
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8883  | https://doi.org/10.1038/s41598-022-08233-w

www.nature.com/scientificreports

Cross‑reactive immunity 
potentially drives global oscillation 
and opposed alternation patterns 
of seasonal influenza A viruses
Lorenzo Gatti1,2,3, Mischa H. Koenen4, Jitao David Zhang5, Maria Anisimova1,3, 
Lilly M. Verhagen4, Martin Schutten6, Ab Osterhaus7,8 & Erhard van der Vries6,7,9,10,11*

Several human pathogens exhibit distinct patterns of seasonality and circulate as pairs. For instance, 
influenza A virus subtypes oscillate and peak during winter seasons of the world’s temperate climate 
zones. Alternation of dominant strains in successive influenza seasons makes epidemic forecasting 
a major challenge. From the start of the 2009 influenza pandemic we enrolled influenza A virus 
infected patients (n = 2980) in a global prospective clinical study. Complete hemagglutinin sequences 
were obtained from 1078 A/H1N1 and 1033 A/H3N2 viruses. We used phylodynamics to construct 
high resolution spatio‑temporal phylogenetic hemagglutinin trees and estimated global influenza A 
effective reproductive numbers (R) over time (2009–2013). We demonstrate that R oscillates around 
R = 1 with a clear opposed alternation pattern between phases of the A/H1N1 and A/H3N2 subtypes. 
Moreover, we find a similar alternation pattern for the number of global viral spread between the 
sampled geographical locations. Both observations suggest a between‑strain competition for 
susceptible hosts on a global level. Extrinsic factors that affect person‑to‑person transmission are 
a major driver of influenza seasonality. The data presented here indicate that cross‑reactive host 
immunity is also a key intrinsic driver of influenza seasonality, which determines the influenza A virus 
strain at the onset of each epidemic season.

Several human respiratory viruses circulate as groups of discrete pathogenic entities exhibiting distinct patterns 
of  seasonality1,2. For influenza virus such patterns have been studied  extensively3–5. In the world’s temperate cli-
mate zones influenza activity oscillates and synchronizes with winter periods, while in tropical regions activity 
appears to be year-around or split into different  seasons4. They have been attributed largely to ‘extrinsic’ factors 
driving efficient virus  spread6, like air humidity  variations7, seasonal influences on host  susceptibility8, and soci-
etal structure and behavioural  patterns9. However, several other mechanisms focussed on host and population 
immunity have been proposed that explain the seasonality of viruses. Firstly, during an epidemic or pandemic 
season the viral spread of a specific viral subtype will increase up to a point when herd immunity will prevent 
further transmission. The loss of specific immunity within a population can lead to a large peak of infections, as 
was seen for respiratory syncytial virus (RSV) in children after an almost absent RSV-season due to the restric-
tions of the COVID19-pandemic10,11. Apart from subtype specific immunity, Susceptible–Infection–Recovery 
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epidemiological modelling predicted that also cross-reactive immunity plays a role in seasonality of viruses. These 
models postulate that the presence of a short-term cross-reactive host immune-phenomenon could explain a 
temporary reduction in host susceptibility to other viruses and cause seasonal infection patterns at a population 
 level12,13. Thirdly, in recent years mathematical simulations that mimic virus dynamics suggest the existence of 
virus-virus interactions. These interactions show that the rise in incidence of infections caused by one virus 
directly influences the amount of other virus infections at both population as well as individual host level. This 
phenomenon was also found in clinical cohort where they found that the presence of rhinovirus interfered with 
the presence of Influenza A virus in  patients14,15. This direct interaction between viruses caused one virus to 
block the other and thereby affect the seasonality of viruses.

All of these ‘intrinsic’ factors may also be attributed to other aspects of influenza epidemiology, like the 
replacement of a seasonal strain by a pandemic virus. This occurred for the last time during the 2009 influenza 
pandemic when the seasonal A/H1N1 was replaced by the pandemic A/H1N1 virus. Interestingly, like the other 
known pandemics this virus did not spread in winter, but during the 2009 northern hemisphere  summer16.

