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left atrial strain by three 
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Ali Hosseinsabet1*

The normal reference value of the global longitudinal left atrial strain during the reservoir phase 
(LASr) by 3D speckle‑tracking echocardiography (3DSTE) is needed to define the abnormal and normal 
spectra and to compare and interpret the obtained values. The present study is a meta‑analysis of 
3DSTE‑derived normal reference value of the longitudinal LASr and an attempt to determine probable 
contributing factors in the variations of reported ranges. The databases of PubMed, Scopus, and 
Embase were searched for the following keywordS:  “Left atrial/left atrium” and “strain/speckle/
deformation” and "three‑dimensional/3‑dimensional/three dimensional/3 dimensional/three 
dimension/3 dimension/three‑dimension/3‑dimension/3D/3‑D". The studies selected included those 
on adult healthy subjects without cardiovascular risk factors. A random‑effect model was used to 
calculate the global 3DSTE‑derived longitudinal LASr, and meta‑regression was applied to determine 
inter‑study heterogeneity. Our search yielded 316 adult subjects from 5 studies. The mean value of 
the global 3DSTE‑derived longitudinal LASr was 27.5% (95% CI, 25.2–29.8%). There was significant 
heterogeneity between the studies. The meta‑regression analysis revealed the publication year, the 
heart rate, and systolic and diastolic blood pressure as the sources of heterogeneity. The current meta‑
analysis determined a normal reference value of the global 3DSTE‑derived longitudinal LASr of 27.5% 
(95% CI, 25.2–29.8%). The heterogeneity between studies may be explained by the publication year, 
the heart rate, and systolic and diastolic blood pressure.

The left atrium (LA) is a chamber between the pulmonary veins and the left ventricle (LV). The LA wall is thin 
by comparison with the LV wall. The chamber regulates LV filling and works in interaction with the LV. The 
LA has 3 phasic functions during the cardiac cycle: reservoir, whereby blood is stored during the LV systole; 
conduit, whereby blood is transferred to the LV in early diastole; and contraction, whereby blood is pushed into 
the LV in late  diastole1.

The LA phasic functions can be evaluated by several modalities such as echocardiography, computed tomog-
raphy, and cardiac magnetic resonance  imaging2. The phasic functions of the LA can also be evaluated by several 
echocardiographic methods such as 2D or 3D volumetric parameters, pulsed-wave Doppler, tissue Doppler 
imaging, and myocardial deformation  imaging3. Not only are the deformation markers less load-dependent2 and 
less affected by tethering motion, but also they are angle  independent4. The use of 2D speckle-tracking echocar-
diography (2DSTE) has been widespread for the evaluation of the LA phasic functions, and the modality has 
received attention from echocardiography societies, which have presented standardization  recommendations5. 
However, 3D deformation markers have been validated in experimental and human  studies6, and deformational 

OPEN

1Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. 2Research 
Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. *email: a-hosseinsabet@
tums.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-08379-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4395  | https://doi.org/10.1038/s41598-022-08379-7

www.nature.com/scientificreports/

parameters obtained by 3D speckle-tracking echocardiography (3DSTE) have more agreement with cardiac 
magnetic resonance tagging than those obtained by  2DSTE7. By comparison with 2DSTE, 3DSTE is not affected 
by out-of-plane motion or twisting motion produced by motion in the third  direction8. Moreover, 3DSTE is a 
feasible and reproducible  method6,8 that has been applied to evaluate the LA phasic functions in various clini-
cal conditions such as atrial fibrillation, hypertrophic cardiomyopathy, hypertension, and healthy  subjects9–13.

Whereas 2DSTE-derived normal values for the LA deformation indices have already been  presented14, 
3DSTE-derived normal reference values for the LA deformation indices have yet to be determined. Normal 
reference values are necessary for the recognition of abnormal values, and they can lead to more clinical applica-
tion of the LA assessment by 3DSTE.

The measurement of the longitudinal LA strain during the reservoir phase by 3DSTE (3DLASr) or 2DSTE 
(2DLASr) has been done in most published articles in this field rather than strain values in other directions or 
 phases15. Accordingly, in the present study, we sought to determine not only normal reference values for the 
longitudinal 3DLASr in adults through a systematic review and a meta-analysis but also the cause of variations 
in values.

