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SARS‑CoV‑2 host prediction based 
on virus‑host genetic features
Irina Yuri Kawashima1, Maria Claudia Negret Lopez1, Marielton dos Passos Cunha2 & 
Ronaldo Fumio Hashimoto1*

The genetic diversity of the Coronaviruses gives them different biological abilities, such as infect 
different cells and/or organisms, a wide spectrum of clinical manifestations, their different routes 
of dispersion, and viral transmission in a specific host. In recent decades, different Coronaviruses 
have emerged that are highly adapted for humans and causing serious diseases, leaving their host 
of unknown origin. The viral genome information is particularly important to enable the recognition 
of patterns linked to their biological characteristics, such as the specificity in the host-parasite 
relationship. Here, based on a previously computational tool, the Seq2Hosts, we developed a novel 
approach which uses new variables obtained from the frequency of spike-Coronaviruses codons, the 
Relative Synonymous Codon Usage (RSCU) to shed new light on the molecular mechanisms involved in 
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host specificity. By using the RSCU 
obtained from nucleotide sequences before the SARS-CoV-2 pandemic, we assessed the possibility 
of know the hosts capable to be infected by these new emerging species, which was first identified 
infecting humans during 2019 in Wuhan, China. According to the model trained and validated using 
sequences available before the pandemic, bats are the most likely the natural host to the SARS-CoV-2 
infection, as previously suggested in other studies that searched for the host viral origin.

The first reported case of Coronavirus Disease 2019 (COVID-19) occurred in the city of Wuhan, Hubei prov-
ince, China, in late December 20191,2. The viral agent associated with this new pneumonia — The Severe Acute 
Respiratory Syndrome associated with Coronavirus 2 (SARS-CoV-2) (Sarbecovirus subgenus, Betacoronavirus 
genus) — quickly spread worldwide causing a pandemic with global impact3. SARS-CoV-2 represents the seventh 
know coronavirus to circulate in a human-to-human transmission chain of the Coronaviridae family. While the 
SARS-CoV, MERS-CoV, and SARS-CoV-2 can cause severe disease, the HKU1, NL63, OC43, and 229E cause 
mild symptoms, and for all of them, their ancestral hosts are not human4.

Viruses genetically related to SARS-CoV-2 have been found in bats5 and pangolins (Manis javanica)6,7 in 
the Asian continent. The divergence of the SARS-CoV-2 from related viruses represents decades of evolution8, 
which makes it difficult to suggest which is the probable host involved in the SARS-CoV-2 emergence. Although 
the biological mechanism responsible for viruses spillover remains uncertain9,10, since its first description, this 
virus has shown sustained transmission in the human-to-human transmission chain without adaptive genomic 
changes11, demonstrating its pandemic potential.

The Coronaviruses are a group of viruses that differ from each other by their genomic characteristics and 
their ability to infect different groups of organisms12. They are members of the subfamily Coronavirinae in the 
family Coronaviridae and the order Nidovirales, according to International Committee on Taxonomy of Viruses. 
Studies have shown that these viruses can have abnormally high replication fidelity13, having in their genomic 
structure, a set of RNA processing enzymes that have improved the low fidelity of RNA replication14. Despite 
having important genomic conservation at apical levels of their phylogenetic structure, they present considerable 
genetic differences at basal levels, this difference being important for studies that explore levels of adaptation to 
different hosts12. The discriminative characteristics that make it possible to distinguish SARS-CoV-2 from other 
related coronaviruses (SC2r-CoVs) to it are concentrated mainly in the Spike gene, which appears to be the main 
component of the virus associated with host specificity15.

Genomic characteristics of the SARS-CoV-2 spike gene are known to be linked to its ability to infect humans16. 
Recent studies have shown descriptive results on the genomic composition of SARS-CoV-2, comparing them 
to other coronaviruses17–19, indicating that this virus has shared discriminating characteristics when compared 
to its homologs. Sequences coding to the Spike protein were previously used to build a computational tool for 
inference of potential hosts using genomic data12, such as mononucleotide and dinucleotide composition.
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In a recent work, researchers concluded that the use of features based on genomic composition can better 
predict the risk of a virus infecting humans than those based on phylogenetic distance20. In our study, we applied 
a new approach using the Relative Synonymous Codon Usage (RSCU) to training and validate the seq2hosts 
tool developed by Tang et al.12 and we complemented this previous study using the recent information and 
machine learning techniques as Principal Component Analysis (PCA) and Mahalanobis distance (MD). For this 
purpose, we use this classifier to find the MD of new coronaviruses sequences and host prototypes, suggesting 
other possible hosts.

