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Gauging mixed climate extreme 
value distributions in tropical 
cyclone regions
J. G. O’Grady1*, A. G. Stephenson2 & K. L. McInnes1

In tropical cyclone (TC) regions, tide gauge or numerical hindcast records are usually of insufficient 
length to have sampled sufficient cyclones to enable robust estimates of the climate of TC-induced 
extreme water level events. Synthetically-generated TC populations provide a means to define a 
broader set of plausible TC events to better define the probabilities associated with extreme water 
level events. The challenge is to unify the estimates of extremes from synthetically-generated TC 
populations with the observed records, which include mainly non-TC extremes resulting from tides 
and more frequently occurring atmospheric-depression weather and climate events. We find that 
extreme water level measurements in multiple tide gauge records in TC regions, some which span 
more than 100 years, exhibit a behaviour consistent with the combining of two populations, TC and 
non-TC. We develop an equation to model the combination of two populations of extremes in a single 
continuous mixed climate (MC) extreme value distribution (EVD). We then run statistical simulations 
to show that long term records including both historical and synthetic events can be better explained 
using MC than heavy-tailed generalised EVDs. This has implications for estimating extreme water 
levels when combining synthetic cyclone extreme sea levels with hindcast water levels to provide 
actionable information for coastal protection.

Coastal practitioners (e.g. researchers, engineers, builders and managers) require extreme sea level exceedance 
probabilities to design coastal defence structures and coastal zone management to avoid losses now and into 
the  future1–7. Tide gauges record the extreme water levels from passing storms coinciding with astronomical 
tide and seasonal sea levels (steric and barotropic). In tropical cyclone (TC) regions, tide gauge or numerical 
hindcast records are usually of insufficient length to have sampled sufficient TC-induced extreme water level 
events from which robust event statistics can be evaluated for coastal impact  studies7–12. Tide gauge records can 
be over 100 years in length (e.g. Honolulu and Galveston in the US), but for many TC regions, such as those 
situated in the Pacific islands, record are only a few decades in  length13. Numerical hydrodynamic models 
forced by atmospheric reanalysis can generate a multi-decade long record of sea level at, and more importantly 
away from, tide gauge locations to provide greater coastal  coverage14–16. While TC-driven sea level events are 
captured in tide gauge and hindcast records, they are under sampled. TC events which could have had different 
characteristics (track and/or intensity) or could have coincide with different contributors to extreme sea levels, 
such as the stage of the tide are not captured in the tide gauge record. Furthermore, the observed TC could have 
been more damaging to coastal communities away from the tide gauge, which has been addressed in synthetic 
and statistical modelling studies at the regional to global  scale17–19. Synthetic tracks have been used to evaluate 
a full range of TC characteristics over timescales of thousands of years, to assess ‘what if ’ a TC occurred with 
different  characteristics3,8,11. Synthetic simulations also help understand the so-called ‘grey swan’ high impact 
events which might be  expected20 and draw attention to ‘black elephant’ events that are expected but  ignored21.

Extreme value analysis (EVA) (see Methods) enables the probabilistic estimates of extreme sea levels via a 
parametric  Equation22. The Gumbel EVD utilises two parameters, the location and scale parameter, to estimate 
extremes. The GEV EVD includes a third parameter, the shape parameter, to better capture extreme behaviour 
in empirical  data23,24. Analysis of tide gauge data at TC locations have found a positive generalised extreme value 
(GEV) shape parameter, indicating a heavy (or long) tailed  distribution23,25. Heavy tailed distributions in TC 
locations have also been observed in surface wind-wave  studies24,26. Empirical events near the 90% confidence 
interval of GEV distribution have been suggested as a mixed response from TC and non-TC  events19. Estimates 
of extreme water levels from EVA typically differ between multi-decade tide gauge (or hindcast) records and 
multi-millennial synthetic  records7,8,27. To estimate extreme water levels from two populations of extremes, Haigh 
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et al.8 sampled the maximum of the two EVDs while Dullaart et al.7 and Smith et al.27 empirically resampled 
the two populations. The unifying of different storm-driven event populations has been studied for extreme 
winds using mixed mechanisms (e.g.  Cook28; Gomes and  Vickery29). We introduce the parametric MC EVD, 
formulated from two Gumbel EVDs, which gives a four parameter EVD. Including more than four parameters 
in a EVD may find a closer model fit to the empirical data, but there needs to be a physical explanation of driv-
ers of the separate populations (Gomes and  Vickery29). Parametric models provide the ability to easily compute 
confidence intervals of probabilistic estimates. Long records can be generated using synthetic TCs, and these 
can be analysed by non-parametric methods, however a parametric model can more naturally combine both 
aspects of the mixed climate and can therefore produce inferences that sensibly combine tide gauge information 
with synthetic TC data.

