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Semi‑supervised generative 
and discriminative adversarial 
learning for motor imagery‑based 
brain–computer interface
Wonjun Ko1, Eunjin Jeon1, Jee Seok Yoon1 & Heung‑Il Suk1,2*

Convolutional neural networks (CNNs), which can recognize structural/configuration patterns in data 
with different architectures, have been studied for feature extraction. However, challenges remain 
regarding leveraging advanced deep learning methods in BCIs. We focus on problems of small‑sized 
training samples and interpretability of the learned parameters and leverages a semi‑supervised 
generative and discriminative learning framework that effectively utilizes synthesized samples 
with real samples to discover class‑discriminative features. Our framework learns the distributional 
characteristics of EEG signals in an embedding space using a generative model. By using artificially 
generated and real EEG signals, our framework finds class‑discriminative spatio‑temporal feature 
representations that help to correctly discriminate input EEG signals. It is noteworthy that the 
framework facilitates the exploitation of real, unlabeled samples to better uncover the underlying 
patterns inherent in a user’s EEG signals. To validate our framework, we conducted experiments 
comparing our method with conventional linear models by utilizing variants of three existing CNN 
architectures as generator networks and measuring the performance on three public datasets. 
Our framework exhibited statistically significant improvements over the competing methods. We 
investigated the learned network via activation pattern maps and visualized generated artificial 
samples to empirically justify the stability and neurophysiological plausibility of our model.

Brain–computer interfaces (BCIs) provide communication pathways between an enhanced or wired brain and 
an external device (e.g., robotic arm, exoskeleton, electric wheelchair) by measuring brain activities. Because of 
their practicality, non-invasive electroencephalogram (EEG)-based BCI systems are widely  used1. Earlier, Zander 
et al. categorized user-centered BCIs into active/reactive and  passive2, which are both used for directed control 
and accessing or interpreting changes in the user’s brain state, respectively. Our focus in this paper, is on the 
active BCI. In active and reactive BCIs, two types of brain signals such as evoked and spontaneous, depending 
on approaches of inducing brain signals, are mostly considered. Evoked BCIs take advantage of unintentional 
electrical potentials reacting to external or internal stimuli. Examples include P300, steady-state visually evoked 
potentials (SSVEPs), and steady-state somatosensory evoked potentials. These are called evoked potentials. On 
the other hand, spontaneous BCIs involve internal cognitive processes such as event-related (de)synchroniza-
tion (ERD/ERS) in sensorimotor rhythms, induced by the imagination of movements, or motor imagery (MI), 
and physical movements.

Thanks to voluntary-induction, an MI-based BCI implies great values in both clinical and application 
 domains3. Based on prior neurophysiological knowledge, MI-based BCI systems undergo spatio-spectral-tem-
poral filtering to extract features (e.g., a common spatial  pattern3 or its  variants4,5). These methods, however, 
mostly determine class-discriminative feature representations independently from the following classifier training 
stage. Meanwhile, deep learning has achieved great success in discovering feature representations, jointly learned 
with a classifier in an end-to-end manner, across various  applications6,7. In particular, the convolutional neural 
network (CNN) aids in maintaining the structural or configurational information in the data during training 
among various deep learning methods. In this respect, developing a novel CNN architecture for representation 
learning has taken center-state in the BCI community as  well7–14.

However, developing a CNN-based feature extractor and classifier for BCIs is still challenging, mainly for two 
reasons. First, deep learning is a data-hungry method whereas normal BCI systems acquire, in general, a limited 
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number of training samples, i.e., less than hundreds during a calibration  session15. This is time-consuming and 
hinders its practical applicability. In smaller-sized datasets, transfer learning16 has been considered a remedy via 
the exploitation of samples from multiple subjects jointly, thus constructing a larger dataset. Because of the sig-
nificantly high variabilities in EEG signals among subjects or sessions, and unpredictable artifacts, however, the 
performance improvements reported in the literature were  limited17,18. Second, even though a CNN can identify 
complex patterns latent in a dataset, interpreting learned model parameters (patterns) in a neurophysiological 
viewpoint remains complicated.

In this work, we propose a novel deep semi-supervised generative and discriminative adversarial learning 
framework for BCI that generates artificial samples to boost the generalization power of a model. It should be 
noted that, taking inspiration from Odena’s work on semi-supervised adversarial learning, we have devised 
the training strategies by leveraging recent advanced techniques, particularly, to stabilize generator training, 
such that our method fits EEG representation and classification learning. It is comparable to previous works on 
transfer-learning based approaches that have mostly used real  samples16,17. Specifically, the proposed framework 
is designed for two reasons: (1) learning and representing EEG signals on the latent space in the viewpoint of 
generative  models19,20; (2) synthesizing artificial samples with indistinguishable signal patterns from those of 
the real samples of a target subject. Thereby, the proposed framework allows us to possibly learn more general 
feature representations from the artificial samples, thus enhancing classification accuracies. In essence, this work 
is inspired by Lotte’s  work21, which demonstrated the use and effects of artificial EEG samples in constructing 
a BCI system.

In terms of explaining a model’s prediction utility for interpreting learned model parameters, Binder et al. 
proposed a layer-wise relevance propagation (LRP) method, which can generally be applied to deep feedfor-
ward networks for the explanation of output decision-making22. Meanwhile, because of the notorious difficulty 
encountered when interpreting the learned parameters of a CNN with a trained model analysis, most existing 
deep-learning based  methods7 focus less on the neurophysiological interpretation of learned parameters. Schir-
rmeister et al.8 and Lawhern et al.10 visualized the learned spatial filters and calculated the summary statistics 
of pairwise correlations in inputs, unit activation values, and outputs, in their independent works. Sturm et al.23 
applied the layer-wise relevance propagation (LRP)22 to determine which input values contribute to the final 
output either positively or negatively in terms of relevance, estimated via a backpropagation-like method to BCI 
studies and visualized decision-explanation in topographic  maps23. In this work, we conducted experiments 
using an existing CNN architecture in the literature and investigated the learned models in terms of an activa-
tion pattern  map24, which is better suited for interpreting and understanding the learned weights topologically. 
By regarding the EEG classification as a backward problem, i.e., estimating the source signal of a user’s inten-
tion from EEG observations, we transformed the learned weights into a forward formulation and represented 
those trained weights in the form of activation pattern  maps24, with which we could investigate and interpret 
the neurophysiological plausibility of the learned spatial weight parameters.

