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Synthesis of new series of quinoline 
derivatives with insecticidal 
effects on larval vectors of malaria 
and dengue diseases
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Manickam Paulpandi2, Rajapandian Rajaganesh2, Murugan Vasanthakumaran4, 
Jagannathan Madhavan5, S. Syed Shafi5, Mathath Roni2, Johan S. Portilla‑Pulido6,7, 
Stelia C. Mendez6, Jonny E. Duque7, Lan Wang8, Al Thabiani Aziz3, 
Balamurugan Chandramohan2, Devakumar Dinesh2, Shanmughavel Piramanayagam9 & 
Jiang‑Shiou Hwang10,11,12*

Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of 
effective treatments. Here we are focusing on the development of a novel anti-malarial and 
virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline 
(4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties 
against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar 
larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 
10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline 
revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 
values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), 
and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect 
of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant 
activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline 
exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline 
could provide a good anti-vectorial and anti-malarial agent.

Vector-borne maladies are providing a serious threat to the well-being and public health around the world. 
Malaria, or dschungle fever, a tropical parasitic illness caused by the eukaryotic protest Plasmodium spp., provides 
one of the most significant infections on the planet1. An assessed 3.3 billion of the world human population 
lives in areas with risk of Malaria infection2 is contaminated with its mosquito vector Anopheles spp. Despite 
being preventable and treatable, malaria continues to provide severe effects on public health and livelihood in 
the tropical world3,4.
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According to the World Health Organization5, almost two million people in the Americas suffered from 
dengue virus infection in 2019, and more recent data showed that four billion people suffer from dengue and 
related viruses such as Zika and Chikungunya in 128 countries worldwide6.

Quinoline provides a well studied compound and shows potential biological activities against vector borne 
diseases7,8. Quinoline provided the first anti-malarial medicine. It is a special kind of alkaloid originating from 
the herbal tree Cinchona9. By altering the places of the chemical aldehyde groups, quinoline increases its pes-
ticidal properties10. Chloroquine provides well known clinical uses because of its viability and its generally safe 
application11. Attributable to huge natural bioactivities, quinoline compounds have attracted increasingly more 
consideration in combinatorial and bioactivity research12,13.

Quinoline subsidiaries have widespread biopharmaceutical applications14 (Fig. 1). Analysts have just decided 
numerous helpful bioactivities of quinoline subordinates, including among others mitigative effects, against 
bacteria15,16, hostility to viruses17 and cell reinforcement18. Therapeutic scientists incorporated an assortment 
of quinoline compounds with various natural compounds by introducing different dynamic gatherings to the 
quinoline moiety, utilizing engineering techniques and the possible utilization of quinoline subsidiaries in dif-
ferent fields of science, pesticide development and biomedicine19–21. Since 2011, several quinoline compounds 
have shown Epidermal Growth Factor Receptor (EGFR) inhibition22.

Among the heterocyclic compounds, 4,7-dichloroquinoline is a hydroxychloroquine intermediate for the 
treatment of different types of malaria23. Recently, numerous examinations are carried out with hydroxychloro-
quine for the therapeutic/forestall of pandemic COVID 1924. Likewise, the above said molecule was significant 
for the understanding of life performances25,26.

We synthesized a N1-(7-chloroquinoline-4-yl) ethane-1,2-diamine derivative by the method of Shafi et al.8 
against A. stephensi providing no harmful impacts on the environment as well on non-target organisms (see 
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Figure 1.   (a) 4,7-Dichloroquinoline design inspired by the natural molecule, chloroquine. (b) 
4,7-Dichloroquinoline design inspired by the natural molecule, chloroquine. (c) 4,7-Dichloroquinoline design 
inspired by the natural molecule, chloroquine.
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Nyberg et al.27). As the plasmodium parasite becomes more resistant to quinoline based anti-malarial drugs, it 
becomes even more important to design a potent anti-malarial molecule28,29.