Methods
Search profile. The conduct of the present study was in keeping with Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA)  guidelines16. The databases of PubMed, Scopus, and Embase 
were searched for the following keywords: “Left atrial/left atrium" and “strain/speckle/deformation” and 
"three-dimensional/3-dimensional/three dimensional/3 dimensional/three dimension/3 dimension/three-
dimension/3-dimension/3D/3-D" (Supplement 1). Another strategy was to perform a reference search to iden-
tify related studies. The search was restricted to the English language. The search was done on April 29, 2021, and 
the study was registered at PROSPERO on March 13, 2021 (CRD42021236533).

Study selection. Studies were included if they reported longitudinal LASr as numbers (the mean and the 
standard deviation vs only the mean in figures) in healthy subjects. Exclusion criteria consisted of animal studies, 
review articles, case reports, letters to editors, editorials, and conference abstracts. Also excluded were studies 
without control groups, studies with control groups containing healthy subjects aged below 18 years, studies 
featuring control group patients with cardiovascular risk factors, studies with inadequate descriptions of control 
groups regarding the absence of cardiovascular risk factors, and studies reporting the averaged values of the LA 
segments rather than the global value. This stage was done independently by 3 investigators (T.M., R.M.B., and 
A.H.). Disagreements were resolved according to consensus between A.H. and T.D.

Data collection. The eligible articles were reviewed by the three investigators (T.M., R.M.B., and A.H.) 
independently. Study characteristics, clinical data, echocardiographic method characteristics, echocardiography 
data, and 3DLASRr were extracted. The disagreements were resolved according to consensus between A.H. and 
T.D. Among the studies that used the same data set, the studies selected were those that (a) included control 
subjects not matched with a case group, (b) were not confined to a special subgroup, and (c) had more control 
subjects.

Statistical analysis. The statistical analysis was done by Stata software, version 16 (College Station, TX: 
StataCorp LLC). The mean and the 95% confidence interval (CI) of 3DLASr were computed by the random-
effects model. The Cochrane’s Q test (P < 0.1) and the  I2 statistic were used for the evaluation of heterogeneity 
between the studies. The results were illustrated as a forest plot. Clinical and demographic data, if reported by 
more than 2 studies, were considered a possible source of 3DLASr variations and evaluated by meta-regression 
to estimate their effects on the variation of the normal reference value of 3DLASr. The results were presented as β 
and 95% CI. The stability of the estimated normal reference value of 3DLASr was presented through a compari-
son between the random-effects model and a fixed-effects model by excluding a study conducted with General 
Electric software and by excluding the studies that had less CI overlap with other studies. Publication bias was 
assessed by the Egger test (P < 0.1).

The quality of the studies, including internal and external validity criteria, was assessed by the quality evalua-
tion tool, presented by Downs and Black (1998)17. The tool has also been used by other  researchers14,18. Similar to 
other meta-analyses in this  field14,18, in the present study, criteria considered for study quality included inter and 
intraobserver variability, the blindness of the operators who obtained images and analyzed videos, the reporting 
of the heart rate and systolic and diastolic blood pressure, and the approach to the computation of 3DLASr. The 
quality of the selected studies was checked by T.M., R.M.B., and A.H. independently, and disagreements were 
resolved by consensus between A.H. and T.D.

Results
Study selection. Figure 1 demonstrates the PRISMA flowchart of this study. Our search procedure identi-
fied 1198 studies. After the exclusion of duplications, 787 articles were entered in the screening stage. The titles 
and abstracts of these studies were reviewed to identify the studies that fulfilled our inclusion and exclusion 
criteria. Sixty-eight studies were eligible for full-text review. Reference search was not added to other studies. 
Sixty-three studies were excluded based on the exclusion criteria (Supplemental Table 1S). Ultimately, 5 stud-
ies were included. The baseline data of these studies are presented in Table 1. These studies were conducted on 
a total of 316 subjects. Four studies were performed with Toshiba software and 1 study with General Electric 
software. The mean age range of the subjects was 32 to 54 years, and sex composition was 44–79% for males. 
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Figure 1.  The image illustrates the study design and the preferred reporting items for systematic reviews and 
meta-analyses flowchart, presenting the selection process of studies. The reasons for full-text exclusion are 
demonstrated in Supplemental Table 1S.