The main contributions of our work are as follows:

• First, we propose an adversarial modeling framework for MI-based BCI in both supervised and semi-super-
vised manners. More precisely, in our work, we focus mainly on applying various methodological findings 
in generative adversarial learning to deep learning-based BCI thereby tackling one of the most important 
problems in deep learning-based BCI, namely boosting generalization with a limited number of training 
samples.

• Second, the proposed method achieved reasonably high accuracy with limited training samples on over three 
public datasets, and exhibited statistical significance compared to the competing methods considered in our 
experiments.

• Last, we introduce an approach to analyze the learned network parameters by transforming them into activa-
tion patterns and illustrating them topographically for visual inspection and neurophysiological investigation.

This is an extended version of our previous  work25. We, specifically conducted more exhaustive experiments by 
further exploiting other deep network architectures, namely Shallow ConvNet and Deep  ConvNet8, and per-
forming experiments over two other public datasets. It should also be noted that we repeated the experiments 
ten times with various scenarios for more robust and conclusive results. Last, we also analyzed the proposed 
method from a neurophysiological perspective via activation pattern  maps24.

Related work
Learning class-discriminative spatio-temporal features of EEG data remains challenging in both theory and 
practice. Although numerous prior studies using different forms of brain signals have been conducted, in the 
present study, we focus on MI-based BCIs. In addition, we briefly introduce the concept of generative adversarial 
networks (GANs) because of its relevance to our framework.

EEG‑based MI classification. Many studies developed decoding models of EEG data, for which machine 
learning has played pivotal roles over the past decades. A conventional, i.e., non-adversarial, (semi-)supervised 
learning framework is generally composed of two parts: a feature extractor F(·) and a classifier C(·) , as shown 
in Fig.,1a. From the training data (and the corresponding label, if available,) the feature extractor attempts to 
learn the distribution P(xl ,y) and/or Pxu , where subscripts l and u denote labeled and unlabeled, respectively, and 
extracts feature f  for classification. A classifier then outputs a corresponding label ŷ from the feature f .

Edelman et al.1 used principal component analysis to classify complex motor imagery EEG tasks, whereas 
Blankertz et al.3 and Ang et al.4 both used a spatial filtering based method, i.e., common spatial pattern (CSP), 
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for MI-based BCI. Suk and  Lee26 decoded MI-EEG by jointly optimizing spatio-spectral filters in a Bayesian 
framework. Meanwhile, Meng et al.27 also classified EEG by using optimized spatio-spectral features based on 
mutual information. Further, Xie et al.28 also discriminated MI-EEG data, using a tangent space of the sub-
manifold algorithm by extracting a Riemannian sub-manifold and performing classification using a support 
vector machine.

Although existing research mostly focused on MI decoding in a supervised manner, Meng et al.15 and Li and 
 Guan29 independently studied MI-based BCI in a semi-supervised manner. In particular, Meng et al.15 initialized 
and trained a weak classifier by using a small-sized training dataset, and finally trained a strong classifier with 
an iterative procedure by using some portions of a test dataset for label prediction.

Recently, deep learning-based EEG decoding has changed these conventional approaches by combining 
feature extraction or representation with classifier learning in a unified framework. Specifically, studies have 
focused on the properties of CNN that efficiently exploit structural or configurational information in feature 
extraction from EEG data. For example, Schirrmeister et al.8 and Fahimi et al.30 introduced CNN architectures 
for raw MI-EEG decoding. Sakhavi et al.7 also proposed a training strategy to learn temporal information 
from MI-EEG signals by using CNN. They modified filter-bank CSP (FBCSP)4 to extract temporal features and 
selected discriminative features with a mutual information-based method. Further, Lawhern et al.10 effectively 
exploited subtypes of convolution, the depthwise and the separable convolution, thereby dramatically reduc-
ing the number of tunable parameters of a deep CNN used in their work. Finally, Ko et al.14 also exploited the 
separable convolution with multi-scale feature extraction architecture, represented EEG signals. A CNN that 
takes these selected features as input subsequently learns more complex representations. In their analysis, they 
visualized the temporal kernels of the CNN. However, despite being an interesting analysis from a model selec-
tion perspective, this approach used hand-crafted features as network inputs and was unable to provide any 
neurophysiological insights.

Deep learning-based BCI can potentially enhance classification accuracy, thus advancing their practical 
applicability. However, it still suffers from very fundamental requirements for a large number of training samples 
and an inability to interpret or understand the learned model.

Unlike aforementioned traditional approaches, in this work, we exploit an adversarial modeling by introduc-
ing another neural network, a generator G(·) , as shown in Fig. 1b.

Generative adversarial networks. In the deep-learning community, Goodfellow et  al.19 proposed an 
innovative learning paradigm with GANs for data generation or augmentation. Original GANs comprised two 
neural networks, namely a generator and a discriminator. A generator is trained to produce an artificial sam-
ple by mapping a random noise to a realistic sample, whereas a discriminator learns to distinguish real data 
from artificially generated  data31. GANs have become immensely popular in various fields and applications 
such as image  generation32,33, audio  synthesis34, super-resolution35, classification or  regression36,37, and domain 
 adaptation38 tasks.

The (generative) adversarial learning has also been applied to BCI tasks for well  generalization39. For instance, 
Tan et al.40 converted raw EEG signals to EEG optical flow images and obtained a general feature extractor for 
EEG optical flow images and ImageNet by adversarial learning to build a classification network capable of clas-
sifying category labels. Özdenizci et al.41 built an adversarial deep learning method to identify a person using 
EEG signals as biometrics. Additionally, Özdenizci et al.42 also applied an adversarial learning concept to reduce 
the inter-subject  variability16.