To date, the newly introduced pandemic 2009 A/H1N1 virus continues to co-circulate with the A/H3N2 
subtype causing seasonal epidemics in humans. Both influenza A viruses are under intense selective pressure by 
the host immune system and they continuously evolve to persist in humans. Viruses escape from pre-existing 
immunity through mutation at antigenic sites at the globular head of the hemagglutinin (HA). This is a major 
virus surface glycoprotein and primary target of host neutralizing antibodies. Continual viral presence in the 
population on the other hand results in a ‘landscape of immunity’12, which new ‘antigenic drift’ viruses need to 
overcome to fuel new epidemics. A typical phylogenetic tree of HA is shaped, as a result of this cat-and-mouse 
game, into a single trunk tree with short-lived  branches17 (Fig. 1).

Virus strains that are antigenically similar cluster along the trunk of the tree with only a limited number of 
amino acid positions involved in the jump from an existing into a new antigenic  cluster18. These positions were 
previously identified with data obtained from the hemagglutination inhibition assay, a serological test to assess 
neutralizing antibody responses to HA.

Besides these long-lived and predominantly strain-specific antibody-mediated immune responses, a shorter-
lived, non-specific component has been proposed in particular to explain the limited virus genealogical diversity 
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Figure 1.  Spatio-temporal resolved phylogenies reveal intrinsic evolutionary influenza dynamics. Influenza 
hemagglutinin tree inferred by birth–death skyline phylodynamic modelling using 1078 (A/H1N1) (A) and 
1033 (A/H3N2) (B) complete gene sequences. Distribution of average trunk-to-tips branch lengths of A/H1N1 
(C) and A/H3N2 (D) phylogenetic trees.
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(single trunk) and lifespan (short-lived branches) of the vast majority of circulating dead-end virus  lineages12. 
Evidence for such component has first come from in vitro and animal studies showing that pre-infection with one 
subtype induces partial cross-protection from infection with another  subtype19. Observational studies address-
ing the potential role of cross-reactive immunity in global influenza seasonality has so far failed to show a clear 
 pattern20,21. However, recent and marked observations to support a major role of cross-immunity were related to 
the fast disappearance of the A/H1N1 subtype from 1977, shortly after the introduction of the pandemic influenza 
A/H1N1 virus in 2009, while the A/H3N2 subtype managed to continue its  circulation13. Another example was 
seen in the winter of 2018–2019 where in a matter of weeks A/H1N1 dominance was almost completely replaced 
by A/H3N2  dominance22.

Results
In search for the existence of such component we first followed a phylodynamic approach to jointly resolve 
spatio-temporal phylogenetic HA trees of A/H1N1 and A/H3N2 subtypes and to infer underlying host popula-
tion  dynamics23,24 (Fig. 1; Tables S1 and S2). The dataset used here had been collected globally during the first 
5 years after the onset of the 2009 influenza pandemic. It enrolled patients year-around (> 1 year of age), the 
vast majority (> 97%) with uncomplicated and PCR-confirmed influenza, who had been admitted—within 48 h 
after symptom onset—to primary care centres and hospitals in Asia (Hong Kong; n = 6), Europe (n = 37), the US 
(n = 36) and the Pacific (Australia; n = 8) (Fig. S1). From these samples 2111 influenza A viruses were isolated, 
which allowed us to obtain complete HA sequences from 1078 A/H1N1 and 1033 A/H3N2 viruses. The extent 
of sampling, directly after the pandemic outbreak, in combination with an unprecedented resolution regarding 
quality-controlled Sanger sequencing, resulted in a high-resolution dataset. This offered us an unique window 
of opportunity to study the dynamics of the estimated effective reproductive number R over time (R-skylines). 
R is a parameter of host  immunity25, and is computed here as the rate at which an infected individual gives rise 
to a new infection in a defined period of time.

We observed that R-skylines estimated from the A/H1N1 and A/H3N2 trees showed alternate phases of 
increasing and declining R, with R < 1 and R > 1 respectively (Fig. 3). There was a significant negative correlation 
between phases (Pearson’s ρ = − 0.511, P = 3.0e−07; D = 0.202, P = 0.052) with an average endogenous oscilla-
tion period estimated to be approximately 1.67 ± 0.01 years for A/H1N1 and 1.13 ± 0.02 years for A/H3N26 as 
computer by periodograms (Fig. S4). Of note, these periods were similar to the average lifespan of the dead-end 
virus lineages on the HA trees (1.7 ± 0.4 for A/H1N1 and 2.2 ± 0.5 for A/H3N2) (Fig. 1).

