 in each of the considered cases. Herein, the in-plane stress components S11, S22, S12, and 
S21 depend on E0 and H0 through the corresponding functions of αi = f (I1, I2, I3, . . . I9) where i = 1, 2, 3 . . . 9 . 
Additionally, it may be seen from the relations (26), (29) and (32) with (23) that α1,2,3...9 = f (I1, I2, I3, . . . I9) can 
be regarded as functions of E02,H0

2 , and γ 2 . Now for each of the considered cases, we represent the shear rate 
equation in the generalized shear form as

wherein µ(E02,H0
2, γ 2) represents the shear viscosity function. Herein, γ = dv

dX2

 and some of the αi terms 
represent the non-Newtonian nature of EMR fluid. Some of the α terms arise from the interaction of the shear 
flow and the component of the electric field in the direction normal to the flow direction. From the standard 
 observations10,11, we have S12 = −PX2 . Wherein, P is the pressure gradient, and it helps to represent some of the 
αi terms, correspondingly. Next, by substituting S12 = −PX2 in the above expressions of S12 for each of the con-
sidered cases, we may easily obtain the differential equations for the velocity v(X2) in terms of the parameters P, 
E2 , H2 , and γ 2 , etc. Now, consider an EMR fluid compassed between two parallel plates having a distance 2h 
apart as shown in Fig. 9.

In the given configuration, a constant electric field E = E0e2 and a constant magnetic field H = −H0e2 is 
applied perpendicular to the plates. The EMR fluid flow is assumed to be rectilinear in the direction parallel 
to the plates. For the given fluid flow similar to Case-I in “Application to few standard fluid flow situations” 
situation and the corresponding shear stress expression of S12 from ( 26)4 with the condition S12 = −PX2 , we 
may easily obtain the velocity profiles of EMR fluid. Some of the corresponding velocity profiles are predicted 
successfully for different forms of shear viscosity like µ = constant , µ = µ(E0, γ ) and µ = µ(H0, γ ) as shown 
in Fig. 9. Additionally, the simulational results shown in Fig. 9 are also consistent with the existing  results10,11 at 
zero magnetic field condition.

In summary, we may control the EMR fluid flow situations and play with the corresponding theoretical 
parameters for the given situation through a specific choice of the relationships between S12 , E2 , H2 , and γ 2 from 
the standard experimental evidence. At last, these mathematical arguments will directly help us in the design 
and development of the different EMR fluid actuators for various engineering and medical field applications.

(40)S12 = K1

γ 3

2
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√
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√
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Figure 9.  Different velocity profiles for flow between two parallel plates configuration.
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An additional comment. From (26), (29) and (32) for each of the considered case, we note that the shear 
response in Case-III is independent of an additional magnetic field application. However, for the remaining 
Case-I and Case-II, this additional magnetic field application significantly affects the EMR fluid deformation. 
Based on this observation, we may comment that an electric or magnetic field normal to fluid flow direction with 
different plane does not affect the shear flow deformation in EMR fluids.

Concluding remarks
In the present paper, we develop a thermodynamically consistent generalized constitutive relation (22) for an 
incompressible isotropic non-Newtonian electro-magneto-rheological (EMR) fluid under an electromagnetic 
field. The developed constitutive relation (22) relates the Cauchy stress tensor S with the stretch rate tensor d, 
electric field vector E and magnetic field vector H. Next, the relation (22) is applied to study the most common 
fluid flow situations in modern system configurations and validated with an ER fluid valve system. Later on, the 
different velocity profiles are also predicted from the same for different forms of shear viscosity in the parallel 
plate configuration. We strongly believe that applying a magnetic field on an ER flow may convert the steady flow 
to an unsteady flow and vice versa. Such kind of precise control of the flow field is a subject of separate work. It is 
a relevant scientific problem with a wide application in biology, soft robotics, and discussed application domains 
in the introduction section of the manuscript.

The major contribution of the present study is an attempt to generalize the deformation concept of fluid 
continua to electro-magneto-rheology in contrast to the existing works on ER and MR fluids. Moreover, the 
previous works are also obtainable from the same as a special case. In addition, an analytical model (35) proposed 
from (22) is succeed in two ways. Firstly, it produces a simple closed-form solution to the problem. Secondly, 
it requires a lesser number of material parameters that have a certain physical basis for defining the same phe-
nomenon compared to other existing models (36), that lack, in most cases, like for a large range of the applied 
field. At last, the proposed study will enrich the physical understanding of the EMR fluids like other systems of 
interest, which are under development in laboratories worldwide.
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