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Tunneling between parallel 
one‑dimensional Wigner crystals
R. Méndez‑Camacho1,2 &  E. Cruz‑Hernández2*

Vertically aligned arrays are a frequent outcome in the nanowires synthesis by self‑assembly 
techniques or in its subsequent processing. When these nanowires are close enough, quantum 
electron tunneling is expected between them. Then, because extended or localized electronic states 
can be established in the wires by tuning its electron density, the tunneling configuration between 
adjacent wires could be conveniently adjusted by an external gate. In this contribution, by considering 
the collective nature of electrons using a Yukawa‑like effective potential, we explore the electron 
interaction between closely spaced, parallel nanowires while varying the electron density and 
geometrical parameters. We find that, at a low‑density Wigner crystal regime, the tunneling can take 
place between adjacent localized states along and transversal to the wires axis, which in turn allows to 
create two‑ and three‑dimensional electronic distributions with valuable potential applications.

Semiconductor nanowires (NWs) are exciting components to study unique one-dimensional (1D) physics 
such as the Coulombic strength-dependent electronic charge  fractionalization1, quantized  conductance2,3; or 
the formation of a periodic charge distribution along the wires, known as a Wigner crystal, first predicted by 
Wigner in  19344 and recently  observed5–7. In addition to be remarkable systems for basic research, NWs are also 
key building blocks in the fabrication of nanoscale electronic and optoelectronic  devices8–11. Some NW-based 
devices that has been widely explored includes field-effect transistors (FETs)12–15,  diodes16, nano-logic  gates17, 
and  nanoprocessors18.

When NWs are synthesized by self-assembly, usually pillar or in-plane arrays of parallel NWs (PNWs) are 
produced. In such arrays, or in the integration into the existing planar electronic  platforms11, the NWs separa-
tion can be short enough to permit electron tunneling between them. Furthermore, with the continuous size 
reduction in the design of smaller and more powerful devices; for example in advanced sub-5 nm nodes in NW-
based vertically or laterally stacked gate-all-around  FETs19–21, the consequences of the closeness of adjacent NWs 
must be thoroughly analyzed to both prevent undesirable effects and to look for new architecture  strategies22.

On the theoretical side, even when there exist a number of advanced approaches to investigate the electron-
electron ( e-e ) interaction in nanostructures, usually such formalisms are limited to one or few charge carriers 
and to the nanometric  scale23–27. On the other hand, the many-electron interaction in 1D Wigner molecules, and 
the close related Friedel oscillations, has been studied by using Luttinger liquid theory as well as quantum Monte 
Carlo and ab initio  methods28–35. Far less works dealing with the electron interaction between coupled NWs has 
been published, even when it can be a simple and powerful approach to explore more complex problems such 
as the strongly interacting topological states in two and higher  dimensions36. Still, modeling of micron-long 
semiconductor NWs and the e-e interaction for electronic densities (n) obtained from usual doping levels (1016
–1019 electrons/cm3 ) is a very cumbersome task, impracticable to carry out in a direct way. For such reason, 
despite the importance of this subject, the interaction of adjacent PNWs with realistic characteristics remains 
largely unexplored.

Given the difficulty of directly including the many-body forces to calculate the many-body quantum states, 
we instead use a coarse-grained model that considers two-electron wave-functions while the presence of the 
other electrons is assumed to only affect the interaction between the two electrons by a Yukawa-like screening. 
Although simple, the use of a Yukawa-like potential to address the many-body problem has been extensively 
used in other branches of physics, such as soft matter and nuclear physics and, applied to electron distributions 
in nanostructures, this approach is able to correctly describe experimental results related to the Wigner molecule 
onset in semiconductor  NWs37,38.

In this contribution, we theoretically investigate the electron tunneling between closely spaced micron-long 
semiconductor PNWs. The resultant electronic distributions are analyzed as a function of the NWs separation 
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(from 1.2 to 10 nm), for some representative NW cross sections (from 15 to 50 nm), as well as three n-doping 
levels in the range from 1017 to 1020 electrons/cm3 . Following previous  works37,38, we consider a Yukawa-like e-e 
interaction to deduce a real-space effective potential, which allows us to calculate the NWs electronic distribu-
tion. We focus on the cases where a discontinuous charge distribution along the NWs is produced as well as in 
the selective tunneling between these charged regions.

