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Looking beyond community 
structure leads to the discovery 
of dynamical communities 
in weighted networks
Chad Nathe1, Lucia Valentina Gambuzza2, Mattia Frasca2 & Francesco Sorrentino1*

A fundamental question is whether groups of nodes of a complex network can possibly display 
long-term cluster-synchronized behavior. While this question has been addressed for the restricted 
classes of unweighted and labeled graphs, it remains an open problem for the more general class 
of weighted networks. The emergence of coordinated motion of nodes in natural and technological 
networks is directly related to the network structure through the concept of an equitable partition, 
which determines which nodes can show long-term synchronized behavior and which nodes cannot. 
We provide a method to detect the presence of nearly equitable partitions in weighted networks, 
based on minimal information about the network structure. With this approach we are able to discover 
the presence of dynamical communities in both synthetic and real technological, biological, and 
social networks, to a statistically significant level. We show that our approach based on dynamical 
communities is better at predicting the emergence of synchronized behavior than existing methods to 
detect community structure.

The study of symmetries has led to an understanding of many important problems in physics, including the for-
mulation of the standard model and general relativity1–4, chemistry5, and biology6, as symmetries are widespread 
in the natural world. Symmetries have also been found to affect the structure of many biological, technologi-
cal, and social systems described as networks2,7–15. However, for the most part, the existing literature has only 
focused on unweighted networks. Given that most real networks are weighted and that the edge weights provide 
key information to understanding the network structure and dynamics16–19, it becomes important to define and 
characterize ‘approximate symmetries’ and thus ‘approximate clusters’ in weighted networks. In this paper we 
first introduce the concept of approximate clusters and then look for the presence of these approximate clusters in 
real network datasets. Being able to find these approximate clusters is important because these will be the clusters 
of nodes that in a weighted network can produce approximate cluster synchronization20 or approximately equal 
time-averaged dynamics21. We thus call these clusters ‘dynamical communities’, as opposed to fixed communities 
corresponding to the network community structure22, where a community is defined as a set of nodes that are 
densely connected with one another but sparsely connected with other communities.

In the case of exact symmetries, the set of network nodes is partitioned into disjoint sets of clusters, with all 
nodes that are symmetric to one another forming a cluster. It has been found that these clusters are linked with the 
ability of networks to cluster-synchronize12,13 and to achieve similar time-averaged dynamics21. A generalization 
is that of equitable clusters that characterize synchronization for nodes that are not necessarily related by symme-
tries but receive the same total amounts of inputs from their neighboring nodes in different clusters14,23,24. Similar 
to symmetric nodes, nodes in the same equitable clusters are also associated by an equivalence relation and 
coordinated motion of clusters of nodes is only possible when the clusters form an equitable partition2,7,8,10,15,23. 
It has also been shown that approximate cluster-synchronization can be observed when the network structure 
possesses approximate symmetries20. While there are a number of tools to detect approximate symmetries from 
different disciplines11,25–27, the problem of identifying clusters of nodes in weighted networks where each cluster 
is formed of almost equivalent nodes has not received much attention. An inherent difficulty is due to the fact 
that the definition of an approximate symmetry will lead to loss of the transitive property, i.e, two pairs of nodes, 
i and j and j and h, may be approximately symmetric, without nodes i and h being approximately symmetric. 
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In other words, the set of approximate symmetries with the composition operation is not closed, thus they do 
not form a group. This fundamental challenge motivated us to follow an alternative approach, where instead of 
looking for approximate symmetries, we directly look for approximate ‘nearly equitable clusters’.

Clustering approaches have been widely applied to the field of network science. The most notable example 
is that of the network community structure22, where a community is defined as a set of nodes that are densely 
connected with one another but sparsely connected with other communities. Though this provides an important 
characterization of a complex network, the presence of community structure does not imply in any way that the 
elements of these communities display similar time-evolutions when the network equations are evolved in time. 
Our goal in this paper is specifically to look for clusters of nodes that are both structurally and dynamically nearly 
equivalent, which is required condition for the emergence of approximate synchronization20 or approximately 
equal time-averaged dynamics21. We call such clusters dynamical communities.