In the viewpoint of EEG data augmentation, Roy et al.43 and Krishna et al.44 exploited the original version of 
 GANs19. Pascual et al.45 used conditional  LSGAN46 concept. Further, Zhang et al.47 and Zhang and  Liu48 both 
used  DCGANs33 for motor imagery EEG signal generation. Fahimi et al.49, Aznan et al.50 and Lee et al.51 also 
used DCGANs for synthesizing realistic EEG signals. Hartmann et al.52 and Ko et al.25 both exploited Wasserstein 
GANs with a gradient  penalty53 to generate artificial EEG samples. Moreover, Panwar et al.54 and Lu et al.55 both 
exploited Wasserstein GANs with a gradient penaly and a condition vector for generating artificial EEG signals. 
Furthermore, Corley and  Yufei56 upsampled spatial resolution of EEG using  GANs19. In particular, they organized 
Wasserstein  GANs57 to stabilize the training procedure, however, their work was based on developing a generative 

Figure 1.  Comparison of learning schemes. (a) A conventional non-adversarial learning uses a training dataset 
(labeled and/or unlabeled) to learn the machine learning algorithm. On the other hand, (b) adversarial learning 
leverages artificially generated samples from random noise to learn the algorithm.
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model in an unsupervised manner, while our proposed work focuses on establishing a well-stabilized discrimi-
native model in a semi-supervised manner. Moreover, Wei et al.58 conducted multi-source domain adversarial 
domain adaptation to reduce the rapid serial visual presentation data acquisition phase. In our work, we also focus 
on the reducing calibration efforts of an MI-based BCI in the semi-supervised manner. Finally, Fahimi et al.49 
implemented Wasserstein  GANs57 to synthesize SSVEP samples, thereby augmenting the training dataset size.

As the original  GANs19 are designed to train in an unsupervised manner, they are not necessarily useful for 
classification tasks, especially in  BCIs41,50,56. In this regard, inspired by Odena’s  work59 that extended the original 
GANs framework by including both a generative model and a classifier simultaneously and presented its validity 
for classification tasks, we propose a semi-supervised deep adversarial learning framework in this study. More 
specifically, given CNN architectures proposed for EEG analysis, we propose a strategy to design the structure of 
a generator network based on the given feature extractor network. Then, we used the feature extraction network 
and the classifier network as a discriminator in our framework. By doing so, the proposed method effectively 
exploits an adversarial learning scheme and class-discriminative feature representations for MI-based BCI with 
a limited number of training samples.

Experiments and analysis
In this section, we describe datasets used for performance evaluation, our experimental settings, base CNN 
architectures used for a generator G and a combined feature extractor and classifier, F ◦ C . Furthermore, we 
present the classification accuracies of our method and those of competing methods.

Dataset & preprocessing. We used three BCI Competition datasets, III-3a, III-4a, and IV-2a that con-
sisted of different motor imagery tasks. Importantly, as these datasets have separate training and test trials, we 
subsequently conducted five-fold nested cross-validation with training samples only for model selection.

• III-3a: This dataset consisted of four motor imagery tasks: left hand, right hand, feet, and tongue. All EEG 
signals were acquired from three subjects and recorded using 60 Ag/AgCl electrode channels according to a 
10-20 system. In addition, the signals were band-passfiltered between 1 and 50Hz, and the sampling frequency 
was 250Hz.

• III-4a: This dataset consisted of two motor imagery tasks: right hand and foot. All EEG signals were acquired 
from five subjects, recorded using 118 Ag/AgCl electrode channels according to the 10-20 system, sampled 
at 1000Hz, and band-pass filtered between 0.05 and 200Hz.

• IV-2a: This dataset consisted of four motor imagery tasks similar to III-3a. All EEG signals were acquired 
from nine subjects, recorded using 22 Ag/AgCl electrode channels according to the 10-20 system, sampled 
at 250Hz, and band-pass filtered between 0.5 and 100 Hz.

To have consistently model our deep networks, we first selected 22 channels from III-3a and III-4a and down-
sampled III-4a to 250Hz to match the sampling of IV-2a. Finally, all datasets were band-pass filtered between 1 
and 50Hz. Similar to previous  studies12,25, we preprocessed the signals by applying a large Laplacian filter. Note 
that when a target channel does not have four nearest neighbor, we just used available channels and their average 
value to filter the target channel. We then segmented signals of 1 sec in length before the cue to determine baseline 
signaling. We subtracted the mean value of the baseline from each trial for baseline  correction12,26. Further, we 
normalized EEG trials for each subject in a channel-wise manner. That is, we estimated the mean and standard 
deviation values for each channel independent of all other training samples of a subject and transformed EEG 
trials to have a zero mean and unit variance by subtracting the mean and dividing with a standard deviation. As 
for the test samples, we applied the same mean and standard deviation values for normalization. Note that as 
the multi-channel EEG signals were only shifted and scaled by their respective channel-wise mean and standard 
deviation values, it reserved inter-channel relations inherent in data. Finally, we removed the first and the last 
signals of 0.6 sec in length, i.e., xl , xu ∈ R

22×700.

Experimental settings. Owing to a lack of training samples (only dozens∼hundreds of trials were col-
lected, in total), we were precluded from training the existing deep CNN models without suffering from over-
fitting. As a remedy, we used a data augmentation strategy involving a sliding window-based voting method. 
Specifically, we set the size of a window to be approximately 2 secs in length similar to previous  studies8,12,25 
and an exponential power of 2 for efficient GPU  computation60 (512 time points). Then, we slid it using a stride 
length of one time point. In our experiments, we used three public datasets of BCI Competition III-3A, 4A, and 
IV-2A. Basically, each of the datasets was already split into train and test sets for fair evaluation purposes over 
different methods. Thus, there was no need to consider train/test splitting, and it was guaranteed that no test 
samples were involved in any of the training steps. Meanwhile, the use of over-segmented samples with a sliding 
window was to boost the number of training samples for robust network training. By doing so, we produced 
189 segments with a sliding window of 22 channels × 512 time points for a single EEG trial of 22 channels × 700 
time points, i.e., 189 = 700− 512+ 1 . Then, we fed these segments into our network to make 189 outputs, one 
for each segment, and made a single decision by means of a majority voting. Under our GPU acceleration setup 
(NVIDIA Titan RTX), this ensemble strategy was computed within 0.3 sec. This process was carefully performed 
such that it did not entangle training and test samples for model learning. Further, as the size of a sliding window 
determines the input dimension of a CNN, to make a determination using only one label for a single test trial, we 
applied a voting  strategy61,62 with the outputs from all windowed signals of a single trial.

To validate the efficacy of our method, we performed the experiments using two different scenarios.
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• Scenario I: It was designed to demonstrate the validity of GDAL by presenting the performance improve-
ments that varied according to the number of training samples. We built two CNN-based models, i.e., one 
with adversarial learning and one without adversarial learning. We then randomly selected 100, 75, 50, 25, 
and 12.5% of the training samples for each class and used these samples for training.