Results
Phylogenetic analysis, dimensionality reduction, and model training.  The phylogenetic analysis 
based in the aligned aminoacid sequences indicated that the sequences are grouped into four large groups, char-
acterized as Coronaviruses genera, in the Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and Gammac-
oronavirus (Fig. 1A). The reduction of the 59 features (obtained from the genome through RSCU codification) 
into two-dimension space with Principal Component Analysis (PCA) enables us to visualize a scatter plot of the 
first two dimensions of Dataset 1 (Fig. 1B,C) containing all samples of each host together with their prototypes 
(centroids). In general, the points of some viral species, such as bovine and murine (blue and red colors, respec-
tively) concentrates in one specific point cloud, suggesting that contains relevant information about the host 
specificity, but in other cases, such as to the human and bats, the points are spaced in space.

Validation.  The validation of rating performance was obtained using the Dataset-1 and indicated a pro-
gressive increase in accuracy with an increase in the number of components retrieved by the PCA calculation 
(Fig.  2). With 2 components the total explained variance obtained was 0.52593 with accuracy of prediction 
0.668493 whereas with 20 components variance and accuracy increased to 0.9683 and 0.993151, respectively, so 
the prediction of the sequences from the remaining datasets was computed with the 20-dimensional projection 
distances measures. The confusion matrix for each dimension reduction from 2 to 20 can be found in Supple-
mentary Table S2.

Host predictions for viruses suspected of involving transmission between species.  The trained 
model was applied to 47 additional sequences (Dataset-2) that we only listed the hosts from which they were 
isolated, with all the samples with evidence of potential transmission between species, as used previously12. To 
the sequences isolated from palm civets, here called Civets-CoVs (SARS-CoV), the predicted host was humans. 
According to Tang et al.12, bats and humans are the hosts of these viral strains, but bats are the preferable hosts; 
the porcine-CoV, was a SARS-associated coronavirus that was transmitted from human to porcine, and the 
prediction results indicated the same results obtained to the dromedary-CoVs, with bats as the predicted host; 
the SARS-like coronaviruses sequences isolated from bats, the results obtained using MD correctly confirmed 
the first host as bats, followed by humans; to the sequences isolated from Dromedary, the Dromedary-CoVs 
(MERS-CoV), obtained after the outbreak in the Middle East in 2012 indicated that humans and bats are the 
first and second host, respectively and is corroborated by the first study12. The MD distances to the Coronavirus 
sample isolated from Alpaca (Alpaca-CoVs) indicated that the predicted host was bovine; surprisingly, the to 
the bovine-CoV (Human enteric coronavirus isolated from bovine) result, the predicted host was bovine; and 
to the Human-CoV (Human enteric coronavirus isolated from human) sequence, the predicted host was bovine 
(Table 1).

Figure 1.   Characterization of the training dataset (Dataset 1). (A) Phylogenetic characterization estimated 
based on maximum likelihood, and showing all the Coronaviruses genus. The tree was generated with IQ-TREE 
1.5.521 available at http://​www.​iqtree.​org and visualized with FigTree 1.4.422 available at http://​tree.​bio.​ed.​ac.​uk/​
softw​are/​figtr​ee/; (B) Two Dimensional PCA reduction with prototypes according to the different Coronaviruses 
genus; and (C) Two Dimensional PCA reduction with prototypes according to the different primary host. The 
different colours in (B) and (C) represents each group of genus or host class using the training data set (Dataset 
1). For some hosts or even between the genus, we can observe some clouds of points concentrated, while in 
other conditions, as in bats, the samples are scattered in different positions of the graph.

http://www.iqtree.org/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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SARS‑CoV‑2 host prediction.  To predict the SARS-CoV-2 host-associated, we used the classifier con-
structed and validated using MD and the Spike nucleotide sequences of the SARS-CoV-2 obtained from Gen-
Bank (Dataset-3). The predicted host was bat although samples were taken from humans (Table 1). The phylo-
genetically nearest sequencies to SARS-CoV-2 (SC2r-CoV), Dataset-4 were predicted to be hosted by bats. This 
result is completely congruent with the scientific evidence raised so far, which found SC2r-CoVs viruses in bats. 
The other tested hosts were not involved in this hosting system according to the prediction. Figure 3 presents all 
datasets in a two dimensional PCA scatter plot.