In this study, we show that mixed climates are measurable in tide gauge records in locations affected by tropi-
cal cyclones with sufficiently long observational records and we develop a parametric mixed-climate Extreme 
Value Distribution to describe such scenarios. In the next section, we show that extreme water level measure-
ments in multiple tide gauge records, some with length greater than 100 years, exhibit behaviour consistent with 
two combined populations, TC and non-TC. On a return period plot this exhibits the form of a piecewise smooth 
function with two distinct pieces, which we hereafter refer to as an articulated form. We provide a novel formu-
lation to account for two EVDs in a single continuous mixed climate (MC) EVD equation (see Methods). The 
MC EVD equation is applied to the observational records and statistical simulations are performed to compare 
the stability in detecting MC and heavy-tailed generalised EVDs. The use of the MC EVD is also demonstrated 
by combining measured extreme sea levels in relatively short records with hydrodynamically-modelled extreme 
water levels from populations of synthetically developed TCs.

Results
Identifying mixed climates in tide gauge observations. The TC impacted tide gauge sites which we 
consider to be the longest records in the database are mapped and colour coded for record length and overlaid 
on gridded storm-track occurrence in Fig. 1. The storm tide return levels at two tide gauges spanning more than 
100 years in the Gulf of Mexico (Galveston and Key West), along with one spanning more than 50 years in the 
West-Atlantic Ocean (Fort Pulaski) and one in the Western Pacific Ocean (Wake) are presented in Fig. 2a,c,e,g 
(other locations are presented in the supplementary report Fig. S1). Major TC events at these locations have 
been studied in detail  previously30,31. In Fig. 2, the generalised EVD closely fits the empirically ranked storm 
tide data for Galveston (Fig. 2a), however, it consistently underestimates return levels at Key west (Fig. 2c), Fort 
Pulaski (Fig. 2e) and other locations (supplementary report Fig. S1). Rather than a curved generalised EVD line, 
the empirically ranked annual maxima displays a noticeable articulated form, i.e. two lines meeting together, 
represented by the continuous MC EVD (Fig. 2). The additional parameter in the MC model allows a closer 
fit to the empirical data and therefore a tighter model confidence limits at all sites when compared to the GEV 
confidence limits.

The Akaike information criterion (AIC)32, was used to compare the goodness of fit for the three parameter 
GEV and four parameter MC EVD (Table 1). Lower values of AIC indicate better models, in the sense that the 
model fit is better relative to the number of model parameters. The AIC table indicates that the MC EVD is a 
better model at tide gauge sites where there is a more noticeable articulation of two populations of extremes 
in the empirical data. At some sites the two populations could not be distinguished, in particular the location 
parameters of both Gumbel distributions were occasionally estimated to be equal. This may be due to the nature 
of the site, or that the amount of data was not sufficient to make the two populations identifiable. For such data, 
where there is less noticeable articulation, the AIC table indicates that the GEV is a better model, which is to be 
expected. In summary, the MC EVD is an important modelling tool at sites where the data enables the articula-
tion to be identified.