Hence, finding new compounds to treat malaria is urgently needed for the treatment of dangerous mosquito 
borne diseases30,31. This work provides a general overview of quinoline advantages for the discovery of more 
efficient compounds32,33. In continuation of the study for the preparation of a 4-diamine substituted-7-dichlo-
roquinoline compounds against vector borne diseases34 we report herein the anti-malarial and anti-dengue 
potential of a novel quinoline compound.

The quinoline skeleton is utilized for some important engineered agrochemicals and to plan manufactured 
mixtures providing several pharmacological effects. Quinoline and its related compounds belongs to a significant 
class of antimalarial sedates that affect the parasite’s hemoglobin breakdown pathway. Earlier studies reported 
that for some time this compound was utilizing quinoline to battle malaria35. Along these lines, it is significant 
to re-look into the antimalarial movement of existing quinoline libraries or blend some unique quinoline sub-
sidiaries with improved action. A methodical and broad investigation is needed to find a compelling antimalarial 
compound structure 4-aminoquinoline based framework36. In the present research, we have orchestrated sev-
eral analogs of 4,7-dichloroquinoline and screened against jungle fever parasites, dengue (DENV-2) and their 
respective mosquito vectors. Also, we reported the synthesis of N2-2-((7-chloroquinolin-4-yl) amino) ethyl)-N4, 
N6-bis(4-nitrophenyl)-1,3,5-triazine-2,4,6-triamine. Whose synthesis have been planned for the bi-substituted 
cyanuric chloride using p-nitroaniline incorporated N1-(7-chloroquinoline–4–yl) ethane-1,2–diamine. Synthe-
sized molecules can be analyzed by IR, 1HNMR, 13C, mass and elemental analysis to characterize their molecular 
structure. This is a new compound that is easily synthesized by substituting cyanuric chloride to provide s-triazine 
derivatives. Substituted quinolines are historically among the most important antimalarial drugs and are expected 
to achieve a substantial reduction of malaria infections.

Materials and methods
Biogenesis of N1‑(7‑chloroquinoline ‑4‑yl) ethane‑1,2‑diamine.  A form of 4,7 dichloroquinoline 
(1.8 g, 0.01 mol) and ethylene diamine (0.06 g, 0.01 mol) was evaluated through thin layer chromatography 
(TLC) at the end of a chemical reaction. Filtration was used to remove the crystals of 4-substituted 7-chloroqui-
noline. After acetone treatment the end compound was recrystallized twice providing N1-(7-chloroquinoline-
4-yl) ethane-1,2-diamine (CAS Number-5407-57-8).

N1‑(7‑chloroquinoline‑4‑yl) ethane‑1,2‑diamine in silico analysis.  The synthesized compound 
N1-(7-chloroquinoline-4-yl) ethane-1,2-diamine was analyzed for its cytotoxic potential using the Osiris pro-
tocol from its official website (https://​www.​organ​ic-​chemi​stry.​org/​prog/​peo/). Parts of the Lipinski rule of five 
important parameters were utilized for quantification in order to trace their biological functions.

Anopheles stephensi and Aedes aegypti cultures.  Developmental instars of Anopheles stephensi and 
Aedes aegypti eggs were maintained at the following conditions of the laboratory: 27 ± 2 °C, 75–85% R.H. and 
14 h:10 h (L:D) photoperiod.

Toxicity effects on developmental instars of Aedes aegypti and A. stephensi.  The mosquitoes 
A. aegypti and A. stephensi were cultured and maintained following Murugan et al.37. For toxicology studies, 25 
individuals of both A. stephensi and A. aegypti larva (1st, 2nd, 3rd, and 4th) and pupae were placed for a 24 h 
treatment in a tank filled with 500 mL of distilled water at concentrations of 4,7-dichloroquinoline (2, 4, 6, 8 and 
10 ppm)38. In each treatment, 3 replications were carried out, in addition to negative controls. Mortality rate in 
percentage was studied applying the following formula:

Antiplasmodial cell culture assays on P. falciparum.  CQ-sensitive strain 3D7 and CQ-resistant strain 
INDO of Plasmodium falciparum were used to test the antimalarial activity of 4,7-dichloroquinoline. They were 
maintained according to the method described by Murugan et al.39. Formulations of 4,7-dichloroquinoline in 
DMSO were evaluated by the procedure of Murugan et  al.40, modified after Smilkstein et  al.41. Microscopic 
examination of Giemsa stained smear samples of normal Plasmodium falciparum exposed to 4,7-dichloroquino-
line was following Bagavan et al.42.