The rest of the paper is organized as follows. In “Results and discussion”, we present the ground and first 
excited electronic distributions for 1× 2 and 1× 6 two-dimensional (2D) arrays as well as for a 6× 6 three-
dimensional (3D) array of 1-micron-long GaAs/AlGaAs PNWs and its dependence on the main geometric 
parameters. We also discuss some implications and possible applications of the emerging electronic patterns in 
the PNWs arrays. In “Theoretical model”, a detailed derivation and some remarks of the model used to generate 
the electronic distributions are given. Finally, the conclusions are presented in next section.

Results and discussion
The effective potential. Figure 1 provides a schematic view of one of the systems studied in this work. 
Such system consists of GaAs PNWs of cross-sectional area Lx × Ly and length Lz , which are embedded in an 
AlGaAs matrix that acts as a finite potential barrier of width Lb . As described in detail in “Theoretical model”, 
we solve the time-independent Schrödinger equation for a spinless two-electron wave function, �1,2(r) , consid-
ering a Yukawa-like e-e interaction. Then, by using Fourier transforms, we derive for the z component a real-
space effective potential able to manage long Lz and high n values in an easy way. For the x and y components 
we consider the usual solutions for m-coupled finite quantum wells. The electronic density distributions shown 
hereafter are then obtained from the square of the calculated �1,2(r).

Two parallel nanowires. In Fig. 2a, we plot the z–x proyection of the ground state distributions for two 
PNWs of size Lx,y ≡ Lx = Ly = 50 nm and Lz = 1µ m, kept apart by a variable Lb , for n = 1017 electrons/cm3 
(left) and n = 1020 electrons/cm3 (right). The ground and first excited state for a similar system, with a smaller 
cross-section Lx,y = 15 nm, are presented in Fig. 2b,c, respectively. Each row in Fig. 2 corresponds to a different 
Lb separation. We can observe from the upper row in Fig. 2 (where there is not tunneling between NWs), that 
in agreement with previous reports on individual  NWs37,38, the lower n concentration produces for the ground 
state well defined individual distributions along the NWs while for the higher concentration the electrons merge 
in a single distribution. This concordance is also observed in the first excited state.

For the ground state, we can observe from Fig. 2 that tunneling is strongly dependent on the electron density. 
Such dependence is mainly due to the localized and extended states induced for the relative low and high den-
sities, respectively. For the excited states, a localized distribution is always found. Given the energy difference 
between the confined levels (meV for x-y, and µeV  for z), the excited states plotted in Fig. 2 are those related to 
the z-component, while the x and y components remains in the ground state.

As shown in Fig. 2, the variation on the NWs cross-section affects the way the tunneling take place. For 
Lx,y = 15 nm, electrons are less contained by the AlGaAs barriers, so the tunneling takes place for a larger Lb 
separation as compared to the PNWs of cross-section Lx,y = 50 nm. According to our model, Lb and Lx,y are the 
main parameters to control the tunneling strength through the PNWs, while by modifying n one can control the 
electron distribution connection along each wire. The dependence of the tunneling strength on these parameters, 
for the ground state in an array of two PNWs, are presented in Fig. 3a,b in terms of the h2/h1 ratio where h1 and 
h2 are heights in the 2D density profiles taken as shown in the inset of Fig. 3a. From these figures, we can observe 
that an appreciable tunneling where h2 ∼ 0.1h1 for such configuration is given for values of n ∼ 6× 1018 elec-
trons/cm3 (along the wires) and Lb ∼ 5 nm for Lx,y = 15 nm or Lb ∼ 2 nm for Lx,y = 50 nm (transversal to the 
wires). As we show further below, for 2D and 3D arrays of more than two PNWs, the tunneling strength is not 
uniform between the NWs, so there is not simple relationships for such cases as the shown in Fig. 3.
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Figure 1.  Schematic representation of a 1× 2 parallel quantum wires array as the studied in this work: square 
GaAs wires, with the axis directed along the z-direction, are embedded into an AlGaAs matrix and separated by 
a distance Lb.
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Figure 2.  z–x projections of the charge distribution probability for two 1µm-long GaAs/AlGaAs PNWs. The 
plots correspond to: (a) ground state for Lx,y = 50 nm, (b) ground state for Lx,y = 15 nm, and (c) first excited 
state for Lx,y = 15 nm. Two different n-doping concentration are plotted: n = 1017 electrons/cm3 and n = 1020 
electrons/cm3 . Each row corresponds to a different Lb.