The case of exact equitable clusters
In the presence of a network topology in which the weights come from a finite set (labeled graphs), a minimum 
balanced coloring can be calculated using the Belykh and Hasler (BH) algorithm28. We start from knowledge of 
the adjacency matrix A, which describes the topology of a network, i.e., Aij > 0 if node j is connected to node 
i and Aij = 0 otherwise. We emphasize that the network is generically directed, and so the adjacency matrix 
asymmetric. Given A, this algorithm computes a cluster partition of nodes that uses the minimum number of 
clusters needed. We call these the true clusters and label k∗ the number of such clusters. This efficient polynomial 
algorithm is described below. 

(1)	 At first, all the nodes, labeled here as 1, . . . ,N are placed into one cluster so that k = 1 and C = {C1} with 
C1 = {1, . . . ,N} . Then a process of refinement of the partition is started.

(2)	 The N × K-dimensional matrix P is created, whose entries are the cluster degrees Pij of node i = 1, . . . ,N 
to each cluster j = 1, . . . ,K , 

 The cluster degree is the overall coupling that node i receives from the nodes in cluster j.
(3)	 Based on the information contained in the matrix P, a new cluster partition is built, where nodes having 

equivalent rows are placed in the same cluster. Note that exact equivalences are transitive, that is, if nodes i 
and j are equivalent and so are j and h, then also i and h are equivalent. The matrix P reflects this property 
in that if its row i is equal to its row j and its row j  is equal to its row h, then also rows i and h are equal.

(4)	 Steps 2) and 3) are repeated with the new cluster partition. This process iterates until the cluster partition 
cannot be further refined, then we set k = k∗ where k∗ represents the number of the true clusters.

The case of nearly equitable clusters
The BH method of “Section The case of exact equitable clusters” works when symmetries within a network are 
exact, however it is not designed to detect approximate symmetries or equivalence relations. In order to address 
this issue, we propose a variation of the BH algorithm which returns nearly equitable clusters or dynamical com-
munities. This method uses a top-down methodology similar to divisive hierarchical clustering29, in that we start 
with k = 1 cluster, then break this cluster down specifying k → k + 1 with each iteration until k = N − 1 . We 
outline our process below. Steps 1) and 2) are the same as described for exact symmetries. They are followed by 
steps 3) and 4) below:

(3) Create a dissimilarity matrix, D, which describes the difference in cluster degrees between node i and 
node j. D is a symmetric matrix with a main diagonal of zero, and size N × N . Each entry Dij = Dji is equal to 
the Euclidean norm of the difference in cluster degrees from node i to node j, that is:

where by Pi ( Pj ) we indicate row i (j) of the matrix P. Note that the fact that Dij < α and Dih < α will not neces-
sarily imply that Djh < α . It is also unlikely that there will be zero entries indicating exactly equivalent nodes. 
Hence, we apply k-medoids clustering30 to the D matrix where we specify the number of clusters as k. In the 
case of the first iteration, we will specify k = 2 , we then increase k by one k → k + 1 . At each iteration, from 
the solution given by k-medoids, we now have a cluster partition which contains one more cluster than in the 
previous iteration.

(4) Repeat steps 2) and 3) for any possible number of clusters until k = N − 1 . Note that we are excluding 
the trivial case k = N where each cluster contains a single node.

To optimize the cluster partition generated by k-medoids, we utilize the following process:

•	 Run k-medoids several times using the kmeans++ starting algorithm for initial medoids locations.
•	 Then choose the cluster partition which yields the lowest average intra-cluster to medoid distance.

(1)Pij =
∑

ℓ∈Cj

Aiℓ.

(2)Dij =

N∑

i=1

N∑

j=1

�Pi − Pj�,
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The above clustering algorithm produces a cluster partition to which we can associate a correction cost, which 
we explain below. Our general methodology is illustrated in Fig. 1, which visually depicts the process used to 
create and validate a cluster partition.

