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Design and processor in the loop 
implementation of an improved 
control for IM driven solar PV fed 
water pumping system
Mustapha Errouha1*, Quentin Combe2, Saad Motahhir3, S. S. Askar4 & 
Mohamed Abouhawwash5,6

In recent years, the improvement of photovoltaic water pumping system (PVWPS) efficiency 
takes the considerable interest of researchers due to its operating based on cleaner electrical 
energy production. In this paper, a new approach based on fuzzy logic controller incorporating loss 
minimization technique applied to the induction machine (IM) is developed for PVWPS applications. 
The proposed control selects the optimal flux magnitude by minimization of the IM losses. Moreover, 
Variable step size perturb and observe method is introduced. The suitability of the proposed control 
is approved by reducing the absorbed current; therefore, the motor losses are minimized and the 
efficiency is improved. The proposed control strategy is compared with the method without losses 
minimization. The comparison results illustrate the effectiveness of the proposed method based on 
losses minimization regarding the electrical speed, absorbed current, flow water and developed flux. 
A processor-in-the-loop (PIL) test is effectuated as an experimental test of the proposed method. It 
consists in implementing the generated C code on the STM32F4 discovery board. The obtained results 
from the embedded board are similar to numerical simulation results.

Renewable energy sources especially solar PV technology can be a cleaner alternative solution to fossils fuels for 
water pumping  systems1,2. PV water pumping system is gained a lot of attention in remote areas where electricity 
is not  available3,4.

Various kinds of engines are utilized with PV pumping applications. The primitive stage of PVWPS is based 
on DC motor. These motors are easy to control and implement but they need regular maintenance due to com-
mentators and  brushes5. To overcome this disadvantage, Brushless permanent magnet motors are introduced 
which are characterized by the absence of brushes, high efficiency and  reliability6. PVWPS based on IM illustrates 
better performance compared to other motors because this type of motor is reliable, low cost and maintenance-
free and gives more possibilities for control  strategies7. Indirect Field oriented control (IFOC) technique and 
direct torque control (DTC) method are often  employed8.

IFOC was developed by Blaschke and Hasse to allow varying IM speed over a wide  range9,10. The stator cur-
rents are separated into two components, one generates the flux and the other produces the torque by utilizing 
transformation to the d–q coordinate system. This allows independent control of the flux and torque during both 
the steady state and dynamic conditions. The axis (d) is aligned with the rotor flux space vector which involves 
that the q-axis component of the rotor flux space vector is always zero. FOC gives a good and faster  response11,12, 
however, this method is complex and affected by the parameter  variations13. To surmount these drawbacks, DTC 
was introduced by Takashi and  Noguchi14, this command presents high dynamic performance, and it is robust 
and less sensitive to parameter variations. In DTC, the control of the electromagnetic torque and the stator 
flux is made using subtracting the stator flux and torque from the corresponding estimated values. The result is 
introduced to hysteresis comparators to generate the appropriate voltage vectors to control simultaneously the 
stator flux and the torque.
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The major inconvenience of this control strategy is high ripples in torque and flux due to the use of the hys-
teresis regulators for stator flux and electromagnetic torque  regulation15,42. The multilevel converters are used for 
minimizing the ripples but the efficiency is reduced due to the number of power  switches16. Several authors have 
used Space Vector Modulation (SWM)17, Sliding mode control (SMC)18, this technique is robust but the undesir-
able chattering effect is  appeared19. Many researchers used the artificial intelligence techniques to improve the 
controller performances, among them, (1) neural network, this control strategy requires a high-speed processor 
for  implementation20, (2) genetic  algorithm21.

The fuzzy control is robust, suitable for the nonlinear control strategy and it does not demand the knowledge 
of the exact model. It consists in using the fuzzy logic block instead of the hysteresis controllers and the switch-
ing selection table to reduce the flux and torque ripples. It is worth indicating that DTC based on FLC offers 
better  performance22, but it isn’t sufficient to maximize the efficiency of the engine, therefore an optimization 
technique is needed with the control loop.

In most of the previous studies, the authors choose a constant flux as reference  flux23–26, but this choice of 
reference doesn’t represent the optimum operating.

The high-performance efficient motor drives require fast and accurate speed response. On the other hand, 
the control can be non-optimal for some operations and hence, the efficiency of the drive system cannot be 
optimized. The use of variable flux reference during the operating of the system can achieve better performance.