Figure 3.  (a) h2/h1 dependence on the electron density n for an array of 1× 2 PNW with Lx,y = 20 nm and 
Lb = 5 nm. (b) h2/h1 dependence on Lb for a similar array for three different cross sections Lx,y . We use the 
h2/h1 ratio as a parameter to describe the tunneling strength between localized distributions. Here h1 and h2 are 
heights taken from 2D electron distribution profiles as illustrated in the inset in (a). In (a), the profiles are taken 
along the z-axis from one of the NWs while in (b), the profiles are taken across the NWs along the x-axis.
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Multiple parallel nanowires. Additional interesting properties comes out in systems composed of more 
than two PNWs. As an example, the electronic ground state distribution in a 1× 6 PNWs array, as the one 
depicted in Fig. 4b, is plotted in Fig. 4a. The relative low n concentration ( 1× 1018 electrons/cm3 ) is used to 
induce the formation of localized electronic states along the NWs z-axis (a Wigner molecule). We set a small 
cross-section ( Lx,y = 20 nm) and a short distance between NWs ( Lb = 5 nm) to observe a strong tunneling 
between them. Profiles taken along the x-axis presents a notorious intensity modulation from wire to wire, as 
the shown in Fig. 4c (taken along the horizontal yellow line drawn in Fig. 4a). Even when this modulation is 
not observable in the two PNWs system (see Fig. 3), such kind of distributions where the intensity is maximal 
at the center of a finite number of quantum wells is usually found in common 1D superlattices (see for example 
 reference39).

If, in the parameters used in Fig. 4a, n is increased to 2× 1018 electrons/cm3 , a connection between the 
individual electronic distributions along the NWRs axis can be also established (see Fig. 4d). As the lateral tun-
neling depopulate the more external NWs, the distribution along the z axis is different from wire to wire. This 
is clear from Fig. 4e, where profiles taken along the z-axis from three consecutive NWs in Fig. 4d are displayed.

Usually, quantum tunneling is considered only as a 1D problem. The 2D and 3D tunneling cases are addressed 
as 1D independent tunneling along each spatial direction, without accounting for alterations in the 2D or 3D 
electron distributions. However, as described before, we found that the electronic tunneling along the transversal 
direction of the PNWs is actually able to significantly change the electronic distribution along the NWs axis. 
These effects are more noticeable for higher excited states, where a greater number of localized distributions 
along the wires emerges.

Because confinement along the z axis is very weak and the energy separation between quantized energy 
levels is very small, of the order of µeV  , these states can be easily populated and then are particularly important 
to analyze. As an example, in Fig. 5a we plot the fourth excited state corresponding to a system with the same 
parameters that the plotted in Fig. 4a. A typical profile, taken along the x direction where the density is maximal, 
is shown in Fig. 5b. By the nature of our model, this transversal profile is practically the same as the shown in 
Fig. 4c, with the only difference that its absolute intensity is smaller (as the electron density is distributed in 
more zones along the wires). In Fig. 5c, the profiles taken along the z axis show a sharp distribution of the well 
separated electronic regions.
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Figure 4.  (a) Ground state charge distribution for an array of six 1-micron long PNWs of cross section 
Lx,y = 20 nm, n = 1× 1018 electrons/cm3 , and mutual separation Lb = 5 nm. (b) Illustrative representation of 
the 1× 6 GaAs/AlGaAs PNWs array. (c) Profile of the electronic density taken along the horizontal yellow line 
indicated in (a). In (d), n is increased to 2× 1018 electrons/cm3 in order to trigger the connection between the 
charge distributions along the z-axis. In (e), three profiles taken along the z direction from (d) are plotted; the 
vertical yellow line in (d) indicates where the profile number (1) was taken.
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2D and 3D interconnected distributions. As discussed before, three main electronic distributions 
appears in the arrays of PNWs by modifying n, Lb , and Lx,y . When Lb is large enough to block tunneling and n 
is low enough to trigger the Wigner crystallization, then a disconnected but ordered 2D charge distribution is 
established. However, if Lb is small enough to allow lateral tunneling, then a 2D array of superlattices intercon-
nected along the x axis (as in Figs. 4a, 5a) is produced. Furthermore, if the n density value allows to connect the 
charge distributions along the z axis (as in Fig. 4d), then a fully connected 2D arrangement can be assembled. 
Because the NWs y-component is mathematically equivalent to the x-component considered in this work, the 
3D distributions are a straightforward generalization of the 2D distributions previously discussed.