• Scenario II: In this scenario, we focused on the use of unlabeled samples for semi-supervised learning, i.e., 
SGDAL. We randomly selected 75, 50, 25, and 12.5% of the training samples for each class and discarded 
their labels during training. We compared the results of this scenario to the baseline results of Scenario I.

While training our proposed framework, we set a mini-batch size of 64 within 100 total epochs, an exponentially 
decreasing learning rate (inital value: 3.0× 10−2 , decreasing ratio per epoch: 1.0× 10−3 ) and used an Adam 
optimizer. Note that the proposed framework is adaptable to many kinds of CNN architectures, varying from 
existing networks in the BCI literature to newly designed ones. In this work, for the feature extractor and the 
classifier C ◦ F(·) , we exploited existing CNN  architectures8,12 as reported in the next subsection. For the genera-
tor network G(·) , we built a new deep deconvolution network in the reverse order of the feature extractor F(·) . 
Thanks to DCGANs modeling  strategy33, we removed pooling layers and replaced all nonlinear activation func-
tions to ReLU activation. Finally, for the noise vector z inputted to the generator, we sampled a 100-dimensional 
vector from Gaussian distribution N (0, 1).

Base CNNs for adversarial modeling. For all experiments, we considered three existing CNN architec-
tures:  RSTNN12, Deep  ConvNet8, and Shallow  ConvNet8. Note that these architectures have various forms, e.g., 
very deep and recurrently repeated convolutions (13 convolutions)12, a less deep network with 5  convolutions8 
and a shallow model with 2  convolutions8. Here, we describe the characteristics of each network in brief. For the 
complete specifications of the architectures, refer to the original paper cited below. All codes used in our experi-
ments are available at ‘http:// deepb ci. korea. ac. kr/ opens ource/ opensw/.’

• RSTNN12 is inspired by  RCNN63, which achieved promising results in the motor execution of EEG decod-
ing. This network consists of a number of recurrent convolutional layers. A recurrent convolutional module 
in  RSTNN12 is composed of three recurrent convolution layers (temporal convolutional kernels, 1 × 9) and 
spatial features based on spatial convolution layers (spatial convolutional kernel, the number of channel×1). 
Following the feature extraction, fully connected layers are used to classify the features. To build a generator 
G , we assembled deconvolutional layers in the reverse order of the feature extractor and with ReLU activation, 
with the exception of the output layer, for which we used a tanh activation function. Originally,  RSTNN12 
has three spatio-temporal modules, thus we retained the original settings for III-3a and IV-2a, however, we 
used a single module for III-4a because of significantly smaller number of training trials. See Fig.,3a for the 
detail structure.

• A Deep  ConvNet8 consists of a temporal convolution layer followed by a linear activation, a spatial convolu-
tion layer with an ELU activation, three temporal convolution layers, each of which is applied with an ELU 
activation, and an output layer with a softmax mapping function. See Fig. 3b for the used architecture.

• A Shallow  ConvNet8 is designed with a pipeline of one temporal convolution layer with a linear activation, 
spatial convolution layer with a squaring activation, and an output layer with a softmax mapping function 
for prediction. See Fig. 3c for more details.

Performance comparison. The experimental results are summarized in Table  1. For comparison with 
linear models, we built a CSP with LDA (CSPwLDA)3 and implemented Lotte’s artificial data generation (ADG) 
method and Lotte’s semi-supervised CSP (SS-ADG)  method21. For the linear models, we used 6 filters and regu-
larized covariance for CSP and artificial EEG generation in the time-frequency  domain21 for ADG. For the ADG 
 method21, we used the same settings for CSP and LDA, and generated the same number of artificial samples 
as that of the removed training samples, i.e., for instance, when ADG has 75% of training samples, it generates 
25% for additional training samples. For the SS-ADG  method21, we also used the same settings for CSPwLDA. 
Further, we unlabeled the same number of training samples as that of the used ratios. For example, SS-ADG has 
75% of labeled training samples and 25% of unlabeled training samples in the case of a 75% ratio.

Even though previous studies have decoded MI-EEG in a semi-supervised  manner15,29, these studies have 
used unlabeled test data for their methods. Therefore, it is not fair to directly compare these methods with our 
proposed method. Thus, we did not compare the proposed method with these previous  methods15,29.

To evaluate and compare the performance among comparative methods, we repeated all experimental sce-
narios 10 times over three different datasets for more robust results and better generalized conclusions. We also 
estimated p-values to indicate statistical significance between conventional modeling, i.e., ‘Vanilla’ and each 
(semi-supervised) adversarial modeling i.e., ‘GDAL’ and ‘SGDAL’. With regard to the statistical test, we used the 
two-tailed Wilcoxon’s signed rank test between a vanilla model and its counterpart GDAL or SGDAL model 
based on their repeated measures test across 9 subjects’ accuracies. Furthermore, to avoid the multiple comparison 
problem, we adjusted our acquired p-values using the Bonferroni’s correction technique. For example, in the 
comparison between ‘Vanilla’ and its counterpart GDAL scenario, we first estimated p-values, then multiplied 
45 to adjust family-wise error rate.

Scenario I. The results of different base CNNs used in this scenario are shown in Table 1. We observed clear 
improvements in the classification performance in all base CNNs, yielding small p-values which indicate a high 
statistical significance. A noteworthy aspect of this scenario is the relatively large improvement seen in subject 
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2, 4, 5, and 6 from the IV-2a dataset that was previously regarded as a BCI illiterate, a user who has significant 
difficulty in using BCI  systems4,28. Additionally, Deep ConvNet and Shallow  ConvNet8 exhibited performance 
improvements when the networks were trained using our GDAL framework. Based on the summary of the accu-
racies listed in Table 1, it is noteworthy that SGDAL clearly outperformed its counterpart GDAL, whose results 
were mostly superior to the corresponding Vanilla and Baseline models in all scenarios and datasets, except for 
the three cases with 75% and 12.5% of dataset III-4a and 12.5% of dataset III-3a. Furthermore, on comparing 
the three networks, there was no evident trend indicating whether one network was superior to others. How-
ever, Shallow ConvNet, which is characterized as a relatively smaller network than Deep ConvNet and RSTNN 
in terms of learnable parameters, still achieved the highest accuracy in many scenarios. A possible reason for 
a small network exhibiting better performance than deeper networks could be the limited number of training 
samples. Nonetheless, as other deep models, i.e., Deep ConvNet and RSTNN, also presented reasonably high 
performances, they still deserve good candidate networks as a module in our proposed framework. Notably, in 
every dataset and case, the average performance across subjects with existing  CNNs8,12 and GDAL was higher 
than the performance of those with conventionally learned (vanilla) CNNs.