Many authors proposed the search controller (SC) that minimizes the losses for the improvement of the 
efficiency of the engine at different load conditions such as  in27. This technique consists in measuring and mini-
mizing the input power by iterating the reference of d-axis current or the stator flux reference. However, this 
approach introduces torque ripples due to the oscillations present in the air gap flux and the implementation 
of this method is time consuming and computational resource intensive. Particle swarm optimization is also 
used to improve  efficiency28, but this technique can be trapped into a local minimum which leads to improperly 
chosen control  parameters29.

In this paper, a technique associated to FDTC to select the optimal flux by reducing the motor losses is 
proposed. This combination ensures the functioning using the optimal flux level at each operating point, which 
enhances the efficiency of the proposed PV water pumping system. Hence, it appears to be very convenient for 
PV water pumping applications.

Besides, a processor in the loop test is conducted as an experimental verification of the proposed method 
using STM32F4 board. The main advantages of this core are simplicity of implementation, low cost and no 
necessity to develop a complex  program30. Moreover, the FT232RL USB‐UART converter board is associated 
with STM32F4 to ensure an external communication interface in order to establish a virtual serial port on the 
computer (COM port). This method allows the transmission of data at a high baud rate.

The performance of the PVWPS using the proposed technique is compared with the PV system without 
losses minimization under different operating conditions. The obtained results show that the proposed PV 
water pumping system is better in terms of minimization of stator current and copper losses, optimizing flux 
and pumped water.

The rest of the paper is structured as follows: the modeling of the proposed system is given in “Modeling of 
PV system” section. In “Control strategies for the studied system” section, FDTC, the proposed control strategies 
and MPPT technique are detailed. The research results are discussed in “Simulation results” section. In “PIL test 
using STM32F4 discovery board” section, the processor in the loop test is presented. The conclusions of this 
paper are presented in “Conclusion” section.

Modeling of PV system
Figure 1 shows the system configuration for the proposed standalone PV water pumping system. The system 
is composed of an IM based centrifugal pump, a PV array, two power converters [boost converters and volt-
age source inverter (VSI)]. In this section, the modeling of the studied PV water pumping system is presented.

Photovoltaic cell. The single diode model of cell the solar photovoltaic cell is adopted in this work. The 
characteristic of PV cell is expressed  by31–33.
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Figure 1.  Description of the proposed system.
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DC-DC converter. To perform an adaptation, the boost converter is employed. The relation between input 
and output voltages of the DC-DC converter is given  by34:

DC–AC converter. The equations that characterize the behavior of the DC–AC converter are expressed 
 by35,41:

Induction motor. the mathematical model of the IM can be described in the reference frame (α,β) by the 
following  equations5,40:

and the electromagnetic torque developed:

where ls,lr : Stator and Rotor inductances, M: mutual inductance, Rs,Is : Stator resistance and stator current, Rr
,Ir : Rotor resistance and rotor current, φs , Vs : Stator flux and stator voltage, φr , Vr : Rotor flux and rotor voltage.

Pump. The load torque of the centrifugal pump which is in proportion to the square of the IM speed can be 
determined by:

Control strategies for the studied system
The control of the proposed water pumping system is divided into three different subsections. First section deals 
with the MPPT technique. The second part deals with the direct torque control based on fuzzy logic controller to 
drive the IM. Moreover, the third part describes a technique associated with DTC based on FLC, which allows 
determining the reference flux.

MPPT technique. In this work, Variable Step Size P&O technique is employed for tracking of maximum 
power point. It’s characterized by fast tracking and low oscillations (Fig. 2)37–39.

DTC based on fuzzy logic controller. The principal idea of the DTC is to directly command the flux and 
torque of the machine, but the use of the hysteresis regulators for electromagnetic torque and stator flux regula-
tion leads to high torque and flux ripples. Thus, a fuzzy technique is introduced to enhance the DTC method 
(Fig. 7), The FLC can develop the adequate inverter vector state.

The stator flux components can be expressed by:
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The estimated electromagnetic torque can be written as:

In addition, the stator flux angle and the amplitude are given by:

An FLC is generally composed of four main steps:

Fuzzification. During this step, the inputs are converted into fuzzy variables through membership functions 
(MFs) and linguistic terms.