Given the finite nature of susceptible hosts, virus persistence relies on the availability of new susceptible ones, 
which forces viruses to migrate between geographical  locations26. The interplay between antigenic drift and pre-
existing immunity may then determine the outcome of the competition between these viruses at the onset of 
each influenza  season27. As the observed pattern of R-skylines indicates that a relatively short-lived cross-reactive 
immunity component drives subtype competition at the host scale, we wondered whether this competition also 
could determine the dynamics of global viral spread.

To build on existing global viral spread data and to study its patterns for the A/H1N1 virus after 2009 
we expanded our dataset with complete HA sequences deposited in the IRD from viruses isolated prior to 
(2008–2009) and after (2013–2015) our study period (Dataset S1). We then inferred the number of geographi-
cal location changes at each internal node of these trees to identify all virus movements from one geographical 
location (source) to another location (sink). Again, and similar to the R-skylines, influenza A/H1N1 and A/
H3N2 viral spread alternated globally within our study period (Fig. 4). Global influenza A/H1N1 viral spread 
dominated in the first half of the study period, while A/H3N2 viral spread were more prevalent between 2012 
and 2013. The observation of oscillation between influenza A/H1N1 and influenza A/H3N2 throughout the 
study period supports the evidence that inter-subtype competition presented here exists on both the population 
and individual host level, contributes to influenza seasonality and may determine the virus subtype that will 
dominate in a given influenza season.

Finally, previous work on global circulation had shown that East and South-East Asia (E-SEA) played a pivotal 
role in global dissemination of A/H3N2 viruses. Here, A/H3N2 virus activity was found year-round (between 
2000 and 2012), from where new antigenic drift variants fuelled in the temperate climate zone  epidemics9. In 
contrast, E-SEA did not seem to have a major role in the dissemination of pre-pandemic A/H1N1  viruses9. To 
study global virus spread after 2009 we constructed the networks of viral spread trajectories between the sam-
pled geographical locations using measures of connectivity (Fig. S2) in a one-year time window (Figs. 2 and 4) 
and found that, in contrast to the pre-pandemic  period9, E-SEA was equally important for the dissemination of 
both influenza A viruses. Within our dataset we examined the distribution of migration events between differ-
ent locations and counted the amount of location switches on the tree. We counted 56 A/H1N1 and 58 A/H3N2 
dissemination events from E-SEA to the other sampled regions in the world (Fig. S3). In addition, global viral 
spread patterns showed a similar degree of global network complexity (Fig. S2, max. graph density/diameter of 
1.08/12.09 for A/H1N1 and 1.16/10.64 for A/H3N2) and similar patterns of virus circulation across the sampled 
geographic regions (Fig. S2, max. number of islands and graph reciprocity of 2 and 0.75 for A/H1N1 and 2 and 
0.86 for A/H3N2).

Discussion
Extrinsic factors probably play a role in forcing influenza epidemics into the winter seasons in the global tem-
perate climate  zones3–5,7. The oscillating and alternating pattern of the global skylines of R we present here are 
consistent with the notion that cross-reactive host immunity is an important intrinsic driver of influenza seasonal 
patterns (Fig. 3).
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Global influenza dissemination dynamics also reveals alternation of global virus spread and complexity of 
viral spread trajectories between subtypes with two phases (Figs. 2 and 4). In the first phase (2009–2011) we 
observe that these parameters are high for the A/H1N1 and low for the A/H3N2 subtype (Figs. 2 and 4). This 
pattern is reversed during the second phase (2011–2013). These parameters are indicators of virus persistence 
and depend, therefore, on the availability of susceptible hosts within a defined geographical  location26. This 
implies that an intrinsic correlation exists between change of cross-reactive host immunity landscapes and global 
viral spread. In the Netherlands patterns and duration for influenza epidemic periods similar to our results were 
previously found by were previously found. Additionally, statistical regression techniques showed that depletion 
of susceptible hosts was the most important factor in determining transmission of influenza virus during these 
 epidemic28 as well as in seasonal corona  outbreaks29. Seasonal patterns are also described between influenza virus 
and other respiratory viruses. In mathematical models that studied the co-circulation of seasonal influenza A 
virus and non-influenza respiratory viruses, a short-term protection of one virus on the other induced seasonal 
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0.9