The articulated form is equally noticeable in storm surge return levels (with tide removed) at these locations 
in Fig. 2b,d,f,h, highlighting the influence of different meteorological drivers on the extremes. Figure 1 (and 
supplementary Tables S5 and S6) show the highest annual maxima are identified as TCs (Hurricanes), and a few 
lower annual recurrence interval (ARI) events as tropical depressions. We note here that storm identification 
(supplementary Table S4) can sometimes be mismatched, as classification is made subjectively by expert meteor-
ologists, and storms pre-1980 have limited observations. Not all locations display the articulated form for storm 
tide (Fig. S1), e.g. Lautoka, Suva, Apia, Pago Pago, Honolulu, which is likely due to their short length and low 
numbers of proximate TCs. However, the articulated form for storm surge (with tide removed) is shown at all 
locations besides Guam and Apia, while Johnston and Suva have sub annual intersections (Fig. S2). Here Guam 
experiences some of the most frequent occurring TCs on the globe (Fig. 1) so all annual maxima are dominated 
by TCs, while Apia sits on the fringe of the mapped TC occurrences (Fig. 1), and has a relatively short record, so 
at these locations, two distinct populations could not be detected from the recorded annual maxima.

To investigate the importance of record length ( n ) in exhibiting the MC behaviour, the extreme value fits for 
two of the top three longest records, Galveston and Key West, are plotted for different record lengths in Fig. 3 
and Fig. S3. At both locations, the MC EVD is not noticeable when the record length is the first n = 25 years, 
and the shape parameter of the GEV EVD is near zero. However, for records representing longer time spans, 
the jointed form emerges and is better represented by the MC EVD than the GEV EVD. Starting with the last 
year and extending it back further in time does change the shape of the curves, however as expected the mixed 
climate form is more evident for longer records.

Combining tide gauge observations with synthetic records. To investigate why some locations do 
not show the MC articulated form, the measured and synthetic  records11,33 at Lautoka are randomly sampled to 
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generate a long-term population (Suva and Apia presented in the supplementary material Fig. S4-S7 and Tables 
S1). Lautoka is presented as it has a short tide gauge record (26 years) and a relatively large tidal range compared 
to the TC-identified storm surge events including named TC event Evan 2012, Gavin 1997, Kina 1992 and Mick 
2009 (Fig. S2), meaning the same TCs are less likely to influence the annual maximum storm tide extremes (Fig. 
S1). Fig. 4 shows the randomly sampled annual maximum from the tide gauge and synthetic EVDs for n = 40, 
100 and 10,000 years. Compared to the mixed climate, the GEV distribution underestimates the model-derived 
synthetic cyclone data at higher ARIs. Fig. 5d presents how the 10,000 and 100 year ARI return levels stabilise 
after the record length is 100 years, and that the GEV EVD typically underestimates the assumed mixed climate 
model derived data. This stability is reflected in the GEV shape parameter (Fig. 5a), where after n = 100 years only 
positive parameter estimates are produced, and the range of the Gumbel scale parameters of both MC popula-
tion (Fig. 5b,c) narrows considerably.

Discussion
The mixed climate extreme value distribution (MC EVD) appears to better represent the empirical record of 
extreme water levels where TC events are abundant, such as in Galveston and Key West. In locations where 
fewer TCs are recorded, the MC EVD can be used to connect the probability of two records of extreme water 
levels, one relying on what has occurred (tide gauge records) and one on what could be possible (synthetic TC 
simulations). We demonstrate that the GEV distribution can be sensitive to record length for a mixed extreme 
climate, and can underestimate higher return levels.

The Gumbel scale parameter (and the slope of the Gumbel return level curve) has been used to indicate 
an increase in the frequency of extreme sea level events due to sea level rise (SLR), when assuming stationary 