Discussion
Since the beginning of the pandemic, the origin of SARS-CoV-2 has been an object of interest to the global 
scientific community, with several scientific initiatives carried out and even, with the World Health Organiza-
tion (WHO) moving a mission as part of the One Health approach, to identify the zoonotic source of the virus 
and routes of introduction to the human circulation, including the possible role of intermediate hosts. Genomic 
comparisons of SC2r-CoVs and pandemic SARS-CoV-2 sequences suggested that the virus has required little 
to no significant adaptation to start a circulation in humans at the early phase of the pandemic11. The structural 
changes present in the SARS-CoV-2 when compared to SC2r-CoVs, which may be associated with a high capac-
ity to infect human cells, are in the most divergent genome region, that codded to the Spike protein16. Two of 
the key changes that occurs in the pandemic virus are the specific receptor binding domain sequence and the 
inserted furin cleavage site8,16. However, we also know that specific nucleotide differences may be reflected in 

Figure 2.   Classifier performance. (A) Cumulative explained variance using distinct number of principal 
components; and (B) Accuracy to each host using different number of principal components. From 20 PCs 
onwards there is no longer significant increase in accuracy. The Confusion Matrix used to obtain this diagram 
can be found in Supplementary Table S2.
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specific pattern of the codon usage for different SARS-CoV-2 genes, including the Spike gene, when compared 
to other coronaviruses17.

Throughout the natural course of coronavirus evolution, virus genomes accumulate mutations during their 
propagation. The underlying principle is that virus-host genetic information can provide the variables involved 
in the host infection specificity process, a valuable tool to explore the taxonomic classification of new viruses, 

Table 1.   Sequences used to the biological validation and prediction results for Datasets 2, 3 and 4.

Number of sequences Isolation source Natural host Predicted host Coronavirus specie Dataset

30 Civet Human Human SARS-CoV-1 2

1 Raccoon Human Human SARS-CoV-1 2

9 Dromedary Human Human MERS-CoV 2

1 Porcine Human Human SARS-CoV-1 2

3 Bat Bat Bat Bat SARS-like 2

1 Alpaca Bovine Bovine Bovine Coronavirus 2

1 Human Human Bovine Human enteric coronavirus 2

1 Bovine Human Bovine Human enteric coronavirus 2

86 Human Human Bat SARS-CoV-2 3

5 Bats or pangolin Bat Bat SC2r-CoVs 4

Figure 3.   PCA reduction, all datasets. Dataset-1, training dataset; Dataset-2, testing; Dataset-3, SARS-
CoV-2; Dataset-4, Bat Coronavirus, HCoV and Pangolin Coronavirus. Despite the Dataset-4 sequences being 
phylogenetically close to the Dataset-3 SARS-CoV-2 sequences15, we can notice that all of them do not cluster 
together when using RSCU as feature. Both Dataset-3 and 4 sequences were classified by our model as closer to 
bat coronaviruses than human coronaviruses.
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track transmission chains, and the prediction of hosts that are likely to be involved in their replication cycles12. 
Recently, an approach using dual statistical models based on mono- and dinucleotide composition was used 
to predict the probable hosts for the Coronaviruses12. The results retrieved using a new group of sequences, 
the SARS-CoV-2 spike gene sequences (Dataset-3) as input for host prediction using the previous approach 
(Seq2Hosts platform)12, indicated that organisms predicted as hosts are avian and bovine for first and second 
prediction using the Mahalanobis Distance technique (April/2020). During the beginning of the pandemic, all 
the SARS-CoV-2 sequences exhibited low genetic diversity23. Further, the current evidence suggests that this 
inferenced result is not consistent with recent studies exploring evolutionary and biological aspects related to 
the virus, which show that both groups of organisms are not involved in the zoonotic circulation of SARS-CoV-
2-related viruses, as well as SARS-CoV-2 has not yet been found in these organisms. The hosts known to be 
involved in viral circulation are mainly bats (in a zoonotic environment) and humans, although there is still a 
discussion about the intermediate host in this emergence process5–7.