Table 1.  Study characteristics. ?, not defined. A averaged septal and lateral value, BMI body mass index, BSA 
body surface area, DBP diastolic blood pressure, HR heart rate, L lateral, LAVI left atrial volume index, LVEF 
left ventricular ejection fraction, NR not reported, S septal, SBP systolic blood pressure, VR volume rate.

Study Year Country N Age (years) Male (%) HR (bpm)
BMI (kg/
m2) BSA  (m2) SBP (mmHg)

DBP 
(mmHg) LVEF (%)

LAVI (ml/
m2) E/e′ ratio VR (Hz) Platform Software Probe Gating

Model 
(segments)

Sub 
volume
(N)

Disease/
condition 
studied

Mochizuki 
et al.

2013 Japan 77 32.3 ± 14.2 62 67.6 ± 12.3 21.9 ± 2.7 NR 112.7 ± 10.2 72.5 ± 9.5 68.6 ± 4.6 21.7 ± 6.3
S: 5.4 ± 1.3
L: 4.6 ± 1.1

20 ± 1
Artida, 
Toshiba

Toshiba 
Medical 
Systems

PST-25SX R–R 16 4
Atrial 
fibrilla-
tion

Aly et al. 2014 Netherland 29 46 ± 16 79 69 ± 11 NR 1.8 ± 0.12 NR NR 59 ± 5 28 ± 7
S: 5.7 ± 1.5
L: 8.3 ± 1.6
A: 6.9 ± 1.4

23 ± 12
Artida, 
Toshiba

Toshiba 
Medical 
Systems

PST–25SX R–R 16 4

Hyper-
trophic 
cardiomy-
opathy

Piros et al. 2016 Hungary 34 36.1 ± 11.2 44 NR NR NR NR NR 63.7 ± 8.2 NR ?6.21 ± 1.75 NR Toshiba

3D Wall 
Motion 
Tracking, 
version 
2.7

PST-25SX R–R NR 6

Healthy 
subjects 
for evalu-
ation of 
Left atrial 
ejection 
force

Esposito 
et al.

2019 Italy 82 54.30 ± 11.17 59 60–80 23.8 ± 3.12 1.84 ± 0.19 116.41 ± 9.61 73.98 ± 7.72 60.36 ± 5.12 19.79 ± 6.46
L: 
5.78 ± 1.44

NR Toshiba

3D Wall 
Motion 
Tracking, 
version 
2.5

PST-25SX R–R NR 6

Hyperten-
sion and 
paroxys-
mal atrial 
fibrilla-
tion

Nabeshima 
et al.

2021 Japan 94 44.3 ± 15.4 57 65 ± 10 NR 1.71 ± 0.18 129 ± 10 76 ± 9 55 ± 4 25.9 ± 6.3
A: 6.05 
(5.11–7.36)

27 ± 4 GE
4D Auto 
LAQ

4 V or 4Vc R–R NR NR

Healthy 
and 
patients 
for 
obtaining 
normal 
value ref-
erences of 
left atrial 
strain
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The other presented data were compatible with healthy subjects. Two studies measured 2DLASr and 3DLASr 
 concomitantly9,13.

Normal strain value. The pooled normal value for the global longitudinal 3DLASr was 27.5% (95% CI, 
25.2–29.8%). The range of the global longitudinal 3DLASr was 23.7–31.0%. The heterogeneity between the stud-
ies was significant (Q = 29, P < 0.001,  I2 = 85.7%) (Fig. 2).