In order to quantify how close to an equitable partition a given cluster partition is (and hence how much 
‘approximated’ a solution of the modified BH algorithm is), we associate with each solution a correction cost, 
i.e., a cost of correcting the matrix A so that it displays the desired clusters. If we start with a permutation matrix, 
R, which describes the symmetry of the adjacency matrix, A, then the equation:

is satisfied. If the R matrix does not commute with A, then,

Following Ref.31, we assume that we want to retain the matrix R but ‘correct’ the matrix A in order to make Eq. 
(3) hold true, and we write,

where δA is the perturbation matrix which must be added to A in order to satisfy the commuting property. Eq. 
(5) has solution31,

where by the notation M+ we denote the Moore-Penrose inverse of the matrix M, and vec (M) indi-
cates vectorization, i.e., the linear transformation which converts the matrix M into a column vector 
vec (M) = [M1,1M2,1 . . .MN ,1M1,2 . . .MN ,N ]

T . We can now define the correction cost as,

where ‖M‖ is the Euclidean norm of the matrix M. We can solve this problem for any desired cluster partition. In 
what follows we will compute the correction cost associated with an equitable partition by setting R = EH , where 
EH = E(ETE)−1ET is the projection operator and E is the indicator matrix associated with the given equitable 
partition, i.e., Eij = 1 if node i belongs to cluster Cj , and Eij = 0 otherwise.

Using the modified BH algorithm described above, we create a cluster partition for each value 
k = 2, . . . ,N − 1 . The closer the cluster partition is to the underlying symmetries of A, the lower the correc-
tion cost will be. In this way, we characterize ψ as a function of k in order to determine how the correction 

(3)AR − RA = 0

(4)AR − RA �= 0.

(5)(A+ δA)R − R(A+ δA) = 0

(6)δA = (I ⊗ R − RT ⊗ I)+ vec (−RA+ AR)

(7)ψ = �δA�

Figure 1.   Schematic representation of the method to determine and validate an approximate cluster partition 
for a network. The clustering algorithm of “Section The case of nearly equitable clusters” is fed with data on a 
network (in particular, its adjacency matrix) and a given number of clusters, k. This algorithm determines an 
approximate cluster partition for which we calculate the corresponding projection operator EH . In turn, this is 
used to calculate δA from Eq. (6) with R = EH . The correction cost ψ = �δA� is then contrasted for statistical 
significance with the result of randomized graphs obtained from the original network, swapping the links.
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cost changes with different partitions. Later on, this will help us determine which value of k should be used to 
reconstruct the approximate clusters. Since the correction cost will trivially decrease as k is increased (due to the 
correction cost being higher for a larger number of equivalence relations), we introduce the scaled correction 
cost ψ̂(k) which is defined as

This rewards partitions with larger clusters and penalizes partitions with smaller clusters. In what follows, we 
will typically compute both ψ(k) and ψ̂(k) and use both indices to select a number of clusters k.

As mentioned in the introduction, cluster partitions affect the dynamical behavior of a network. This is 
true independent of the particular dynamics at the network nodes. To show this, we consider two examples: 
consensus and synchronization dynamics. Let us start with the simple case of consensus dynamics described 
by the equation,

where the N-dimensional vector x(t) = [x1(t), x2(t), . . . , xN (t)] represents the state of each one of the N network 
nodes, the N-dimensional vector δ is a time-constant forcing term. In what follows, we assume δ to be a vector 
whose entries are all ones. By the assumption that the scalar ρ is large enough to make the matrix A Hurwitz, the 
time evolution x(t) = (A− ρI)−1[e(A−ρI)t − I]δ and the steady-state solution xss = −(A− ρI)−1δ . In the case of 
exact equitable partitions, it can be shown that nodes in the same cluster follow exactly the same time evolution 
of the consensus dynamics32. For the case of a nearly equitable node partition, by assuming stability, we expect 
almost synchronized consensus dynamics. This will be shown in what follows by plotting cluster-color-coded 
curves corresponding to the time evolution of each node xi(t) , i = 1, . . . ,N.

To illustrate our method, we begin by considering synthetic networks. In particular, we start with a network 
that has a set of true clusters, which we perturb with increasing noise. Under these conditions, we expect that 
for low noise the structure of the cluster partition is somehow preserved, giving rise to an approximate cluster 
partition, up to a scenario in which the noise is so large that no partition can be retrieved. In particular, here we 
consider two types of perturbations applied to synthetic networks, called Type I and Type II: 

 where A0 is the synthetic network adjacency matrix, ǫ is the magnitude of perturbation and Q is a full matrix 
composed of elements randomly drawn from a standard normal distribution. The symbol ◦ indicates entry-wise 
product (the Hadamard product), so that in Eq. (10a), a perturbation is only applied to the existing nonzero 
entries of A0 , while in Eq. (10b), a perturbation is applied to all node pairs.