To explore the same approach12, but now refining it to be precise in identifying hosts with a description known 
and sustained in the literature, we used a new group of features associated with virus-host specificity, the RSCU 
signature, which is a method to calculate the relative frequences of occurrence of the synonymous codons for each 
amino acid24,25. Beyond that, although the virus-host association can be recovered from nucleotide composition26, 
such as the RSCU used here, the codon usage is not restricted to adaptation to a host, but is critical for several bio-
logical processes, which reflect the combination of multiple selection and mutational pressure, which are critical 
for efficient transcription, nuclear export of virus RNA, tolerance to translation errors, and immune evasion27,28.

Interestingly, the PCA plot demonstrating the first two components, bat-related Coronaviruses are widely 
dispersed across the plot, with no sign of a cloud densely populated by many sequences. On the other hand, 
the Coronaviruses associated with humans are dispersed throughout the graph, however, with dense clouds of 
sequences in specific locations, as observed for the other Coronaviruses associated with other hosts. This result 
suggests that there is a high genetic diversity of Coronaviruses circulating among bats29, acting as key hosts of 
zoonotic coronaviruses30, and that, most likely, the circulation in other organisms is associated with viral spillover 
events from bats to other hosts. The results obtained using our proposed classifier based on the RSCU features 
indicated that the main group of organisms that are among those tested (avian, bat, bovine, human, murine, 
and porcine) which are involved as natural hosts for SARS-CoV-2 are bats based in the MD of the SARS-CoV-2 
sequences to the prototypes. If so, these findings suggested that the RSCU can reflect biological meaning in terms 
of coronavirus adaptation to the cellular host machinery.

According to a recent study, the SARS-CoV-2 Spike protein could have a high probability of binding with the 
angiotensin-converting enzyme 2 (ACE2) receptors in rats, sheep, camels, and squirrels31. Also, for predicting the 
host tropism, the major ACE2 residues involved in the recognition of Spike protein of SARS-CoV-2, it was devel-
oped a homology-based model which analysis found that apart from humans, other animal species, like African 
green monkey, orangutan, dog, cat, tiger, cattle and pig exhibit the key residues, making these species likely 
susceptible hosts for SARS-CoV-2 virus attachment18. Recently, the joint international team WHO-China study 
concluded that the most closely related genomic sequences to the SARS-CoV-2 have been found in bats32.

Beyond the prediction results obtained using the RSCU calculations based in the MD, our study suggests that 
SARS-CoV-2 emerged to humans from bats. Furthermore, the high susceptibility and permissivity of mink and 
cats to the SARS-CoV-2 suggest that additional species of animals may act as a potential reservoir to the virus33,34. 
This new approach can be used to the: (i) description of the natural host, and the viral emergency host (viral 
spillover) in new Coronavirus emergence; (ii) it may be important to suggest new experimental models that are 
biologically close to natural hosts; (iii) it can be useful to study new coronaviruses with emergency potentials.

Methods
Datasets.  This study was conducted based on the datasets previously described12. First, to the training tool, 
we used the same dataset used in the work previously developed12, with 730 sequences corresponding to the 
Spike gene of different viral specimens of coronavirus (Dataset-1), 196 of which belong to the human host, 182 
to the porcine, 173 to the avian, 77 to the bovine, 74 to the bat and 28 to the murine. The model was tested using 
sequences that are not in the training data, we also used the same dataset provided previously by the authors 
as a test set (Dataset-2) corresponding to 47 spike gene sequences of SARS coronavirus — 30 collected from 
civets, 1 from raccoon and 1 from porcine, 9 Middle East respiratory syndrome coronavirus from dromedary, 
3 Bat SARS-like coronavirus from bats, 1 Bovine coronavirus isolated from Alpaca and 2 Human enteric coro-
navirus — 1 from human and 1 from bovine12. The model was then applied for the prediction of the viral hosts 
involved in the viral replication biology of SARS-CoV-2, using 86 virus sequences retrieved from GenBank at 
04-26-2020, all of them isolated from human samples (Dataset-3) and additionally 5 sequences of SARS-CoV-2 
related viruses isolated from bats and pangolins (Dataset-4). Information about genbank accession number and 
species description of all data sets can be found in the Supplementary Table S1.