Scenario II. As shown in Table 1, the use of the proposed SGDAL led to clear performance improvements with 
respect to all base CNNs considered in this study. It is noteworthy that the resulting p-values were generally less 
than 0.05, denoting a high statistical significance. We also observed that training with the unlabeled data by 
using the proposed method improved the performance of the networks in most of the cases.

In every case, the SGDAL method exhibited a higher performance than the vanilla CNNs. Thus, based on 
these promising results, we conclude that the SGDAL framework proposed in this study can be applicable to 
incremental learning. After training our SGDAL-based BCI system with a few labeled training samples, it was 
possible to update this system with new test trials involving an unknown label (e.g., unlabeled trials). From the 
perspective of developing systems, this can be considered as lifelong learning via dynamically self-updating 
network parameters, which will be our forthcoming research topic.

More importantly, when we used smaller amounts of training samples, i.e., 75, 50, 25, 12.5% of the training 
samples, Deep ConvNet and Shallow  ConvNet8 with adversarial modeling, i.e., GDAL or SGDAL showed the 
highest performance in many cases. Based on these results, we concluded that the proposed method functioned, 
even with a small training dataset. Thus, we believe that the proposed method has significant potential for appli-
cations in situations wherein it is difficult to collect many training samples.

We plotted loss curves of the generator G(·) in our GDAL and SGDAL framework, and loss curves of the 
feature extractor and the classifier, i.e., the discriminator C ◦ F(·) in our framework and the vanilla training set-
ting in Fig. 5. To be specific, we visualized training curves of Deep  ConvNet8 trained with 75% of Subject 1’s EEG 
samples in BCI Competition IV-2a dataset. We observed that the feature extractor and the classifier networks, 
i.e., C ◦ F  oscillates at the beginning of training, but gradually stabilizes and saturates in both GDAL and SGDAL 
setting. Note that loss curves of C ◦ F  are maximized owing to our GANs training framework while the loss of 
conventional setting is minimized, because the yellow curve denotes the classification loss and the blue curves 
show the discrimination ability. In the meantime, pink curves which show the generator G loss are minimized.

Analysis and discussion. We estimated and visualized the activation  patterns24 by using learned spatial 
filters of the RSTNN-based models for each subject from the III-3a dataset shown in Fig. 4. The topological pat-
terns in the maps coincide with prior neurophysiological findings. Specifically, when a user imagined moving 
his/her left hand, we observed right-lateralized brain activation patterns, and vice versa with the left hemisphere. 
Furthermore, imagining foot movements activated the center of a brain, and imagining tongue movements acti-
vated the temporal regions. Qualitatively, we observed that the patterns of subject k3b are more prominent than 
the others. This difference between the patterns of subject k3b and those of the others was related to a difference 
in their classification performance. In other words, subject k3b’s EEG signals were used more feasibly for learn-
ing of class-discriminative features in the network, providing a clearer activation pattern.

Furthermore, we observed that the activation patterns of  RSTNN12 with adversarial modeling, especially 
GDAL were more prominent than those of RSTNN with conventional modeling. This result provides insights 
into the proposed method and its improved ability to learn class-discriminative feature representations from 
a given dataset. From the results, we observed relatively clearer ERD/ERS patterns (marked by a black arrow) 
from RSTNN + GDAL and RSTNN + SGDAL estimated patterns as compared to the vanilla RSTNN patterns 
depicted in Fig. 4.

We further estimated activation patterns with Deep ConvNet and Shallow  ConvNet8. However, these did not 
quite reveal neurophysiologically meaningful neural network patterns. We assume that the spatial convolution 
of layers did not allow for the extraction of spatially meaningful features. Because only one temporal convolu-
tional layer was available before the spatial convolutional layer, thus the networks (Deep ConvNet and Shallow 
 ConvNet8) were unable to extract sufficient spectral-temporal information prior to the spatial convolution layer.

Conclusion
In this study, we described a novel, semi-supervised generative and discriminative adversarial learning frame-
work for BCIs and considered multiple CNN architectures as base generators and discriminator learners. Based 
on the results of our experiments, the statistically significant improved in performance of the proposed frame-
work validated its effectiveness, especially when a limited number of training samples were provided. We also 
described how this framework effectively uses unlabeled samples, which facilitate the adaptive updating of 
network parameters as additional data becomes available (e.g., incremental or lifelong learning paradigms). A 
visual inspection of the activation pattern maps and comparisons between real and artificial EEG signals in the 
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time and frequency domains allowed us to understand the types of neurophysiological phenomena that were 
learned by the CNN-based models, their performance improvements and the extent of similarities between the 
generated signals and real signals. Considering these factors, we conclude that the proposed semi-supervised 
generative and discriminative adversarial learning framework possesses significant potential for applications in 
different types of learners and for generation and discrimination in BCI applications.

From a practical standpoint, many challenges remain unaddressed with regard to the use of subject-independ-
ent BCIs and reducing the acquisition time of EEG signal. In the present study, all experiments were conducted 
in a subject-dependent manner. However, for general use, it is important that a BCI system is applicable to any 
subject. Transfer learning or domain  adaptation16,64 can be informative for this purpose. Introducing a conditional 
vector to the proposed framework to generate class-conditioned artificial EEG for data augmentation can also 

Figure 2.  A schematic illustration of the proposed semi-supervised generative and discriminative deep 
adversarial learning framework for MI-based BCI. The black and red arrows denote data or features flows 
during a training step and a test step, respectively. (GDAL: generative and discriminative adversarial learning, 
SGDAL: semi-supervised GDAL).