An example of the analysis of a synthetic network with N = 50 nodes is illustrated in Fig. 2. In this case, the 
unperturbed network has k∗ = 5 true clusters (Fig. 2A). For the perturbed networks the original cluster partition 
with k∗ = 5 is no longer exact. However, it is an approximate cluster partition as can be seen from the correc-
tion cost ψ and the scaled correction cost ψ̂ in Fig. 2B,C. For a small enough perturbation, both curves display 
a minimum at k = 5 that is local for ψ and global for ψ̂ . When the perturbation is too large for the symmetries 
to be uncovered (such as for the value of ǫ = 1 shown in panels B and C), these minimums are lost. The exist-
ence of an approximate cluster partition is reflected into the dynamical time-evolution of the network nodes. To 
illustrate this, in Fig. 2D–F we have considered three perturbations ǫ of increasing magnitude and integrated Eq. 
(9) with the corresponding adjacency matrix obtained in the three scenarios. We note that, when the network 
is unperturbed, the cluster partition is exact and the state variables converge to consensus values mirroring the 
exact cluster partition (Fig. 2D, ǫ = 0 ). For ǫ = 10−1 the cluster partition becomes approximate, with a small 
associated correction cost. The presence of this approximate cluster partition affects the dynamics of the network, 
as the state variables of the nodes in the same dynamical community are now not seen to overlap anymore, though 
they tend to remain close to one another (Fig. 2E, ǫ = 10−1 ). The spread becomes larger for a larger magnitude 
of the perturbation (Fig. 2F, ǫ = 100 ). A similar behavior is observed in the case of synchronization dynamics, 
which is shown in the SI.

For the synthetic network of Fig. 2 we have also studied the case where the nodal dynamics are oscillatory 
and in particular chaotic. In this case the network evolves to reach a cluster synchronization state which mirrors 
the nearly equitable cluster partition. We illustrate here the case of a network of coupled Rössler oscillators, for 
which the governing equations are,

i = 1, . . . ,N , where the parameters of the isolated nodal dynamics are equal to a = b = 0.2 and c = 9 , which 
produces uncoupled chaotic dynamics. The value of the coupling coefficient is set to γ = 0.01 . The elements 
of the perturbed matrix A are obtained following the procedure discussed in Sec. 1 of the SI, in particular, the 
parameter σ in Eq. (2) of the SI has been set to σ = 0.002.

(8)ψ̂(k) = kψ(k).

(9)
ẋ(t) =(A− ρI)x(t)+ δ,

x(0) =0,

(10a)A =A0 + ǫQ ◦ A0 (Type I)

(10b)A =A0 + ǫQ (Type II) ,

(11)

ẋi = −yi − zi

ẏi = xi + ayi + γ
N∑
j=1

Aijyj

żi = b+ zi(xi − c)
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(F)(E)(D)

(C)(B)(A)

Figure 2.   Correction cost for a synthetic network with N = 50 nodes. (A) Structure of the network. In the 
absence of perturbations this network has k∗ = 5 true clusters (dashed lines in panels B and C). Nodes are 
colored differently according to the true cluster to which they belong. (B) Correction cost ψ versus k for 
two magnitudes of perturbation. (C) Correction cost ψ̂ versus k for two magnitudes of perturbation. (D–F) 
Consensus dynamics as described in Eq. (9) with a type I perturbation with respective magnitudes ǫ = 0 , 
ǫ = 10−1 , and ǫ = 100.

(B)(A)

Figure 3.   Dynamics of Rössler oscillators coupled according to the synthetic network in Fig. 2 : (A) when 
the network is unperturbed exact clusters synchronization is observed; (B) when the network is perturbed 
approximate cluster synchronization appears. From top to bottom, state variables xi(t) for i = 1, . . . , 10 (first 
panel); i = 11, . . . , 14 (second panel); i = 15, . . . , 21 (third panel); i = 22, . . . , 41 (fourth panel); i = 42, . . . , 50 
(fifth panel).
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Figure 3 shows the time evolution of the x variable of the network nodes, both for the unperturbed and per-
turbed cases. In the unperturbed case, the network has k∗ = 5 true clusters, correspondingly, the node variables 
group into k = 5 clusters with different oscillatory dynamics (Fig. 3A) For the perturbed network the clusters 
are no longer exact, and likewise, neither is the nodal synchronization dynamics within the clusters. However, 
clusters can still be clearly identified from the nodal dynamics (Fig. 3B).