Phylogenetic analysis.  The phylogenetic inference was performed with a previously curated dataset (data-
set-1)12. A phylogenetic tree was reconstructed based on aminocid Spike gene sequences using the Maximum 
Likelihood (ML) method implemented in IQ-TREE 1.5.521 with automatic model selection by ModelFinder 
and using the Bayesian Information Criterion (BIC)35, which was the model of substitution: WAG+F+R7. The 
robustness of the groupings observed was assessed using an ultrafast bootstrap approximation (UFboot) during 
1,000 replicates. The ML tree was visualized and plotted using FigTree v.1.4.422. Taxon labels for sequences used 
in this work had the format: accession number/Coronavirus genera/Primary host.
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RSCU calculation.  The codon is a combination of three nucleotides that encodes for an amino acid or a 
stop signal. Despite of there are 64 combinations of three nucleotides, considering that there are four nucleotides 
for the coding purpose, the number of amino acids are 20, because some amino acids can be coded by more 
than one triplet of nucleotide. So the genetic code is redundant, and it is described “degenerate”, that is, multiple 
synonymous codons refer to the same amino acid. For example, the codons GCU, GCC, GCA and GCG code 
the same amino acid Alanine (Ala).

The usage of synonymous codon for each amino acid is not random, it depends on the abundance of the 
respective tRNA of the organism. Selective pressure contributes to optimize gene expression inducing a bias to 
the presence of codons related to more abundant tRNA species24.

The expected number of occurrences of codon usage Ei for a given amino acid i can be computed counting the 
number of that codon in the sequence normalizing it by the number of codons that code the same amino acid:

where ni is the number of synonymous codons for amino acid i ( 1 � ni � 6 ) and F(i)j  is the number of occurrences 
of codon j for amino acid i. For example, for the amino acid Alanine (Ala), the number of synonymous codons 
is nAla = 4 , whereas F(Ala)GCU  , F(Ala)GCC  , F(Ala)GCA  , F(Ala)GCG  are the frequencies of its synonymous codons.

So, in the case of Alanine, its expected number of occurrences of codon usage is 
EAla =

1

4

(

F
(Ala)
GCU

+ F
(Ala)
GCC

+ F
(Ala)
GCA

+ F
(Ala)
GCG

)

.
The bias of each codon for a given amino acid that can be coded by more than one codon is estimated by 

calculating the Relative Synonymous Codon Usage RSCU (i)
j  that is the number of times the codon j appears 

within a gene divided by the expected number of occurrences of its synonymous codons for the ith amino acid:

where F(i)j  is the number of occurrences of the jth codon for the ith amino acid, which is encoded by ni synony-
mous codons24.

In the case of Alanine:

The values for UGG and AUG that codes respectively for Tryptophan and Methionine are always 1.0, since there 
is only one codon for them. In addition, the three stop codons can be excluded from the analysis, since they do 
not correspond to a tRNA. Computing the RSCU for valid codons for each sequence results in a 59 dimension 
feature space.

Viruses depend on the host machinery to replicate themselves and translate their proteins. As they require 
available tRNAs, they have the tendency to evolve a codon usage preference for the amino acid that can be 
coded by more than one codon, as closer as possible to their host. Therefore, the efficiency of the viral proteins 
production can be established selectively on genetic material mutation36. In this way, we hope that the RSCU 
can identify how close the viral species are to each host specified in the training data set.

Dimensionality reduction.  Our model consists of using the nearest prototype classifier with Mahalanobis 
distance after the PCA reduction in the feature table with the RSCU values.

Principal components analysis (PCA) is a popular approach for deriving a low-dimensional set of features 
from a large set of variables. Its is widely used in Bioinformatics to analysis of genome data and gene expression 
levels 37.

The goal of PCA is to find the directions of maximum variance in high-dimensional data and projects (by a 
linear transformation) it onto a new subspace with equal or fewer dimensions than the original one. The orthogo-
nal axes, called “principal components”, of the new subspace can be interpreted as the directions of maximum 
variance given the constraint that the new feature axes are uncorrelated to each other 38.

In our case, we used PCA to reduce features dimensions from 59-dimension to smaller dimensional spaces 
starting with 2 components and increasing them. In order to visually explore the data, we used 2 components to 
plot the graphs presented in this text, Principal Component 1 (PC1) at the vertical axis x1 and Principal Com-
ponent 2 (PC2) at the horizontal axis x2.

The nearest prototype classifier.  In a supervised classification, the k-nearest neighbor (KNN), or even 
the nearest neighbor (when k = 1 ), can be used to classify an unknown sample, assuming that it will have char-
acteristics similar to that of the neighborhood. The method consists of computing the distance to all the known 
samples and check the label of the k (usually an odd number to avoid ties) closest ones. The unknown sample 
is labeled by the majority of votes from its k neighbours.In this study, instead of using the KNN classifier, we 
consider using the nearest prototype classifier.