Figure 1.  Maps showing location record length (n years) of tide gauges used in this study overlayed on the 
gridded storm track density (coloured by number of storms, log colour scale) in the IBTrACs v04r00 dataset. 
Top: track count since 1842, bottom: track count since 1991.
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Figure 2.  Tide gauge extreme storm tide (left column) and storm surge (right column). Empirically ranked 
annual maximum for non-TC events (black circles) and TC events (grey points) with fitted MC Gumbel (grey 
and black dashed lines), continuous MC (blue lines) and GEV (red lines) EVDs with 90% confidence intervals 
(dashed curves). Vertical thick grey dashed line indicates the intersection of the two MC Gumbel EVD.
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 EVD34,35. The steeper Gumbel slope of the TC events when compared to non-TC events, will result in SLR caus-
ing a greater increase of occurrence of non-TC extreme water level events than TC events. Hence, for locations 
such as the east coast of Queensland, Australia, where the estimated transition from non-TC to TC extreme 
storm tide water levels are for ARIs greater than 100  years8, it remains relevant to pay attention to the increase 
of non-TC extreme sea level events due to sea level  rise36,37. However, this is not the case for locations such as 
Galveston, where the expected transition from non-TC to TC extreme water levels occurs at an ARI less than 
5 years (Fig. 2a,b). For critical infrastructure which require a very low probability of return levels being exceeded, 
higher ARIs greater than 100 years that are driven by TCs must always be considered. MC methods applied to 
more tide gauge observations presents an opportunity to further validate and improve extreme event climatolo-
gies estimated by numerical modelling studies where observed TC events are  abundant7,8,27.

Table 1.  AIC estimates for the tide gauge GEV and MC EVD fits. Bold numbers indicate lower (more 
negative) AIC values (i.e. better models).

Site Number of years

Storm tide Storm surge

GEV AIC MC AIC GEV AIC MC AIC

Honolulu 112 −406.18 −400.92 −335.95 −332.17

Galveston 108 −64.44 −67.5 −44.14 −46.68

Key West 104 −319.39 −322.61 −251.11 −252.13

Fort Pulaski 78 −150 −149.5 −17.31 −16.23

Hilo 76 −249.98 −245.08 −226.07 −229.55

Pago Pago 66 −303.48 −301.28 −194.83 −200.28

Wake 62 −158.89 −165.94 −109.17 −103.48

Guam 61 −227.86 −225.1 −194.46 −192.83

Johnston 61 −106.91 −104.78 −77.1 −75.99

Suva 43 −147.71 −142.59 −109.86 −112.16

Apia 40 −139.81 −137.93 −88.58 −86.55

Lautoka 26 −91.09 −91.39 −59.69 −60.47

Figure 3.  Galveston tide gauge storm surge (tide removed) EVD sensitivity to record length ( n ). Empirically 
ranked annual maximum storm tide (black circles) with fitted MC Gumbel (grey and black dashed lines), 
continuous MC (blue line) and GEV (red line) EVDs using the first n years of annual maxima, a) n = 25, b) 
n = 50, c) n = 75 and d) n = 108. Vertical thick grey dashed line indicates the intersection of the two MC Gumbel 
EVDs.
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Figure 4.  Random sampling of the mixed-climate EVDs for record length (n) equals 40 years (top left), 
100 years (top right) and 10,000 years (bottom left) for Lautoka, Fiji.

Figure 5.  Stability plot for the generalised (GEV) and mixed climate (MC) EVD parameters and return 
levels for increasing record length (random samples) for storm tide at Lautoka, Fiji. X-axis on a log scale. 90% 
confidence bounds calculated from 100 Monte Carlo simulations for each record length.
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The methodology of the MC EVD could be expanded to include the peaks-over-threshold approach, where all 
values over fixed thresholds are modelled (e.g.5,23). This should enable the use of data beyond just the annual maxima, 
improving inferential outcomes when such data is available. There are however challenges to overcome, such as the 
choice of thresholds in the mixed climate case, and the method for combining two tail models with potentially different 
thresholds. Any short-term correlation in the storm surge residual sea-level would also need to be accounted for, for 
example through the use of external clustering.

It would also be possible to expand the MC EVD using a hybrid  approach38 with potentially different model 
forms for each aspect of the mixed climate. Here we use two Gumbel distributions with different location and 
scale parameters, which appears to work well for a large number of sites with potentially different behaviour. If 
the data record is large, then it may be possible to expand this using more flexible models with more parameters. 
However, there may be a lack of robustness in the maximum likelihood estimation if the information in the data is 
not sufficient, particularly if the model involves the estimation of distribution shape on both of the components.

Future work could include the effect of waves on extreme sea levels for open ocean sandy  beaches39–41 and reef 
 environments42 along with the future nonstationary changes to EVD from global climate model  projections24. Future 
work could also replace the sea level residual with skew surge analysis which could be recombined with tide using 
convolution  methods43 along with structural function  approaches41 to define extreme water level populations. The 
mixed climate analysis for tide gauge extreme water levels can, for example, be applied to extreme wind-waves for 
coastal protection or for extreme winds for building design standards in tropical cyclone locations.