The sensitivity analysis with fixed effects models presented the mean value for the global longitudinal 3DLASr 
of 26.9% (95% CI, 26.1–27.8%). Following the exclusion of the General Electric software-based study, the mean 
value of the global longitudinal 3DLASr was 28.4% (95% CI, 27.0–29.7%) according to the random-effects model. 
The Toshiba-based study forest plot is presented in Fig. 3. Following the exclusion of 2 studies, one of which was 
the General Electric software-based study, on account of having less CI overlap with the other studies, the mean 
value for the global longitudinal 3DLASr was 27.8% (CI, 26.7–28.9%).

The origin of heterogeneity was evaluated by meta-regression. The publication year (β =  − 0.60, P = 0.026), 
the heart rate (β = 1.78, P ≤ 0.001), and systolic (β =  − 0.28, P ≤ 0.001) and diastolic (β =  − 1.30, P = 0.002) blood 
pressure were recognized as the sources of inter-study heterogeneity (Table 2).

The assessment of publication bias revealed no significant publication bias for the global longitudinal 3DLASr 
(P = 0.150 for the Egger test).

Two  studies9,13 reported 2DLASr values of 35.8 ± 7.7% and 39.4 ± 12.1% and 3DLASr values of 28.1 ± 7.4% and 
23.7 ± 7.6%, respectively. The mean difference value and the standard deviation of these two methods in these 
investigations were 7.7 ± 8.1% and 15.7 ± 12.1%, respectively, with a P value of less than 0.001 in both studies.

Quality of studies. The included studies satisfied five to eight items of 11 items designed for quality evalu-
ation. One study satisfied fewer than 50% of the items, two studies satisfied 55% of the items, and two studies 
satisfied about 70% of the items. All the studies described their objectives, outcomes, main findings, and strain 
imaging protocol. Intra- and interobserver variability was reported by four out of the five studies (Supplemental 
Table 2S).

Figure 2.  The image depicts the normal range of the longitudinal 3D speckle-tracking echocardiography-
derived left atrial strain during the reservoir phase.

Figure 3.  The image shows the normal range of the longitudinal 3D speckle-tracking echocardiography-
derived left atrial strain during the reservoir phase analyzed by Toshiba software.
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Discussion
We are the first to present the normal reference value of the global longitudinal 3DLASr through a meta-analysis. 
The LA works in interaction with the LV during the cardiac cycle. At the ventricular systole, blood enters the 
LA through the pulmonary veins while the LV contracts, which pulls the mitral annulus toward the LV apex to 
help the LA  expand15. Thus, the LA deformation during the LV systole is dependent on the innate properties 
of the LA and LV function. Accordingly, LASr can reflect fibrosis in the LA  myocardium19 and the properties 
of the LV such as the LV end-diastolic  pressure20. Previous research has provided the clinical values of LASr in 
the prediction of clinical conditions such as exercise  capacity21 and LV dysfunction  grading22, as well as future 
cardiovascular events such as survival and the recurrence of atrial  fibrillation23,24.

A major method for the evaluation of the LA function is  2DSTE5, with meta-analyses having already presented 
the normal reference value for its  markers14. Still, this method has some weaknesses. A fixed plane is required 
for 2DSTE, which means that speckles during cardiac cycles should not exit the defined plane. The translational 
motion of the heart or myocardial motion in another direction precludes the satisfaction of this assumption. 
The evaluation of the global strain needs images from multiple planes during different cardiac cycles. Although 
3DSTE provides images more rapidly than 2DSTE and does not require imaging in multiple planes and during 
a different cardiac cycle, it suffers from lower spatial and time resolution and stitch artifacts due to multi-beat 
 acquisition6,8,25. There is a paucity of research on the comparison between 2 and 3DSTE for the prediction of 
clinical events, but it has been demonstrated that 3DSTE is stronger for the prediction of atrial fibrillation recur-
rence and the differentiation of patients with paroxysmal atrial fibrillation from the control  group9,26.

Comparison of 2DLASr and 3DLASr in the two included studies revealed that 2DLASr was more than 
3DLASr in both investigations, which is compatible with the findings of a previous meta-analysis14. The meta-
analysis reported an approximate normal reference value for 2DLASr of 39.4% (95% CI, 38.0–40.8%), which is 
more than the value we obtained for 3DLASr (ie, 27.5%) (95% CI, 25.2–29.8%). The aforementioned comparisons 
between the 2 methods may explain the difference between these two values. It is worthy to cite that our meta-
analysis on 3DLASr is on a lower scale than previous meta-analyses on 2DLASr.