In vivo antiplasmodial assays on P. falciparum.  Following the method of Murugan et al.43, male albino 
mice (weight 27–30 g) were tested. They were maintained as reported by Murugan et al.43. For each experiment, 
three albino mice were used to test the antimalarial potential of the synthesized compound, 4,7-dichloroqui-
noline following a four-day inhibition technique by Murugan et al.43. Chloroquine (Sigma-Aldrich, Germany) 
was used as a positive control drug with normal saline (0.9%) at 5 mg/kg, while the negative control group 
was treated with 1 mL deionized water. The parasites inoculated in mice were noticed after 4 days of infection 
through microscopic observations of the blood44. Chemosuppression (%) was analyzed for every concentration 
of the parasitemia following the method of Argotte et al.45.

Infection and toxicity towards cells.  We procured Vero cells from the National Center for Cell Science 
(NCCS Maharashtra, India). The medium used for cultivation (EMEM) contained 10% fetal bovine serum and 

Mortality (%) =
Number of dead individuals

Number of treated individuals
× 100.

https://www.organic-chemistry.org/prog/peo/
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was incubated at 37 °C in a 5% CO2 atmosphere. We decreased the serum concentration to 2% when viral cul-
tures were used. As described by Murugan et al.43 Dengue virus type-2 (DEN-2) New Guinea C strain was raised 
through adopting the cell line and were retrieved after the expression of cytopathic effects (CPE), commonly 
seven days after infection. Infected viral cells were stored at – 70 °C. Cytotoxicity assays and viral quantification 
assays were following Sujitha et al.46 with minor modification.

Statistical analysis.  Data from Probit analysis allowed the analysis of the effective lethal concentrations of 
the mosquito larvicidal and pupicidal experiments47. From the drug concentration–response curves the IC50s of 
Plasmodium were calculated. In vivo antimalarial data were checked for normality and analysed using ANOVA 
with two factors (i.e. dose and treatment). DEN-2 PFU and cytotoxicity data were determined by ANOVA fol-
lowed by the HSD test of Tukey with the following probabilities (P = 0.05). All analyses were commonly carried 
out with the SPSS software package version 16.0.

Results and discussion
N1‑(7‑chloroquinoline‑4‑yl) ethane‑1, 2‑diamine effects analyzed by in‑silico approaches.  The 
synthesized compound showed no tumorigenic, irritative, nor reproductively significant effects in silico. Besides, 
LogP and LogS values (Table 1) indicated that the synthesized compound was hydrophilic with a high probabil-
ity of being distributed along with hydrophilic environments such as insect lymph or cellular cytosol. Molinspi-
ration analysis indicated that the values regarding, GPCR ligand, kinase inhibitor, nuclear receptor ligand, ion 
channel modulator, protease inhibitor and enzyme inhibitor scores were high. Molinspiration analysis gener-
ally indicated that the larger the value of the score was, the more the compound would have biological effects. 
Therefore, according to in silico analysis, N1-(7-chloroquinoline-4-yl) ethane-1,2-diamine is likely to affect ion 
channels, kinases, and some important enzymes. The above results could be related to acute toxicity on young 
instars of A. aegypti and A. stephensi and highly increased the growth inhibition of Plasmodium falciparum48. The 
in silico study highlighted that quinoline derivatives (BT24) effectively inhibited all four dengue serotypes (1–4) 
of infected Vero cells by compound (BT24) binding to the active site of the DENV-2 protease. On the other hand, 
no cytotoxic in silico results could be corroborated by the effect of Vero cell line studies. The drug likeness value 
is similar to quinolineb (− 1.65, data not shown) as the compounds are closely related. As a result, the compound 
could be used for the above mentioned applications.