Figure 3.  Illustration of three different GAN architectures used in our experiments. In all feature extractors 
(blue square) F  , every convolutional layer was activated by leaky ReLU (lReLU), and the corresponding 
classifiers (green square) C were activated by tanh . In these combined feature extractors and classifiers, real 
input EEG and artificially generated EEG that have a matrix form of 22×512 were inputted and predictions of 
networks were outputted (artf. node denotes a node for artificially generated EEG). Meanwhile, in all generators 
(red square) G , every deconvolutional layer was activated by ReLU with the except of the final layer activated by 
tanh . In these generators, a random noise vector z ∈ R

100 was inputted, and an artificially generated EEG (22×
512) was outputted.
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Table 1.  Performance evaluation for every case. Ratio rows denote number of used training samples of each 
dataset, which is shown in the Dataset rows. Baselines column shows the performance of a conventional CSP 
and LDA method (CSPwLDA column), Lotte’s artificial EEG generation using time-frequency domain  EEG21 
(ADG), and Lotte’s semi-supervised CSP and LDA  method21 (SS-ADG). Shallow ConvNet, Deep  ConvNet8, 
and  RSTNN12 columns indicate the CNN architecture to demonstrate the classification performance of 
conventional modeling (Vanilla), the proposed adversarial modeling (GDAL), and semi-supervised adversarial 
modeling (SGDAL). * and ** denote p < 0.05 and p < 0.005 , respectively.

Baselines Shallow  ConvNet8 Deep  ConvNet8 RSTNN12

Ratio Dataset CSPwLDA ADG21 SS-ADG21 Vanilla GDAL SGDAL Vanilla GDAL SGDAL Vanilla GDAL SGDAL

100%

III-3a .75 ± .12 N/A N/A .75 ± .12 .77 ± .11** N/A .77 ± .10 .78 ± .10** N/A .74 ± .11 .76 ± .12 N/A

III-4a .80 ± .14 N/A N/A .89 ± .06 .89 ± .05 N/A .87 ± .06 .88 ± .06 N/A .75 ± .10 .77 ± 10 N/A

IV-2a .62 ± .15 N/A N/A .67 ± .14 .68 ± .14* N/A .66 ± .14 .68 ± .14** N/A .66 ± .14 .67 ± .14* N/A

75%

III-3a .74 ± .12 .73 ± .11 .69 ± .13 .71 ± .12 .72 ± .12* .74 ± .12** .77 ± .10 .77 ± .10 .79 ± .09* .73 ± .12 .74 ± .13* .75 ± .13**

III-4a .76 ± .14 .75 ± .15 .63 ± .15 .74 ± .10 .76 ± .09* .77 ± .09* .77 ± .09 .76 ± .09 .76 ± .09 .71 ± .08 .72 ± .07 .73 ± .07*

IV-2a .58 ± .13 .56 ± .13 .53 ± .16 .63 ± .14 .65 ± .14* .66 ± .14** .64 ± .14 .65 ± .14* .66 ± .13* .63 ± .13 .65 ± .13* .66 ± .13*

50%

III-3a .67 ± .15 .65 ± .16 .64 ± .16 .68 ± .13 .69 ± .12* .70 ± .12* .71 ± .11 .73 ± .10* .74 ± .09* .70 ± .12 .71 ± .12 .71 ± .09*

III-4a .72 ± .15 .71 ± .16 .62 ± .16 .72 ± .07 .74 ± .09** .74 ± .09* .71 ± .10 .71 ± .09 .72 ± .11 .70 ± .08 .71 ± .08* .72 ± .08*

IV-2a .56 ± .14 .56 ± .14 .51 ± .16 .61 ± .13 .61 ± .13 .62 ± .13 .60 ± .13 .61 ± .13* .62 ± .13* .60 ± .13 .61 ± .13* .62 ± .13*

25%

III-3a .62 ± .20 .60 ± .20 .63 ± .15 .66 ± .13 .68 ± .12** .69 ± .12* .68 ± .15 .70 ± .13** .71 ± .14* .68 ± .11 .69 ± .14* .71 ± .11**

III-4a .72 ± .15 .72 ± .14 .61 ± .15 .72 ± .09 .74 ± .09* .75 ± .09* .72 ± .09 .73 ± .10** .73 ± .09* .68 ± .08 .69 ± .08* .70 ± .07*

IV-2a .53 ± .14 .53 ± .13 .49 ± .17 .54 ± .13 .56 ± .13** .56 ± .13* .54 ± .13 .55 ± .12* .55 ± .12** .54 ± .13 .55 ± .13* .56 ± .13*

12.5%

III-3a .59 ± .20 .57 ± .19 .50 ± .20 .65 ± .10 .66 ± .11* .68 ± .11* .66 ± .16 .68 ± .16* .67 ± .16** .66 ± .14 .66 ± .14 .66 ± .12

III-4a .65 ± .19 .65 ± .18 .59 ± .16 .67 ± .10 .69 ± .10* .68 ± .21 .64 ± .10 .65 ± .11* .66 ± .10** .63 ± .06 .63 ± .05 .64 ± .04*

IV-2a .50 ± .14 .49 ± .14 .45 ± .15 .48 ± .11 .49 ± .11 .50 ± .11* .48 ± .12 .49 ± .11** .50 ± .11** .48 ± .11 .49 ± .11** .49 ± .11*

Figure 4.  Activation pattern maps for the learned spatial filters in CSP (left top), the learned spatial kernel 
weights in  RSTNN12 (right top), the learned spatial kernel weights in RSTNN + GDAL (left bottom), and the 
learned spatial kernel weights in RSTNN + SGDAL (right bottom). Each column is related to a class, i.e., left-
hand, right-hand, feet, and tongue, and each row denotes a subject index.
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be a possible solution to reduce the acquisition time. Furthermore, this study only exploits artificially generated 
task-related EEG signals. We believe that there is a possibility of employing unlabeled task-independent EEG 
signal, e.g., resting-state signals, and their respective artificially generated samples in feature representation 
learning for EEG analyses and classifications. It would be one of our forthcoming research topics. Finally, even 
though our work mainly focused on a spontaneous EEG paradigm (i.e., motor imagery), there exist interesting 
 studies48 that exploiting artificial EEG samples for BCI applications in evoked EEG paradigms (e.g., SSVEP, 
P300). Thus, applying our proposed framework to those evoked potentials would also be an intriguing issue.

Additionally, even though this study mainly focused on MI-based BCIs, the proposed method can also be 
applicable to other types of paradigms (e.g., SSVEP, P300). Thus, applying our proposed framework to other 
types of EEG-based BCI systems will be interesting.