1.0

1.1

2009 2010 2011 2012 2013

Ef
fe

ct
iv

e 
re

pr
od

uc
tiv

e 
nu

m
be

r (
R

e)

Figure 3.  Oscillation of reproductive number R-skylines estimated from influenza A virus phylogenies 
with opposed alternation of phases between subtypes. Time-series (2009–2013) for influenza A/H1N1 (blue, 
n = 1078) and A/H3N2 (red, n = 1033) viruses. Pre-pandemic period is indicated with dashed lines. Shaded 
regions represent 95% Highest Posterior Density interval.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8883  | https://doi.org/10.1038/s41598-022-08233-w

www.nature.com/scientificreports/

 patterns15,21. Furthermore, in a clinical study, the presence of rhinovirus protected patients against infection with 
influenza A  virus14. Taking into account the strong cross-reactive immune responses previously observed between 
the seasonal and pandemic A/H1N1 virus subtypes, cross-reactive immunity may well have forced the 2009 pan-
demic into the northern hemisphere summer and mitigated the disease burden associated with this  virus16,30,31.

A great deal of the current understandings about influenza antigenic drift is based on data generated by the 
hemagglutination inhibition serological test. This assay is largely dependent on serum immunoglobulin G (IgG) 
 content32, but it does not account for other immunity components of the immune system. The observed short 
endogenous oscillation periods observed (1.7 years for A/H1N and 1.1 years for A/H3N2) suggest that this is 
most likely the result of short-lived inter-subtypic immune responses rather than systemic antibody-mediated 
immunity from which major antigenic drift variants arise every few years (Fig. 3 and Fig. S4)9,12,18. T-cells have 
been suggested as key players in mediating inter-subtypic immunity through several mechanisms, including 
direct cytolytic activity and interactions with B  cells30,31. Inter-subtypic short-lasting immune responses likely also 
exist for other viruses. Seasonal coronaviruses induce a short-lasting immunity of 12 months in  individuals29,33. 
Furthermore, SARS-CoV-2 reactive CD4+ T cells were found in healthy SARS-CoV-2 seronegative individu-
als, most likely due to cross-reactive T cells that stemmed from previous infections with endemic seasonal 
 coronaviruses34.

Finally, secretory immunoglobulin A (IgA), the most abundant antibody isotype, is an interesting candidate 
meeting all criteria: IgA mediated-immunity is relatively short-lived35, is (partially) cross-reactive36, and thought 
to be the main driver of upper respiratory tract mucosal immunity against  influenza37. Moreover, intramuscular 
administration of IgA, and not IgG, prevented airborne virus transmission in the ferret and guinea pig  model32, 
indicating that cross-reactive IgA levels may directly impact person-to-person spread of the  virus38. Cross-
reactive immunity to different influenza subtypes can be the result of antibodies that are able to bind to the highly 
conserved stalk of the HA protein. These antibodies get produced most upon sequential exposition to diverse 
HA  subtypes39 and in this, IgA has a more potent neutralizing effect against influenza than  IgG40. Further studies 
elucidating the contribution of host immunity to seasonality of influenza and other multi-strain viruses, such 
as the coronavirus, paramyxoviruses, respiratory syncytial virus and human metapneumovirus are  warranted41. 
This would further support the establishment and exploitation of global virus and bio-banks42, which will lead 
to a better understanding of the contribution of host immunity landscapes to the dynamic epidemiological 
circulation patterns of (multi-strain) pathogens.

Methods and materials
Study conduct. IRIS (NCT00884117) is a prospective, multicentre, global observational study offering 
unprecedented resolution with regard to quality-controlled Sanger  sequencing43,44. This report summarizes the 
results from 87 centers in, Australia (n = 8), China (Hong Kong, n = 6), Europe (n = 37; France, Germany, Nor-
way) and the United States (n = 36) from December 2008 to March 2013, comprising five Northern and four 
Southern Hemisphere seasons, and including the 2009–2010 pandemic. Centers were selected to achieve the 
widest geographic coverage possible within each country (Fig. S1).