Toxicity effect of 4,7‑dichloroquinoline on A. aegypti and A. stephensi.  In agreement with the 
current research, Saini et al.49 studied the antimalarial potential of quinoline-pyrazolo pyridine derivatives. Mos-
quitocidal results revealed that the synthesized 4,7-dichloroquinoline was highly toxic to developmental stages 
of malarial and dengue vectors providing LC50 values ranging from 4.408 µM/mL (larva I) to 7.958 µM/mL 
(pupa) for the chosen malaria vector and 5.016 µM/mL (larva I) to 10.669 µM/mL (pupa) for the dengue vec-
tor (Table 2). Recently, Rueda et al.50 demonstrated both adulticidal and larvicidal activity of A. aegypti when 
exposed to synthesized α-amino nitriles. Shao et al.51 showed for hexahydroimidazo [1,2-α] pyridine derivatives 
that they had excellent pesticidal properties against aphid species. Furthermore, Sun et al.52 highlighted that 
piperazinedione derivatives were highly toxic on the root-knot nematode Meloidogyne incognita. The K1 strain 
being resistant against chloroquine (CQ) was shown by Gayam and Ravi53 and that cinnamoylated chloroquine 

Table 1.   Informatic analysis results using Osiris (https://​www.​organ​ic-​chemi​stry.​org/​prog/​peo/) and 
Molinspiration (https://​www.​molin​spira​tion.​com, Slovensky Grob, Slovakia) software. The toxicity risk is 
expressed considering the following number code: (1) no risk (2) medium risk (3) high risk.

Properties Compound

N1-(7-chloro quinoline -4-yl) ethane-1,2-diamine

Molecular weight (g/mol) 221

LogP 1.31

LogS − 2.99

TPSA 50.94

GPCR ligand − 0.01

Ion channel modulator 0.42

Kinase inhibitor 0.41

Nuclear receptor ligand − 0.92

Protease inhibitor − 0.22

Enzyme inhibitor 0.24

Mutagenic 3

Tumorigenic 1

Irritant 1

Reproductive effect 1

Druglikeness − 1.35

https://www.organic-chemistry.org/prog/peo/
https://www.molinspiration.com
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hybrid analogues showed highest antimalarial activity. Lastly, Kondaparia et al.54 found that 4-aminoquinolines 
showed considerable antimalarial activity on Plasmodium falciparum. It was proposed that death rate caused by 
4,7-dichloroquinoline for the different life stages of larval populations of both A. stephensi and A. aegypti may be 
due to the upregulation of electronegative ions which provided better biological activity on target pests55. Indeed, 
Rahuman et al.56 reported that Zingiber officinale derived molecules showed toxicity on the 4th larval stages of 
the dengue vectors belonging to Culex species.

Antiplasmodial activities.  As a result of antiplasmodial assays, when compared to chloroquine, the syn-
thesized 4,7-dichloroquinoline expressed significant growth inhibition against both CQ-resistant (CQ-r) and 
CQ-sensitive (CQ-s) strains of P. falciparum (Fig. 2). Similarly, Kumawat et al.57 investigated 7-Chloro-4-amino-
quinoline derivatives causing moderate growth inhibition on CQ-sensitive P. falciparum (RKL-2). Also, Faruk 
Khan58 noticed that the cyclen 4-Aminoquinoline anlog, bisquinoline, exhibited in vitro and in vivo antiplasmo-
dial properties on D6 W2 chloroquine-sensitive and chloroquine-resistant strains of P. falciparum with IC50 val-
ues of 7.5 nM (D6 CQ-sensitive) and 19.2 nM (W2 CQ-resistance). Very recently, Pinheiro et al.59 showed that 
quinoline and non-quinoline derivatives were highly effective against both P. falciparum W2 chloroquine-resist-
ant strains of P. falciparum in infected mice. Quinoline drugs exhibited potential inhibitory effect of proteolysis, 
DNA replication, RNA synthesis and heme polymerization in Plasmodium spp60,61. Additionally, Aboelnaga and 
El-Sayed62 reported that 7-chloroquinoline derivatives showed significant anticancer activity on cervical (Hela) 
cancer cell lines, human breast cancer (MCF-7) and colon carcinoma (HCT-116). Protein kinase inhibitors, topo 
isomerase inhibitors, carbonic anhydrase inhibitors, Hsp90 inhibitors are the anticancer mechanisms of quino-
line derivatives63. Aderibigbe et al.64 found that polymer loaded aminoquinoline were highly potent against the 
strain of P. falciparum which was chloroquine-sensitive. A new quinoline derivative, thiazolyl hydrazone were 
synthesized as effective antifungal and anticancer agents by Erguc et al.65.