Methods
Here, we propose a semi-supervised deep generative adversarial learning framework in Fig. 2, wherein a gen-
erator finds a non-linear mapping function from the random noise (i.e., latent space) distribution and the real 
data distribution, Px , and is therefore capable of generating artificial EEG signals. The discriminator, composed 
of a feature extractor and a classifier, learns the target-task related EEG feature representations and a class-label 
mapping function using both real (labeled) and artificial (unlabeled) EEG signals. After training, given a test 
EEG trial, the discriminator searches the feature extractor and the classifier to identify the user’s intention, which 
is then converted into a control command to be fed into an external device.

Adversarial modeling. Despite the availability of advanced approaches for modeling complex data such 
as EEG signals, data insufficiency for training deep models remains a major concern because generalization 
requires a huge amount of data. As for BCIs, in general, we have an extremely limited number of samples avail-
able for training, e.g., less than one hundred, which are mostly acquired during a calibration session to avoid the 
potential difficulty in training caused by inter-session  variability16,17. In this regard,  GANs19 are emerging as a 
potential solution to address the aforementioned problem. In GANs, a generator G(·) produces an artificial but 
realistic samples x̃ from a random noise vector z , i.e., x̃ = G(z), z ∼ Pz . In the same framework, while a genera-
tor is trained to synthesize artificial data, a discriminator D(·) is used to discriminate between the artificial and 
real samples. In this process, the use of the two tunable components, i.e., the generator and discriminator, is akin 
to playing a minimax game in the framework with no label information involved with the following objective 
function LGANs(G,D)19:

where Px and Pz denote, the data distribution and noise distribution, respectively, and E[·] refers to an expecta-
tion. In this objective function, the parameters of the generator G are trained to fool the discriminator such that 
D(G(z)) → 1 , while those of the discriminator D are trained to distinguish generated artificial data from real 
data toward D(G(z)) → 0 and D(x) → 1.

Notably, the original  GANs19 are mainly designed and trained in an unsupervised manner, and lack learning 
class-discriminative features. Therefore, to learn class-discriminative feature representations and at the same 
time, effectively utilize the GANs framework, we modify the discriminator as a feature extractor F  combined 
with a classifier C by adding units to the output layer of the discriminator, such that the additional units can 
produce target-task related class-label  probabilities59 as shown in Fig. 2. We refer to this modified framework as 
a ‘generative and discriminative adversarial learning’ (GDAL) framework. That is, in our GDAL framework, in 
addition to training the discriminator to distinguish between real and artificial EEG samples, we use it to identify 
the class labels of real EEG signals. For an M-class classification task, we over-parameterize the output layer to 
have M + 1 output units. However, in a GDAL framework, the generator still plays the role of mapping a random 

(1)min
G

max
D

LGANs(G(z),D(x))

(2)LGANs = Ex∼Px [logD(x)] + Ez∼Pz [log(1−D(G(z)))]

Figure 5.  Loss curves of the generator network G(·) and the feature extraction with the classifier network 
C ◦ F(·) for the vanilla training Lvanilla , the generative-discriminative adversarial learning (GDAL) LGDAL , and 
the semi-supervised GDAL LSGDAL.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4587  | https://doi.org/10.1038/s41598-022-08490-9

www.nature.com/scientificreports/

noise vector to an artificial EEG sample, which is then fed into a discriminator. Furthermore, the discriminator 
efficiently exploits artificial samples in learning feature representations inherent in task-related EEG signals for 
class-label identification.

To ensure the effectiveness of the GDAL framework, the original GANs objective function in Eq. (1) 
also needs to be revised by explicitly denoting the combined feature extractor and classifier F ◦ C(·) , where 
F ◦ C(·) = C(F(·)) . Thus, the objective function LGDAL(G,F ◦ C) is defined for the generator, as well as the 
feature extractor and classifier explicitly combined, as shown below.

where F ◦ C(·)a denotes the a-th unit in the output layer of the discriminator, and it is assumed that the  
( M + 1)-th unit denotes the probability of the sample being real.

Semi‑supervised adversarial modeling. When unlabeled real samples xu ∼ Pxu are available, it is ben-
eficial to use them to boost a model’s robustness and improve generalization by reflecting the characteristics of 
then additional data distribution  pattern65. Owing to the unsupervised learning nature of  GANs19, it is relatively 
straightforward to utilize unlabeled samples in our model, which we call the ‘Semi-supervised GDAL’ (SGDAL) 
framework. With the additional unlabeled real samples used during training, there is essentially no change in 
our framework and model architecture except for the loss function. That is, for unlabeled real samples, a dis-
criminator is required to tune weights connected to a unit whose output indicates the probability of real or arti-
ficial cases. Therefore, in a semi-supervised adversarial learning condition, the objective function consists of two 
parts: one supervised term for labeled real EEG samples and the other, an unsupervised term for both artificially 
generated EEG samples and unlabeled real EEG samples. Notably, Eq. (4) deals with both the labeled real sam-
ples and the generated samples. Thus, for semi-supervised learning, a modification is needed to account for the 
unlabeled real samples, for which we further consider a classification loss between the generated and unlabeled 
real samples in the feature extractor F  and the classifier C as follows:

where LGDAL is defined as in Eq. (4).
The SGDAL framework is especially effective when EEG signals are collected gradually over time and/or when 

the BCI system is used over time. That is, when used in practice, a user induces EEG signals repeatedly, for which 
we have no ground-truth labels, and these generated signals are useful in updating the network parameters to 
better reflect a user’s EEG signal patterns. Given this, one noticeable advantage of our SGDAL framework is its 
inherent way of incremental BCI learning.

Our framework adopts Odena’s  work59, wherein semi-supervised GANs were applied for computer vision 
tasks. In this work, we attempt to solve an important application problem in BCI using Odena’s work and devise 
the training strategies by leveraging recent advanced techniques to stabilize generator and discriminator learning, 
e.g., Wasserstein distance with gradient penalty to avoid mode collapse53,57. The following subsection describes 
organization of those findings.

Network architectures and learning. Given the physical or mechanical properties of non-invasive EEG, 
e.g., in the acquisition of signals on the scalp or surface of a brain, it is typically assumed that multi-channel 
EEG signals provide linear superpositions of the source signals in a volumetric  brain21. Clearly, multi-channel 
EEG signals have local and global relationships to one another in both time and space. Hence, to decode a user’s 
intention, as observed by multi-channel EEG signals, the complex patterns of these is necessary latent signals, 
in both time and space, must be decoded. We contend that deep networks are capable of disentangling these 
complicated patterns. However, to design the architectures of the generator G and the combination of the feature 
extractor and classifier F ◦ C in our framework, based on the previous  studies7,8, we believe that CNNs are good 
candidates in the case of such complicated patterns.