Patient selection. Adults and children aged ≥ 1  year were included year-round (n = 2980; excluding 21 
patients (1%) with mixed influenza A and B virus infections) in the study if they were influenza-positive by 
rapid test (QuickVue Influenza A + B Test; Quidel Corp) at presentation and/or had predefined clinical signs 
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Figure 4.  Opposed alternation of influenza A virus viral spread events. Total number of viral spread events 
between different geographical locations of influenza A/H1N1 (blue, n = 190) and A/H3N2 (red, n = 146) viruses 
were pooled by 1-year intervals from the start of the 2009 pandemic. Viral spread counts were performed by 
traversing the fully-spatiotemporal-resolved phylogenetic trees in post-order.
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and symptoms of influenza for ≤ 48 h for hospitalized patients (no time limit for hospitalized children). The vast 
majority (> 97%) had uncomplicated influenza.

Ethics approval. The study was performed in compliance with the principles of the Declaration of Helsinki 
and its amendments, and in accordance with Good Clinical Practice. Independent ethics committees and insti-
tutional review boards at each centre approved the study protocol and amendments. All patients or legal guard-
ians provided written informed consent at the time of enrollment.

Virus identification. Throat and posterior nasal swab specimens were obtained on day 1, 3, 6 and 10 and 
shipped on dry ice to a central laboratory for analysis (Erasmus MC, Rotterdam, The Netherlands). Influenza 
A subtypes were identified using semi-quantitative real-time reverse transcription polymerase chain reaction 
(RT-PCR)45. Day 1 samples with cycle threshold (Ct) values of < 32 were cultured on Madin–Darby canine kid-
ney cells. Virus-containing supernatants were cleared from cell debris by centrifugation (10  min at 1000×g) 
and stored at − 80 °C until further processing. For this study, A/H1N1 (n = 1078) and A/H3N2 (n = 1033) virus 
isolates were included, which were obtained upon patient admission (day 1).

Datasets and nucleotide sequence accession numbers. Sanger sequencing of hemagglutinin 
(HA) genes was done for all isolated viruses. Complete HA sequences were obtained from influenza A/H3N2 
(n = 1033) and A/H1N1 (n = 1078) subtypes. These sequences and metafile data are provided in the Supplemen-
tary Information. To build on existing data on global influenza viral spread we expanded the IRIS dataset with 
all available complete HA and Neuraminidase sequences from the NIAID Influenza Research Database (IRD) 
collected between 2008–2009 and 2013–2015 in countries included in the IRIS  study46. Numbers of additional 
HA sequences were 443 for A/H1N1 and 462 for A/H3N2 respectively. The complete list of IRD sequences is 
provided (Dataset S1).

Data pre‑processing and alignments. Each expanded dataset was aligned using ProGraphMSA using 
default  parameters47. Sequences were renamed to include sampled geographical locations, sampling dates (con-
tinuous values) and corresponding influenza season (when available).

Phylodynamics inference. The birth death serial skyline (BDSKY) phylodynamics model implemented in 
BEAST v.2.3.1 was applied to the IRIS and expanded datasets to infer spatio-temporal resolved phylogenies and 
epidemiological  parameters23,26,48. Phylogenetic trees were estimated under the general-time-reversible model 
(GTR+) with Γ-distribution to model among-site rate  variation49 (Fig. 1). A molecular clock rate prior was set 
to follow an uncorrelated log-normal  distribution50. Internal node calibration was performed using tip sam-
pling  dates51. The BDSKY-model was set with the following parameter: the sampling rate prior for the influenza 
infected population/the real sampled population followed a Beta (1, 999) distribution; the prior probability of 
sampling an individual upon becoming non-infectious followed a LogNorm (4.5, 1.0) distribution. In addition, 
tree dating was performed using tip dates while an uncorrelated log-normal clock rate prior was applied to han-
dle uncertainties in the sample collection dates. Finally, the analysis was run long enough to obtain a sufficient 
effective sample size ESS > 200 for all parameters. The converged parameters of the BDSKY-model are listed in 
Supporting Information Tables S1 and S2. To assess global model robustness, we performed two independent 
runs of each analysis (for a total of 20 runs). Markov chain Monte Carlo (MCMC) parameter convergences 
were diagnosed with Tracer 1.6. Thinning of BEAST2 output files (tree files and parameter files) was done using 
in-house bash scripts. After accurate MCMC trace monitoring, the first 10% of MCMC steps were discarded as 
burn-in resulting in around 6000 trees per each dataset. TreeAnnotator v2.3.1 was used to produce Maximum 
Clade Credibility (MCC)  trees23.