For stator flux error. The three membership functions for the first input (εφ) are negative (N), positive (P) and 
zero (Z) as shown in Fig. 3.

For torque error. The five membership functions for the second input ( εTem) are negative large (NL) negative 
small (NS) zero (Z) positive small (PS) and positive large (PL) as shown in Fig. 4.

For the sector angle. The stator flux trajectory consists of 12 sectors in which the fuzzy sets are represented by 
isosceles triangular membership functions as shown in Fig. 5.

Fuzzy control rules. Table 1 groups 180 fuzzy rules which are determined using membership functions of the 
inputs to select the suitable switching state.

Inference. The inference method is performed using Mamdani’s technique. The factor of weighting for  ith rule 
( αi ) is given by:
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Figure 2.  flowchart of Variable step size P&O method.
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Figure 4.  The fuzzy membership functions of εTem.
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where µAi(eϕ),µBi(eT), µCi(θ) : flux, torque, and stator flux angle errors membership values.

Defuzzification. Figure  6 illustrates the obtained crisp values from the fuzzy values using the max method 
presented by Eq. (20).

Proposed loss minimization technique. By improving the motor efficiency, it is possible to increase the 
flow rate and then the daily water pumped amount (Fig. 7). The purpose of the following technique is to associate 
a strategy based on losses minimization with the Direct Torque Control method.

It is well known that the value of the flux is important for the efficiency of the motor. A high value of the flux 
leads to an increase in the iron losses as well as a magnetic saturation circuit. On contrary, a low flux level leads 
to high joule losses.

Consequently, the reduction of the losses in the IM is directly linked with the choice of the flux level.
The proposed approach is based on the modeling of the joule losses in the machine which are related to the 

current flow through the stator windings. It consists in adjusting the value of the rotor flux to an optimal which 
minimizes the motor losses to increase efficiency. The joule losses can be expressed as follows (the core losses 
are neglected):

(19)µ′Vi(V) = max (αi,µVi(V))

(20)µ′Vout(V) = max180i=1 max
(

µ′Vi(V)
)

(21)Pj = Pjstator + Pjrotor

(22)Pjstator = Rs

(

i2ds + i2qs

)

Table 1.  Fuzzy switching logic rule base.
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The total joule losses are given by:

A decrease in the current leads to a decrease in the joule losses. 
The electromagnetic torque Cem and the rotor flux φr are calculated in d–q coordinate system as:

From Eqs. (25–26–27), the joule losses are as follows:

(23)Pjrotor = Rr

(

i2dr + i2qr

)

(24)Pj = Rs

(

i2ds + i2qs

)

+ Rr

(

i2dr + i2qr

)

(25)Tem = p
M

Lr
φr iqs

(26)φr = Mids

Figure 7.  control scheme of PV water pumping system.
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The electromagnetic torque Cem and the rotor flux φr are calculated in reference (d,q) as:

By solving Eq. (30), we can find the optimal stator current which ensures both optimal rotor flux and minimal 
losses:

Therefore, the optimal stator current is expressed by:

where

Simulation results
Different simulations are conducted using MATLAB/Simulink software in order to evaluate the robustness and 
the performance of the proposed technique. The studied system is composed of eight CSUN 235-60P panels 
of 230 W (Table 2) connected in series. The centrifugal pump is driven by an IM which is characterized by the 
parameters presented in Table 3. The components of PV pumping system are listed in Table 4.

(27)Pjoule = Rsi
2
ds +

(

(Rr

(

M

Lr

)2

+ Rs

)

(

Tem
Lr

Mpφr

)2

(28)Tem = p
M

Lr
φr iqs

(29)φr = Mids

(30)
dPjoule

dids
= 0

(31)Idsopt = Kopt i
∗
qs

(32)Kopt =

√

1+

(

M

Lr

)2 Rr

Rs

Table 2.  Csun 235-60p PV panel characteristics.

Maximum power 235 W

Open circuit voltage 36.8 V

Short circuit current 8.59 A

Maximum power voltage 29.5 V

Maximum power current Pmax 7.97 A

Table 3.  Induction machine characteristics.