Statistical significance analysis
Let us now consider the case of real weighted networks for which it is not known whether an underlying cluster 
partition exists (and what the dynamical communities are.) Next we present a method that takes as an input the 
weighted adjacency matrix A of a real network and decides statistical significance at which the partition for a 
certain value k = kmin can represent the minimum balanced coloring of the real network. To decide this value, we 
employ a method which compares the correction cost, ψ(k) , of the real network with that of several randomized 
networks, which preserve the degree sequence. Next we outline the process by which we shuffle the entries of 
the weighted matrix A to produce these randomized networks. 

(1)	 Choose four integers i, j, l, m randomly from 1 to N, such that i  = j  = l  = m.
(2)	 Swap the following entries: 

(3)	 Repeat steps (1) and (2) ns times until the network is sufficiently shuffled.

Using this algorithm we build a data set of 100 randomized networks for each structure we want to analyze. Then 
we compute the correction cost for each randomized network in the database. Finally, we calculate the mean 
value and the standard deviation for the obtained correction cost. At this point, we define kmin as the lowest 
statistically significant value k for which the actual correction cost goes below three standard deviations of the 
mean randomized correction cost.

Given an unweighted network, there is an ordered set (a lattice33) of exact equitable partitions, from the mini-
mum balanced coloring (the equitable partition with the fewest clusters) to the partition in which each node is in 
a cluster by itself. In the case of weighted networks, we are typically interested in those equitable partitions (and 
the corresponding dynamical communities) that are statistically significant. The first important observation is 
that in many of the synthetic and real networks we have tested, we see that the correction cost is low to a statisti-
cally significant level for all k ≥ kmin . We conclude that all of the returned solutions for k = kmin, . . . ,N − 1 are 
statistically significant nearly equitable partitions. Also, with an abuse of language we call the partition obtained 
at k = kmin the minimum balanced coloring of the weighted network. The second important observation is that in 
perturbed synthetic networks, kmin is found to increase with the level of noise. A larger level of noise corresponds 
to more equivalence relations being destroyed, and so to a minimum balance coloring with more dynamical 
communities. This is seen in Fig. 4 where a synthetic network is modified with increasing level of noise. For a 
small level of noise (Fig. 4A) we find that kmin = k∗ , i.e., the true number of clusters of the synthetic network 
with no noise; for intermediate level of noise (Fig. 4B) we obtain a value of kmin > k∗ , and for large level of noise 
(Fig. 4C) we find no statistically significant k, indicating that no equivalence relation is preserved. Figure 6 shows 
the case of a real network, which appears to resemble a situation of intermediate noise, for which statistically 
significant equivalence relations can be detected for k ≥ kmin . The third important observation is that similarly 

(12)

Aij ↔ Ail

Aji ↔ Ali

Amj ↔ Aml

Ajm ↔ Alm

(C)(B)(A)

Figure 4.   We plot the correction cost (blue curve) with statistical significance (red bars) and the mean of 
the randomized correction cost (red curve) as described above. (A–C) Synthetic network depicted in Fig. 2. 
(A) Type I perturbation with ǫ = 10−1 . (B) Type I perturbation with ǫ = 100 . (C) Type II perturbation with 
ǫ = 100 . Based on the size of the perturbations we have that either (A) the true cluster partition is recovered, or 
(B) a subset of the symmetries are recovered, or (C) all symmetries are lost to a statistical significant level.
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to the case of unweighted networks, we often see a structure in the solution obtained when k is increased from 
kmin to N − 1 , namely the solution observed at k + 1 is equal to the solution obtained at k after one cluster is 
broken into two different clusters. This can be seen in Fig. 5, which shows the obtained cluster partitions for 
k = 5, 6, 7 for the perturbed synthetic network in Fig. 2 ( k∗ = 5 ). As k is increased, the general structure of the 
partition is preserved, however dynamical communities are progressively broken. In particular, from k = 5 to 
k = 6 the dynamical community of four purple nodes splits into two smaller dynamical communities (purple 
nodes and yellow nodes for k = 6 ). Similarly, from k = 6 to k = 7 the dynamical community of gray nodes splits 
into two smaller ones shown as gray and red in the network representation for k = 7 . This trend will continue 
until k = N − 1.