Demographic characteristics. We did not find age and sex as a source of heterogeneity, which chimes in 
with the finding of a previous meta-analysis regarding  2DLASr14. Although it does not mean that factors such as 
age exert no effects on the LA reservoir function, it does indicate that these factors are not a source of variability 
in the normal reference value presented in the included studies. A reduction in 2DLASr in tandem with increas-
ing age has been demonstrated in several  studies27–31, but we stress that the age range in the studies included 
in the present meta-analysis was not wide (32–54 years). A previous investigation demonstrated an increase in 
3DLASr after 50  years32. In most of the studies included in our meta-analysis, the participants were younger than 
50 years of  age30.

Sex was not a determinant of 2DLASr in most studies subjected to meta-analysis27–31. In a study that evalu-
ated 3DLASr in men and women, the results showed no difference between the two sexes vis-à-vis this  marker32. 
Likewise, we did not find sex to be a source of inter-study heterogeneity.

Comparison of 2DLASr between European and Asian races in a previous investigation demonstrated no 
difference between the two ethnic  groups30, which is concordant with our findings.

Whereas a meta-analysis on 2DLASr found a correlation between the body surface area and  2DLASr14, only 
three studies reported the body surface area with a very narrow range in our meta-analysis.

Hemodynamic variables. The heart rate is the source of heterogeneity in studies regarding  2DLASr14. 
Nonetheless, several studies have demonstrated that the heart rate is not an independent determinant of 
 2DLASr28,29,31. Our results showed the heart rate as the source of inter-study heterogeneity. It is worthy of note 

Table 2.  Meta-regression analysis for longitudinal three-dimensional speckle tracking echocardiography 
derived left atrial strain during reservoir phase. CI confidence interval.

Variables Numbers of study β (95% CI) P-value

Year of publication 5 −0.60 (−1.12 to −0.07) 0.026

Number of participants 5 −0.07 (−0.13 to 0.00) 0.056

Race (Non-Asian vs Asian) 5 −2.75 (−7.11 to 1.62) 0.218

Age, years 5 −0.00 (−0.34 to 0.33) 0.978

Sex (male) 5 0.13 (−0.07 to 0.33) 0.202

Heart rate, bpm 3 1.78 (1.12 to 2.43)  < 0.001

Body surface area,  m2 3 38.04 (−37.05 to 113.14) 0.321

Systolic blood pressure, mmHg 3 −0.28 (−0.41 to −0.15)  < 0.001

Diastolic blood pressure, mmHg 3 −1.30 (−2.11 to −0.49) 0.002

Left ventricular ejection fraction, % 5 0.21 (−0.30 to 0.71) 0.425

Maximal left atrial volume index, mL/m2 4 0.10 (−0.99 to 1.19) 0.856

Subvolumes 4 −0.84 (−2.25 to 0.56) 0.240

Volume rate, (Hz) 3 −0.69 (−2.19 to 0.81) 0.367
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that the range of the heart rate in the studies included in our meta-analysis was narrow (65–69 bpm), with only 
three studies having reported the heart rate as the mean and the standard deviation. It is, therefore, possible that 
the heart rate by chance presented itself as a source of inter-study heterogeneity.

Blood pressure in healthy subjects is associated with  2DLASr29,31. The findings of our study are compatible 
with the studies reporting this association.

Echocardiography data. The LV systolic function is correlated with the LA reservoir  function28,33. The LV 
ejection fraction is a marker of the LV systolic function, and 3DLASr is a marker of the LA reservoir function. 
In our study, the mean LV ejection fraction was within the normal range, so the LV ejection fraction was not 
a source of heterogeneity between the included studies. The LA volume index was correlated with 2DLASr in 
some  studies27,30,31. The LA volume index in the included studies was lower than that in studies that confirmed 
the correlation between 2DLASr and the LA volume  index27,31.