In the training dataset, there are six labels (avian, bat, bovine, human, murine, and porcine), corresponding 
to the hosts of viral species, each one encompassing a certain amount of samples.
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We define the prototype of each label as the mean point in the feature space of all species that infect the same 
host. For example, reducing the feature space to two dimensions x1 and x2 axis, we can find the prototype in the 
center of the points that belong to the same host computing the average for these features for each host:

where x̄1host is the average of x1 values on the vertical axis and x̄2host is the average of x2 values on the horizontal 
axis for a given host. Note that chost after the PCA reduction is a point with two coordinates chost = (c1, c2) , and 
there will be six prototypes in our training data set: cavian , cbat , cbovine , chuman , cmurine and cporcine.

These prototypes with the mean of the values in each dimensional axis for the species that infect the same 
host are centroids and can be used to represent all the samples that belong to the corresponding host. So, instead 
of compute the distances for all the labeled points, the distance to the nearest prototype can be used to deduce 
the label of the unknown sample.

Let’s say that D is the set of distances d(x, chost) from each of the prototypes to the unknown point xnew with 
xnew = (x1, x2):

We can assume that the label of the unknown point will be the label of the shortest distance in this set:

Modeling, validation and prediction.  Since the unknown host sample prediction depends on the dis-
tance computation to prototypes, we need to define which metric (distance measure) is more appropriate for our 
classification problem. In fact, in our case, we are interested in computing the distance between a z-dimensional 
point x = (x1, x2, . . . , xz) and the centroid c = (c1, c2, . . . , cz) of a cloud of points representing a given host. 
Indeed, this distance can be measured by several methods. The most known is the Euclidean distance given by 
dED(x, c) =

√

(x − c)(x − c)T =
√

∑n
i=1(xi − ci)2 . But there are other types of distance measures that can 

reflect more precisely the distribution of the host points in the dataset. One of them is the Mahalanobis distance 
(MD)39–41 which is a measure between a sample point x = (x1, x2, . . . , xz) and a distribution of sample points 
represented by: 

	 (i)	 its centroid c = (c1, c2, . . . , cz) and
	 (ii)	 its covariance matrix S.

The distance dMD is given by dMD(x, c) =
√

(x − c)S−1(x − c)T .
Taking as an example of our analysis, we will have 74 samples extracted from bats and the corresponding 

2-dimensional points after the PCA reduction. The centroid of bat will be cbat = (c1bat , c2bat ) = (x̄1bat , x̄2bat), 
and the covariance matrix Sbat for the points that belong to bat will be:

where σx1bat is the variance on vertical axis of the points that belong to the host bat and σx2bat is the variance of 
these points on horizontal axis.

MD is the distance between a point and a set of points in a multivariate space. If the data are non correlated 
MD it would be as Euclidean distance. It measures distance relative to the centroid, which is the prototype in 
our case.

MD can improve the accuracy of estimates because it considers correlations between the summary statistics41. 
The use of MD after use PCA exhibit some advantages in terms of computational cost as in the calculation of the 
covariance matrix S and its inverse S−1.

The validation is the performance evaluation of the model. This was done with the technique leave-one-out 
cross-validation in the training dataset (Dataset-1). It consists in removing one point at a time from the dataset 
to be the unknown point to be predicted and calculating its distance to the grouped points generated accord-
ing to the host label of the remainig sequences. The shortest distance obtained is considered the prediction and 
compaired to the known label of the point. If there is a match, it is added to the count to calculate the accuracy. 
This procedure is repeated to all the sequences of the training dataset. In the end, the relative accuracy can be 
calculated counting the hits in the prediction. The validation was carried out for several dimensions starting from 
the reduction of characteristics to two dimensions and increasing until the accuracy reached a level in which 
there were no relevant changes, which occured in 20-dimension.

All the calculations were made in Python 3.6.942 programming language with Numpy 1.19.543 library , and 
Biopython 1.19.544 package. Figures 1B,C, 2 and 3 graphics were made with Matplotlib 3.2.245 library.

Received: 30 September 2021; Accepted: 28 February 2022

chost = (x̄1host , x̄2host),

D = {d(x, cavian), d(x, cbat), d(x, cbovine), d(x, chuman), d(x, cmurine), d(x, cporcine)}.

host(x) = host(min D).
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σ 2
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