Given a multi-channel time series input x ∈ R
C×T with C channels and T time points, a CNN discovers 

spatio-temporal relationships by hierarchically interleaving convolution and pooling operations. The convolution 
operation for EEG representations can be defined in three different  ways7, depending on the shape of a kernel: 
1D temporal (inter-time relations), 1D spatial (inter-channel relations), and 2D spatio-temporal (inter-time and 
inter-channel joint relationships). For enhancing interpretability, we exploit CNNs with 1D spatial convolutional 
filters. Additionally, to validate the effectiveness of our SGDAL framework, we employ the existing network 
architectures available in the literature regarding BCI for designing the feature extractor and the classifier of 
our study, rather than designing them new. Specifically, we consider the CNN architectures of  RSTNN12, Deep 
 ConvNet8, and Shallow  ConvNet8.

Given that prior  CNNs8,12 were primarily designed and trained for classification purposes, the above-men-
tioned networks are applicable to the use of combined feature extractor and classifier F ◦ C in our framework. 
However, in the case of a generator G , a new architecture needs to be designed. Additionally, when training a 
generator, its stability needs to be ensured. In our work, based on prior  study66, we regarded the generator as 

(3)min
G

max
F◦C

LGDAL(G(z),F ◦ C(xl , y)

(4)LGDAL = E(xl ,y)∼P(xl ,y)
[logF ◦ C(xl , y){1,··· ,M}] + Ez∼Pz [log(1− F ◦ C(G(z))M+1)]

(5)min
G

max
F◦C

LSGDAL(G(z),F ◦ C(x, (y)))

(6)LSGDAL = LGDAL + Exu∼Pxu
[logF ◦ C(xu)M+1]
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an inverse of the feature extractor and defined its architecture using a deconvolution-like network in which the 
order of layers in the feature extractor CNN, i.e.,  RSTNN12, Deep ConvNet, and Shallow  ConvNet8, was reversed, 
and input was a random noise  vector33,67. It is empirically validated in designing a generator and a discrimina-
tor with an inverse-relationship in their  architecture33. We also used a bilinear-resize up-sampling technique to 
deconvolute operations, rather than zero-inserting34 to enhance the quality of generated EEG signals.

To avoid a potential mode  collapse67 during training, we used Wasserstein divergence with a gradient  penalty53 
and feature matching  techniques66 by modifying the objective function in Eq. (4) and Eq. (6) as follows:

where F  is a feature extractor in a discriminator, i.e., a subnetwork before the output layer, � is a hyperparameter, 
x̂ = ǫx + (1− ǫ)G(z) , and ǫ ∈ R is a random number between 0 and 1. Algorithm 1 describes the pseudo-codes 
for learning with the objective functions defined above.

During testing, given a new EEG signal xnew , we use the combination of the feature extractor and classifier 
F ◦ C from our adversarial models, i.e., GDAL and SGDAL, with output units related to the class labels, ignoring 
the (M + 1)-th unit related to a real/artificial decision). That is, the decision function is defined as

Investigating the learned network weights. Owing to the advancements and achievements of deep 
learning, researchers have been paying more attention to the interpretation of trained models. However, inter-
pretation of learned kernel weights in a CNN is still a challenge as the inter-mixed non-linear operations as 
progressing towards the output layer of a network. Recent studies  of8,10,23 devised ways to understand the learned 
features representations or network weights. Schirrmeister et al.8 conducted visual analysis by calculating cor-
relations of (input)-(unit responses)-(outputs). Lawhern et al.10 presented three different approaches, namely, 

(7)LGDAL =E(xl ,y)∼P(xl ,y)
[logF ◦ C(xl , y){1,··· ,M}] + Ez∼Pz [F(G(z))] + �Ex̂∼Px̂

[(||∇x̂F(x̂)||2 − 1)2]

(8)LSGDAL =LGDAL + Exu∼Pxu
[F(xu)]

(9)k̂ = argmax
k

F ◦ C(xnew){1,...,k,...,M}.
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summarization of unit responses, visualization of kernel weights, and calculation of gradient-based single-trial 
feature relevance. Sturm et al.23 introduced a layer-wise relevance propagation to identify which components in 
an input influenced the final output. Concisely, the aforementioned previous studies analyzed network responses 
or visualized convolution weights, which correspond to spatial filters. However, to the best of our understanding, 
such a method is good to identify the observation that affected the final decision. However, it does not explicitly 
describe the underlying patterns, which are helpful (1) to understand neurophysiological insights shared across 
samples/subjects and (2) to identify discriminative characteristics the trained network commonly exploits for 
classification.

Therefore, we introduce a method for investigating learned network parameters making them neurophysi-
ologically plausible and visualizing them using topographic maps. Earlier, Haufe et al.24 proposed a method for 
the interpretation of weight vectors in multivariate neuroimaging, called an activation pattern, which is based 
on a forward-backward modeling concept. Essentially, the classification or decoding task used in the framework 
proposed here may also be regarded as a backward process by which a user’s intention is inferred from the fun-
damental induction of observed EEG signals. That is, our discriminative model extracts features from an input 
sample by applying filtering operations in a non-linear manner. These features are then used for classification 
rather than showing how observed EEG signals are evoked or activated by a user’s intention. Thus, for a concrete 
and intuitive understanding of learned network parameters, it is necessary to revert to a forward process com-
putational model. With reference to Haufe et al.’s  work24, we derive the following equation (for the proof, refer 
to the original Haufe et al.’s  work24) to estimate unknown activation patterns from learned weight parameters:

where A denotes a set of activation patterns, each of which corresponds to learned weights W , and �input and 
�output denote, respectively, the covariance matrices of the input vector and corresponding output from the 
learned layer. In particular, by mapping the activation patterns, A , estimated with the weights of spatial convo-
lution kernels in the form of a topography, which we refer to as an ‘activation pattern map,’ we visualize latent 
activations and obtain insights into the neurophysiological characteristics of target tasks.

Data availability
We used three publicly available datasets.
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