In Fig. 6, we present the ground state distributions for a 6× 6 array of 1-micron long PNWs of cross section 
Lx,y = 20 nm with the mutual separation Lb modulated from 8 to 3 nm. From Fig. 6 we can observe the gradual 
NWs coupling along the x–y transversal plane as Lb becomes smaller. Even when the electronic connection 
between adjacent NWs in Fig. 6a is not evident, actually for an 8 nm-thick AlGaAs barrier there exist a signifi-
cant tunneling, for such reason the electronic distribution in each wire in Fig. 6a is affected for the entire NWs 
array (for a large enough Lb , each NW is independent from each other and the same electronic x–y distribution 
is expected in any NW in the array). Analogous to the 2D case (see Fig. 5b), the electronic distribution is denser 
at the central part of the array and it decreases for the more external NWs.

Due to the strong coupling between close NWs, collective phenomena can be expected for small Lb values. 
One striking effect is the related to the x–y excited states, which involves the combined contribution of all the 
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Figure 5.  (a) Fourth excited state charge distribution for an array of six 1-micron long PNWs of cross section 
Lx,y = 20 nm, n = 1× 1018 electrons/cm3 , and mutual separation Lb = 5 nm. (b) Profile of the electronic 
density taken along the x direction. (c) Profiles taken along the z direction at the x positions where the electron 
density is maximal; each number indicates the place where the profiles were taken from (a).

Figure 6.  x–y projections of the ground state electron configuration in 6× 6 PNW arrays of Lx,y = 20 nm. 
The NWs mutual separation Lb is modified from 8 to 3 nm to observe the gradual transition to a strongly 
interconnected 2D distribution. The distributions are obtained by considering only the x and y wave function 
components. In (a), the x–y boundary of one of the NWs is outlined as a visual reference.
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NWs. In Fig. 7 we plot the first three x–y excited states of the 6× 6 array presented in Fig. 6c ( Lb = 3nm). As 
observed, singular electronic distributions are shaped in the NW cross sections, triggering drastic changes in 
its electronic population. This kind of remarkable PNW collective phenomena described by our model could 
be used, in analogy to the approach presented in  Reference36, to deal with more complex problems in two and 
higher dimensions.

We would like to highlight that such 2D and 3D distributions, together with the possibility to switch between 
them by means of an external gate, could be of great interest in practical issues as well as in the investigation of 
new physical phenomena. For example, these NW arrays could be a valuable alternative to usual approaches, such 
as the 3D arrays of quantum dots to build 3D  superlattices40 or to substitute the use of different materials along 
NWs to produce a charge distribution control along the NWs  axis41. Such well separated charge distributions, at 
the nanometric scale, could also have applications in the design of alternative 3D NW-based logic  architectures42.

Theoretical model
We focus on direct wide bandgap semiconductors, so the small interaction between the conduction and valence 
bands can be neglected. The model can be easily applicable to others wide bandgap compounds by changing the 
material parameters. As we use a Yukawa approach, a minimal in the electronic concentration must be fulfilled 
to guarantee that the e-e average separation is not larger than the screening  length37. In this contribution, only 
suitable nanostructure sizes and n-doping levels that satisfy such condition are considered.

The time-independent Schrödinger equation for a spinless two-electron wave function, 
�1,2(r) ≡ �1,2((x1, y1, z1), (x2, y2, z2)) , is

where � ≡ h/2π , h the Planck constant, m∗
e the electron effective mass, and Veff  is the effective potential. Veff  , 

which is derived further below, includes the finite confinement potential in the transversal x-y plane, the infinite 
barrier potential at the NW z-edges, and the many-body e-e Yukawa-like interaction.