Rs,Rr 4.85 (Ω), 3.805 (Ω)

ls,lr 0.274 [H], 0.274 [H]

Nominal power 1.5 (KW)

P 2

Inertia moment 0.031 (kg  m2)

Viscous friction 0.00114 (N m s/rad)

Table 4.  The used parameters of the PVWPS.

Parameter Value

V∗
dc 400 V

Cdc 2000 μF

α 0.26

Lpv 3 mH
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Figure 8.  (a) Solar radiation (b) Extracted power (c) Duty cycle (d) DC link voltage (e) Rotor speed (f) 
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In this section, the PV water pumping system using FDTC with constant flux reference is compared with the 
proposed system based on the optimal flux (FDTCO) in the same operating conditions. The performances of 
both PV systems are tested by considering the following cases:

Starting performance of the proposed system. This section presents the starting up state of the pro-
posed pumping system according to insolation of 1000 W/m2. Figure 8e illustrates the response of electric speed. 
The proposed technique provides a better rise time compared to FDTC, where the steady state is reached at 
1.04 s while that with the FDTC, the steady state is reached at 1.93 s. Figure 8f shows the pumped water for both 
control strategies. It’s seen that, the FDTCO increases the pumped water, which explains the improvement of 
the energy converted by the IM. Figures 8g and 8h indicate the absorbed stator currents. The starting current 
is 20 A using the FDTC while the proposed control strategy indicates a starting current of 10 A, which leads in 
reducing the joule losses. Figures 8i and 8j show the developed stator flux. The PVPWS based on FDTC operates 
under a constant reference flux of 1.2 Wb while in the proposed method, the reference flux is 1A which involves 
improving the efficiency of PV systems.

Variable solar irradiation. Solar radiation varies from 1000 to 700 W/m2 at 3 s, then to 500 W/m2 at 6 s 
(Fig. 8a). Figure 8b shows the PV power corresponding to 1000 W/m2, 700 W/m2 and 500 W/m2. Figures 8c and 
8d illustrate the duty cycle and DC link voltage respectively. Figure 8e illustrates the electric speed of IM, we can 
notice that the proposed technique presents better speed and response time compared to the PV system based 
on FDTC. Figure 8f shows the volume of pumped water obtained using FDTC and FDTCO for various levels 
of irradiance. Using the FDTCO, it is possible to obtain a higher amount of pumped water than using FDTC. 
Figures 8g and 8h illustrate the simulated current response, with the FDTC method and the proposed control 
strategy. By using the suggested control technique, the current amplitude is minimized which implies the reduc-
tion of copper losses, which improves the system efficiency. Thus, a high stating current can cause a deterioration 
of the machine performance. Figure 8j presents the variation of developed flux responses in order to choose the 
optimum flux ensuring the minimization of the losses, thus, the suggested technique illustrates its performance. 
Contrary to Fig. 8i, the flux is constant which is not representing an optimal operation. Figures 8k and 8l indi-
cate the evolution of the stator flux trajectory. Figure 8l illustrates the optimal flux development and explains the 
principal idea of the proposed control strategy.

Sudden change in solar radiation. A sudden change in solar radiation is applied, where the irradiance 
is 1000 W/m2 at the beginning, after 1.5 s, is decreased suddenly to 500 W/m2 (Fig. 9a). Figure 9b shows the 
extracted PV power from the PV panel corresponding to 1000 W/m2 and 500 W/m2. Figures 9c and 9d illustrate 
the duty cycle and DC link voltage respectively. From Fig. 9e, the proposed method offers a better response time. 
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Figure 9.  (a) Solar radiation (b) Extracted power (c) Duty cycle (d) DC link voltage (e) Rotor speed (f) water 
Flow (g) Stator phase current of FDTC (h) Stator phase current of FDTCO (i) Flux response using FLC (j) Flux 
response using FDTCO (k) Stator flux trajectory using FDTC (l) Stator flux trajectory using FDTCO.
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Figure 9.  (continued)

Table 5.  Comparative results between FDTC and FDTCO.