Statistical analyses effective reproductive number. We estimated the effective reproductive number 
R using phylodynamics modelling as described above. The estimates of R allowed us to study the dynamics of 
virus spread within the  population52. Values R < 1 indicate a decline of infections, while R > 1 indicates that the 
infection has increased its spreading in a more susceptible population. The skyline of R is used here to picture 
the underlying dynamics ‘shaping’ a phylogenetic  tree23,24,26. The univariate distributions of R values, estimated 
with independent sampling frequency from each dataset, were grouped and smoothed via interpolation to com-
pensate for intermediate missing values. First, Wald–Wolfowiz, and Bartel Rank non-randomness tests were 
applied on each R median time-series as well as its permuted  version53. The same test was then applied on the 
pairwise intersection of R median time-series, and the statistical support was evaluated by re-computing the test 
on permuted R median time-series. Secondly, the pairwise maximum difference between R median time-series 
was computed applying the Kolmogorov–Smirnov test (KS-test). The two-sample KS-test was used to compare 
the cumulative distributions of two data  sets54. The KS-test reports the maximum difference between two cumu-
lative distributions (D) and it returns a P computing the KS statistics from all the possible permutation of the 
original data. The significance level was set at 0.001, so that two distinct R median time-series were considered to 
be drawn from different distributions when D ≥ 0.45. Next, the pairwise-correlation between R median estimates 
was evaluated by the Pearson’s product moment correlation coefficient ( ρ ). Pearson’s product moment correla-
tion coefficient ( ρ ) was tested using the Fisher’s Z transform with 95% confidence interval and significance level 
set at 0.00555. Exploratory analyses on the R median time-series were applied to qualitatively identify oscillation 
periods and amplitude. The oscillation period of each R median time-series was then computed from the high-
est frequency value shown by the smoothed periodogram using the IRIS dataset. Statistical uncertainty on the 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8883  | https://doi.org/10.1038/s41598-022-08233-w

www.nature.com/scientificreports/

inferred period was assessed from cumulative periodograms computed on 100 permutations of the original R 
median time-series. Finally, the overlap of HPD intervals of the pairwise R was computed for each R median 
time-series. The obtained value was then compared with the overlap of the HPD interval of R obtained with 100 
permutations of the true HPD intervals.

Viral spread routes and evolutionary rates. Datasets were partitioned according to the geographical 
sampling locations pooled by continent (North America, Europe, Asia, Pacific area). Viral spread rates were 
estimated using a discrete phylogeographic trait model with the Γ-distribution as substitution rate prior between 
geographical  demes56. The influenza virus dissemination process was fitted to a discrete trait model using the 
Bayesian Stochastic Search Variable Selection method, by inferring the most parsimonious description of the 
phylogeographic diffusion  process57–60. Counts of viral spread events were quantified by traversing the fully 
spatio-temporal resolved phylogenetic trees in post-order and by counting the number of most probable Markov 
chain jumps along the branches of the posterior set of  trees61,62.

Branch geographical persistence. Geographical persistence was quantified by summing the phyloge-
netic branch lengths (measured in expected substitutions per site) grouped by their inferred geographical loca-
tion on the phylogenetic tree trunk (inferred traversing the phylogenetic tree from ‘leaf-to-root’ and summing 
the number of branch traversals. The tree trunk was defined as the path on the phylogenetic tree that has been 
traversed more than 10 times. Number of seeding events was defined as the number of switches on the phyloge-
netic tree trunk per season.

Viral spread graphs. Trajectory networks were reconstructed per each strain variant, pooling viral spread 
events occurred within a one-year time window (Fig. 2). Trajectory complexity was computed estimating graph 
density, number of islands (nodes), diameter, and  reciprocity63,64. In addition, geographical location connections 
were estimated by computing the graph centrality measures (specifically: degree centrality and betweenness 
centrality) (Figs. S2 and S3)65–67. The Quade and correspondent post-hoc procedures were applied to test whether 
viral spread trends were significantly different between strains and whether preferred viral spread trajectories 
were  selected68. The significance level was set at 5%.

Data availability
Full-length HA sequences obtained as part of the IRIS study have been deposited in Genbank with the primary 
accession codes mentioned above. All other HA sequences downloaded for this study are listed in the Supportive 
information.

Code availability
All source codes and BEAST .xml files are available on GitHub (http:// www. github. com/ gattil/ IRIS- Influ enza- 
Dynam ics).
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