The Yukawa-like potential is given by

where r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2  is the e-e separation; ǫ = ǫ0ǫr is the absolute permittivity, 
with ǫ0 the vacuum permittivity and ǫr the relative permittivity of the material ( ǫr = 12.9 for GaAs and 
ǫr = 12.247 for AlxGa1−x As for the Al concentration x = 0.23 considered in the calculations). The screening 
parameter κ is given by 

√

2e2n
ǫKBT

 , with n the electronic density, KB the Boltzmann constant, and T ( = 300 K) the 
temperature.

For Lx , Ly ≤ 55 nm, Lb ≤ 40 nm, and Lz ≈ 1 µ m, VY (r) can be considered as a small perturbation in the x 
and y directions. Then, we can make an approximation in the left side of Eq. (1) by splitting the transversal ( ⊥ ) 
and parallel ( ‖ ) contributions as
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Figure 7.  x–y electron configuration for the (a) first, (b) second, and (c) third excited states in a 6× 6 PNW 
array with Lx,y = 20 nm and Lb = 3 nm. The distributions are obtained by considering only the x and y wave 
function components.
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Considering that the wave function is separable in its transversal and longitudinal components as 
�1,2(r) = ψ⊥1(x1, y1)ψ⊥2(x2, y2)ψ�1,2(z1, z2) . Then, the y component of the wave function for each of the two 
confined electrons, for an 1×m PNW array, can be directly calculated from Eqs. (1) and (3) as

where ky =
√

2m∗
nw

�2 Ey  , m∗
nw = 0.0665me for GaAs ( me the electron mass), and Ny is a normalization constant.

Along the x-direction we must solve a system of m-coupled quantum wells, composed of the wave functions 
in the AlGaAs barriers ( ψb(x) ) and the GaAs NW ( ψnw(x)):

in which i = 1, 2, 3, . . . (m+ 1) , j = 1, 2, 3, . . .m , kb =
√

2m∗
b

�2 (V0 − Ex) , knw =
√

2m∗
nw

�2 Ex  , V0 = 187 meV, and 
m∗

b = 0.0857me for Al0.23Ga0.77As. Ai , Bi , Cj and Dj are additional normalization constants.
In order to derive the effective potential, we consider the Fourier transform for each of the cross-sectional 

wave functions for a single confined electron, in an 1×m PNW array, given by

where,

For the longitudinal component, the corresponding Fourier transform is

Then, by replacing Eqs. (8–10) and (14) into the e-e interaction energy, in its integral representation:

where

We can now consider the contribution of both electrons and, defining G(qx , qy) = Gnwj/bi(qx)Gy(qy) , we obtain

where d3q ≡ dqxdqydqz and d3r ≡ dxdydz ; ǫnw/b corresponds to the permittivity that is replaced for each cor-
responding region (NW or the barrier) and Gnw/b is defined analogous to the permittivity. Integrating over r,
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Now, as

Equation (18) can be expressed as

Then, by using the equality

Equation (20) can be rewritten as

where Veff  is defined by

By replacing Eqs. (11–13) in (23), we can obtain the final expression for Veff  , which must be evaluated in each 
part of the GaAs/AlGaAs NWs along the z-direction. Then, for the extreme left and right AlGaAs barriers,

at the internal barriers,

and, in the GaAs NWs,

To solve the Schrödinger equation by using Eqs. (24), (25), and (26), we use the finite difference method.
On the other hand, for a m1 ×m2 array of PNWs we can follow a similar procedure but, instead of Eq. (5) for 

the y component, we must consider Equations of the type (6) and (7). Following the procedure described before, 
the final effective potentials for these arrays are, at the external barriers,

at the internal barriers,

and, in the GaAs NWs,
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where Oi , Pi , Qj and Rj are the additional normalization constants related to the y component.

Conclusion
We present theoretical calculations of two-electron states under the influence of a variable electron screening in 
semiconductor parallel NWs, considering the effect of the system size, the n-doping level and the NWs separa-
tion. When a low-density Wigner crystal regime is considered, localized effects in the tunneling between adjacent 
quantum wires are observed. By modifying NWs parameters such as the cross-section, the n concentration 
and the NWs separation, the charge distribution pattern in 2D and 3D PNW arrays can form interconnected 
distributions between the adjacent NWs. Such nanoscale localized charge distribution could be valuable in the 
design of new architectures for photonics and electronics applications.
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