Dose-dependent chemosuppression against P. falciparum was demonstrated by Peters’ 4-day chemo-sup-
pressive activity assay (Fig. 3). After 4 days of 4,7-dichloroquinoline treated groups exhibited the percentage of 
parasitemia 10.6 ± 0.8% at 300 mg/kg/day than that of the control drug chloroquine (CQ) 1.0 ± 0.0%37,66. Tang 

Table 2.   Acute toxicity of synthesized 4,7-dichloroquinoline on young instars of Anopheles stephensi and 
Aedes aegypti.  Control no mortality, LC50 lethal concentration that kills 50% of the exposed organisms, LC90 
lethal concentration that kills 90% of the exposed organisms, χ2 chi-square value, d.f. degrees of freedom, χ2 
0.05 level of significance indicates homogeneity of results.

Species Target
LC50 (LC90) 
(µM/mL)

95% Confidence Limit LC50 (LC90) µM/
mL Regression 

equation χ2 (df = 4)Lower Upper

Anopheles stephensi

Larva I 4.408 (8.145) 3.001 (6.819) 5.487 (11.046) y = 1.512 + 0.343x 8.699 n.s

Larva II 4.916 (9.160) 4.469 (8.507) 5.333 (10.021) y = 1.484 + 0.302x 4.132 n.s

Larva III 5.572 (10.562) 5.084 (9.726) 6.043 (11.707) y = 1.431 + 0.257x 0.924 n.s

Larva IV 6.304 (12.102) 5.767 (10.994) 6.858 (13.699) y = 1.393 + 0.221x 1.586 n.s

Pupa 7.958 (15.159) 7.264 (13.347) 8.849 (18.060) y = 1.416 + 0.178x 2.832 n.s

Aedes aegypti

Larva I 5.016 (12.451) 4.243 (11.018) 5.684 (14.725) y = 0.864 + 0.172x 0.554 n.s

Larva II 5.998 (14.198) 5.244 (12.363) 6.753(17.265) y = 0.938 + 0.156x 0.890 n.s

Larva III 7.838 (17.484) 6.949 (14.712) 9.074 (22.646) y = 1.041 + 0.133x 0.736 n.s

Larva IV 9.505 (19.900) 8.339 (16.360) 11.504 (26.984) y = 1.172 + 0.123x 1.691 n.s

Pupa 10.669 (20.355) 9.353 (16.818) 13.013 (27.294) y = 1.412 + 0.132x 0.710 n.s

Figure 2.   In vitro growth inhibition of chloroquine-sensitive and chloroquine-resistant strains of Plasmodium 
falciparum post-treatment with 4,7-dichloroquinoline and chloroquine. T-bars represent standard deviations.
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et al.67 showed antimalarial activities against the P. falciparum strain K173 with EC50 values ranging from 0.38 to 
0.43 mg/kg. Manohar et al.68 found that 4-Aminoquinoline-pyrimidine hybrids exhibited 80% parasitemia sup-
pression as compared to CQ (20%). Finally, Sahu et al.69 found that low doses of tigecycline (3.7 mg/kg) showed 
77–91% of parasitaemia suppression. Inhibition of parasitaemia of 77–91% was provided by 3.7 mg/kg dose of 
tigecycline for 4 consecutive days. Furthermore, the authors reported that in vivo treatment with tigecycline in 
combination with sub-curative doses of CQ provided 100% mortality of P. falciparum in infected mice.