Methods
Data. Hourly tide gauge records were downloaded from the University of Hawaii Sea Level Centre (UHSLC)13. To 
obtain the storm tide height (sometimes referred to as the still water level as it does not include the effect of waves), the 
sea level rise, interannual and seasonal fluctuation were first removed from the records with a low pass filter, using the 
30-day median. Hence storm-tide levels are relative to the 30-day median. To analyse the storm surge residual sea level, 
the predicted tide was computed for each year using 27 harmonic constituents in the R package “TideHarmonics”44 
and removed from the record. A higher number of constituents was tested but showed little difference on the resulting 
residuals. There are a small number of missing values in the tide gauge records; these are not interpolated and remain 
missing in the storm surge residual sea level, with the subsequent annual maxima taken over the non-missing values.

Synthetic TC extreme water levels were sourced from previous  studies11,33. The 1 in 50 and 1 in 2000 year aver-
age recurrence interval levels from the synthetic TC  analysis11 were used with the Gumbel EVD (Eq. 3) to back 
solve the location and scale parameters.

The  IBTRACs45 dataset was used to identify when a TC was located within 3 nautical degree radius of the 
tide gauge. Annual maximum values were then associated with a TC if a TC passed within a 24-h window. 
Fig. 1 maps the number of TC and non-TC tracks falling into two degree grid cells, noting track identification 
is significantly better post  198146,47.

Annual recurrence interval. All statistical analysis was conducted using  R48. The method of annual maxima 
was used to evaluate extreme water levels in the tide gauge record. The GEV and Gumbel distributions were fitted with 
the ‘ismev’ R  package22. To simulate n years of annual maximum data from mixed extreme climate, the maximum 
value of a random sample from both the non-TC tide gauge record ( z1 ) and synthetic TC record ( z2 ) Gumbel EVD 
was repeated n times using R’s “evd”  package49. 90 percent confidence intervals around the maximum likelihood esti-
mate (MLE) GEV or MC EVD were computed from the quantiles of 100 Monte Carlo simulations of the fitted model.

The mixed climate extreme value distribution (MC EVD) is formulated from two Gumbel  distributions50. 
The Gumbel distribution estimate of water levels for a single population of extremes is,

where z is the return water level corresponding to either the tide gauge ( z1 ) or synthetic TC record ( z2 ), µ is the 
Gumbel EVD location parameter, and � is the Gumbel EVD scale parameter, fitted to the hindcast maxima (with 
the annual mean value removed) using maximum likelihood. The annual recurrence interval ( ARI ) is given by 
−1/log(1− p) , where p is the annual exceedance probability. We define ARI as the average recurrence interval 
since it is approximately equal to 1/p for small p . The intersection of two Gumbel EVDs, where z1 = z2 , for the 
non-TC ( z1 ) and TC ( z2 ) can be derived as,exp

(
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and hence for data (xi1, xi2)fori = 1, . . . , n , the maximum likelihood estimates of the parameters of the 
MC EVD ( µ1, �1,µ2, �2 ) are obtained by maximizing the above. This procedure is available via the fgum-
belx function in the R package “evd”49. In practice we maximize the logarithm of the likelihood over 
( µ1, log(�1), log(µ1 − µ2), log(�2)) , which implies the constraint µ1 ≥ µ2.The maximum of two Gumbel dis-
tributions with the same scale parameter is also a Gumbel distribution, and we can therefore make use of the first 
two probability weighted moments β0 = E[Z] and β1 = E[ZFZ(z)] to derive the starting values

where γ ≈ 0.577 is the Euler-Mascheroni constant, with β0 and β1 replaced by empirical  estimates51. The starting 
value for log(µ2 − µ1) can be set as arbitrarily small.

For a given ARI, the estimate of the water level z(ARI) for a continuous MC EVD can be derived as the solu-
tion to,

which can be found using a root-finding  algorithm52 using the R package “evd”49.
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