Irradiation (W/m2)

Performance

FDTC FDTCO

Current (A) Flux (Wb) Water flow rate  (m3/s) Current (A) Flux (Wb) Water flow rate  (m3/s)

1000 7.764 1.2 0.009 6.15 1 0.01

700 7.27 1.2 0.0087 5.94 0.9 0.0089

500 6.7 1.2 0.0077 5.8 0.83 0.0079

Open 
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Choose the 
hardware 
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 target
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Figure 10.  Steps to parameterize PIL test using STM32F407 MCU.
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Figure 9f shows the pumped water volume obtained for both control strategies. Using the FDTCO, the amount 
of pumped water is higher than using FDTC, where the pumped volume water is 0.01 m3/s when the irradiance 
is 1000 W/m2 while, the pumped volume water is 0.009  m3/s for FDTC; moreover, the pumped volume water is 
0.0079  m3/s for FDTCO when the irradiance is 500 W/m2, while the pumped volume water is 0.0077  m3/s for 
FDTC. Figures 9g and 9h. illustrate the simulated current response using the FDTC method and the suggested 
control strategy. We can notice that the proposed control strategy indicates a reduction in current amplitude 
under sudden irradiance variations, which leads in reducing the copper losses. Figure 9j presents the variation of 
developed flux responses in order to choose the optimum flux ensuring the minimization of the losses, thus, the 
proposed technique illustrates its performance, where the flux is 1Wb where the irradiance is 1000 W/m2 while, 
the flux is 0.83Wb where the irradiance is 500 W/m2. Contrary to Fig. 9i, the flux is constant of 1.2 Wb which 
does not represent an optimal functioning. Figures 9k and 9l indicate the evolution of the stator flux trajectory. 
Figure 9l illustrates the optimal flux development and explains the principal idea of the proposed control strat-
egy and the improvement of the proposed water pumping system.

The comparative analysis of both techniques in terms of flux value, current amplitude and pumped water 
are presented in Table 5, which illustrates that PVWPS based on the proposed technique provides high perfor-
mances with increasing pumped water flow, minimizing the amplitude current and losses, owing to the optimal 
flux choice.

PIL test using STM32F4 discovery board
In order to validate and test the proposed control strategy, the PIL test based on the STM32F4 board is effectuated. 
It consists in generating the code that will be loaded and run on an embedded board. This board contains a 32-bit 
microcontroller with 1 Mbyte flash memory, clock frequency of 168 MHz, floating point unit, DSP instructions, 
192 Kbytes SRAM. During this test, a developed PIL block is created in the control system incorporating the 
generated code based on the STM32F4 discovery hardware board and introduced on Simulink software. The 
steps allowing to configure the PIL test using STM32F4 board are illustrated in Fig. 10.

The co-simulation PIL test using STM32F4 can be utilized as a low-cost technique to validate the pro-
posed technique. In this paper, the optimization block which provides the optimal reference flux is executed in 
the STMicroelectronics Discovery board (STM32F4).

This latter and Simulink and are executed at the similar period and exchanged the information using of 
proposed method for PVWPS in the co-simulation process. Figure 12 illustrates the implementation of the 
optimization technique subsystem in STM32F4.

Only the proposed technique of the optimal reference flux has been displayed in this co-simulation because 
it is the main control variable of this work that demonstrates the PV water pumping system control behavior.

Figure 11a,b show the PIL test results for the proposed method under Variable and sudden change in solar 
radiation. The numerical simulation results indicate a similar behavior to those obtained through PIL co-sim-
ulation test, showing that the proposed control strategy is powerful (Fig. 12). Consequently, the co-simulation 
PIL process can be utilized as an experimental setup to validate the hardware implementation of various control 
strategies.

Conclusion
An improved DTC strategy for PVPWS applications is presented here. The proposed technique is based on FLC 
which aims to operate the motor at the optimal value of flux. The simulation has been carried out in Matlab/
Simulink to evaluate the performance of the proposed control strategy and compared to FDTC with constant 
flux reference under different operating conditions. A co-simulation PIL validation based on STM32F4 board 
has been carried out. Numerical simulation results indicate a similar behavior to those obtained through the PIL 
co-simulation test, which can be employed as a great implement, experimental setup and low-cost technique to 
evaluate the control strategies.
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Figure 11.  PIL test results for flux response.
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According to the obtained results, the main improvements are:

• The stator current is reduced, consequently the motor losses are minimized.
• The optimizing of the rotor flux
• The pumped water is increased under different operating conditions
• The efficiency of the proposed PV water pumping system is improved.
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Figure 12.  PIL test of the optimal reference flux block using STM32F4 board.
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