Cytotoxicity effect of 4,7‑dichloroquinoline on Vero cells.  In the present study, the viability of Vero 
cells was incorporated in various concentrations of 4,7-dichloroquinoline70. We observed that there were no 
adverse morphological differences in the treated groups when compared to control Vero cells (Figs. 4, 5). For 
example, Tseng et al.71 studied that the new derivatives of synthesized 2-aroyl-3-arylquinoline compounds pro-
vided substantial cytotoxicity against Huh-7 cells with less than 20% viability at doses of 100 μM of 4,7-dichloro-
quinoline. Cell death above a concentration of 60 μM of 4-methyl pyrimido (5,4-c) quinoline-2,5(1H, 6H)-dione 
on MDCK cells were shown by Paulpandi et al.34. Recently, Beesetti et al.72 highlighted that quinoline derivatives, 
BT24 effectively inhibit DENV-2 protease with IC50 of 0.5 μM.

Figure 3.   In vivo growth inhibition of Plasmodium falciparum parasites infecting albino mice post-treatment 
with 4,7-dichloroquinoline. Positive control (chloroquine 5 mg/kg/day) led to mean parasitemia of 1.0 ± 0.0% at 
day 4. T-bars represent standard deviations. Above each column, different letters indicate significant differences 
(ANOVA, Tukey’s HSD, P < 0.05).

Figure 4.   Cytotoxic effects of 4,7-dichloroquinoline on Vero cells.
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Antiviral effects of 4,7‑dichloroquinoline on dengue and zika virus.  Antiviral results showed that 
the synthesized compound, 4,7-dichloroquinoline tested at 10–40 μg/mL significantly inhibited dengue virus 
(DENV-2), with a reduction of PFU abundance73 (see also Fig. 6). Furthermore, a plaque assay displayed after an 
individual exposure and with a minimum dosis that 4,7-dichloroquinoline effectively inhibited the production 
of dengue viruses. Post 48 h treatment duration of the viral production was 91 PFU/mL in the control, whereas 
it was 19 PFU/mL, after the treatment of in 4,7-dichloroquinoline at a concentration of 40 μL/mL (Fig. 7). Simi-
larly, Guardia et al.74 discovered that quinoline derivatives highly inhibited DENV-2 with IC50 values ranging 
from 3.03 to 0.49 μM, respectively. Very recently, Devaux et al.75 found that chloroquine/hydroxychloroquine 
significantly inhibited pandemic SARS-CoV-2. Furthermore, chloroquine highly inhibited HCoV-229E replica-
tion in epithelial lung cell cultures76. It became apparent that the Zika virus provided a regional threat for Latin 
America and the Caribbean77,78.

Conclusion
It is clear from previous reports that resistance to the malaria vector continues to grow. This is increasingly 
limiting our ability to control malaria worldwide. Our present study demonstrated the mosquitocidal potential 
of 4,7-dichloroquinoline derivatives against the key mosquito vectors, An. stephensi and Ae. aegypti. This would 
be a promising advance in the development of clean, non-toxic, and environmentally acceptable quinoline 

Figure 5.   Vero cell viability after the treatment with different concentrations of 4,7-dichloroquinoline.

Figure 6.   Inhibition of dengue virus (DEN-2) post-treatment with 4,7-dichloroquinoline.
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compounds for their effect against mosquito vectors. Furthermore, 4,7-dichloroquinoline had a significant and 
promising anti-malarial potential to reduce the global threat malaria. Quinoline decreased virus proliferation 
and replication during protein synthesis at mRNA levels. No cell cytotoxicity was identified. A compound was 
recognized as a unique kind of structure different for additional improvement against DENV specialists. We 
have presented here novel quinoline subordinates that are fundamentally dynamic against dengue infection in a 
partially subordinate way. The discoveries presented here are significant as a starting point for additional clarifica-
tion of the particular components of the antiviral action and to pick up the necessary information to additionally 
grow new, compelling, strong, and safe medications to lessen the risks from viral diseases.
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