Subvolume numbers (4 vs 6) were not correlated with 3DLASr. The increased subvolume was accompanied 
by an increased frame rate as an index of temporal resolution, but it seems that it was not a determinant of het-
erogeneity between the included studies.

Our exclusion of the single General Electric software-based study resulted in no significant changes in the 
normal range of LASr.

We found the publication year to be a source of heterogeneity. It is possible that the time elapsed since the 
first 3DLASr measurement is allied to more expertise in this regard.

The finding of the source of heterogeneity in our study by meta-regression was affected by the low number 
of studies included. In addition, not all the included studies provided the details of the study population such 
as the body mass index or the body surface area, clinical data such as blood pressure, or echocardiography data 
such as the LA volume index, precluding an in-depth analysis. The factors may, therefore, be a source of hetero-
geneity between studies.

Publication bias. The results of our meta-analysis showed no significant publication bias, although the 
limited number of included studies precluded exact results. It should be, however, noted that we searched studies 
via a hierarchical method whereby three independent researchers reviewed all abstracts and selected full texts; 
additionally, all discrepancies were resolved according to consensus between two of the researchers. This check-
ing method lessened the probability of missing related manuscripts.

Our study results yielded the normal reference range of 3DLASr, although the range was obtained from a low 
number of suitable studies. Our findings can be used in clinical practice until future studies provide more robust 
data regarding 3DLASr among healthy normal subjects. These values may assist in the longitudinal assessment 
of patients who suffer from chronic conditions such as heart failure with reduced or preserved ejection fractions 
or those who were exposed to acute events such as myocardial infarction because they can depict changes from 
the normal range to the abnormal range.

Our study revealed a need for more studies regarding the normal reference value of 3DLASr because of the 
dearth of high-quality studies in this field. Indeed, the majority of the studies that were suitable for our meta-anal-
ysis did not measure deformation in other directions or during the conduit or contraction phase. In addition, data 
are absent regarding the comparison of 3DLASr and the value obtained by cardiac magnetic resonance imaging.

Study limitations. The present meta-analysis incorporated five studies on a total of 316 subjects. This sam-
ple size is low by comparison with studies via 2DSTE. We are hopeful that the publication of more studies inves-
tigating deformation in other directions and in other phasic times will contribute to more optimal meta-analyses 
since we were not able to provide values for these markers in our study.

The studies included in our meta-analysis were observational or case–control, which are associated with high 
heterogeneity compared with randomized control trials because of the objective entity of these types of  studies34.

The software that is used for 3DSTE is semiautomatic, and the competency of the operators who obtain 
deformation data is unknown. In our meta-analysis, we considered the same value for all the studies included. 
The absence of large-scale studies yielding preliminary normal reference values should be addressed in the future.

We could not conclusively assess the difference in vendors since we had four studies performed with Toshiba 
software and only one study conducted with General Electric software.

The fact that the study populations in the case and control groups of all the studies incorporated in the current 
meta-analysis were Asian also prevented us from demonstrating any possible differences concerning the normal 
reference value of 3DLASr between ethnicities.

Another weakness of note is that we analyzed study data, and not patient data, on account of the unavailabil-
ity of the former. We also assessed the quality of the included studies according to the checklist used in similar 
meta-analyses in this  field14,35. Although this checklist prevents significant bias in the evaluation of studies, it is 
not objective  totally36. What can also be deemed a limitation is that we did not exclude any studies because of 
low quality. Still, the overall quality of the included studies, albeit not excellent, was by no means poor insofar 
as they satisfied about 60% of the required items on average.

Finally, we were not able to conduct a stratified meta-analysis by considering the quality of studies because 
of the innate properties of  quality37.
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Conclusions
We demonstrated a mean global 3DSTE-derived longitudinal LASr of 27.5% (95% CI, 25.2–29.8%) in normal 
healthy subjects. The heterogeneity in different normal reference values was related to the publication year, the 
heart rate, and systolic and diastolic blood pressure. Further studies in this field are required to confirm the 
normal reference value of the LA deformation markers obtained by 3DSTE.

Data availability
The data sets analyzed in the current study are available from the corresponding author on reasonable request.
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