Real data sets
We apply our method to a number of real network data sets, including one social network34, one biological 
network, one air traffic network and one stock market network35,36. The temporal Freeman’s researcher social 
network describes the time evolution of personal relationships among N = 46 researchers, where an edge value 
describes the strength of the relationship. A weight of 4 describes a close personal friend and going down from 
there, a weight of 0 means the person is unknown. The temporal network includes two snapshots, the first one 
describes relationship data from the beginning of the study and the second network is after the study. The stock 
market network is weighted, contains N = 62 nodes, and comes from the correlation of long-returns from 62 
different stocks. The US Air network is an undirected, weighted network. It contains N = 332 nodes where each 
node represents an airport and edges represent the number of direct flights between airports. The biological 
network is a brain network taken from the Human Connectome Project45. The network is weighted, bidirectional 
and contains N=129 nodes. 

We have checked for statistically significant dynamical communities in each of these data sets. The result of 
this study are illustrated in Fig. 6: panel (A) is for the US Air network, panel (B) is for the Freeman’s researcher 
network (correlating to the end of the study), panel (C) is for the Stock market network, panel (D) is for subject 
#1 of the brain network dataset. Although we have tested multiple subjects from the brain network dataset, the 
correction cost plots for all subjects look qualitatively similar. The Freeman’s researcher network with integer 
weights has true equitable partitions for k∗ ≥ 35 , as can be seen from the correction cost ψ becoming zero. How-
ever, statistically significant dynamical communities are also found for k < k∗ . All the other networks examined, 
both those with integer and non-integer weights, do not have true cluster partitions that are found at ψ = 0.

As seen in Fig. 5, we typically observe that cluster partitions break down in an orderly way as k is increased, 
preserving the general structure of the partition. This is not only true for perturbed synthetic networks, but also 
for many real networks, as can be seen from Fig. 2 of the SI. The tendency for strongly symmetric nodes to be 
placed in the same cluster together in multiple partitions for different values of k can be seen in several networks.

In order to quantify the speed of this algorithm, we conduct a simple experiment where we calculate all clus-
ter partitions from k = 2 . . .N − 1 for Erdos-Renyi networks with a varying number of nodes N, and time how 
long it takes . For our networks, we use sparse undirected graphs with weights  randomly drawn from a uniform 
distribution between 0 and 1. We plot our results in Fig. 7.

Comparison with community structure
Our method to detect dynamical communities in weighted networks can be closely compared to methods to 
detect community structure. Community structure in networks occurs when there are groups of nodes that are 
densely connected together, and when these groups of nodes are sparsely connected to other groups. Methods 
based on community structure are not designed to predict approximate dynamical consensus and synchroniza-
tion, but simply  look for modules with dense connectivity inside each module and sparse connectivity between 
modules. . Below, we illustrate that dynamical communities are much more accurate in predicting dynamical 
consensus than community structure, when applied to several real network examples.

k = 5 k = 6 k = 7

Figure 5.   The evolution of the N = 50 node network with k∗ = 5 true clusters depicted in Fig. 2. We apply 
a small perturbation (Type I, ǫ = 10−5 ). With each increase of k, the general structure of the partition is 
preserved, however existing clusters are broken.
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For the purpose of this paper, we use Newman’s community structure algorithm37, where we can recover 
the hierarchical breakdown of the communities, so we can get a partition for all k = 2 . . . (N − 1) . We compare 
our method of detecting dynamical communities with that for community structure in terms of our ability to 
predict the consensus dynamics. We take the dynamics of a network to be described by Eq. (9) (where ρ is large 
enough, so A is Hurwitz). We integrate Eq. (9) from t = 0 to the settling time t = −4/� , where � is the largest 

(B)(A)

(D)(C)

Figure 6.   Correction cost (blue curves) with statistical significance analysis (red bars) for real world networks. 
(A) US Air network. (B) Freeman’s researcher network. (C) Stock market network. (D) Brain network.

Figure 7.   Time (h) versus network size (N). As the number of nodes increases, the calculation time increases 
rapidly.
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real eigenvalue of the matrix A. We apply k-means to y(t), where we specify k to be k = 2 . . .N − 1 . We now have 
a cluster partition pertaining to the transient dynamics for all values k. Using this cluster partition as a bench-
mark to represent the approximate dynamical clusters, we use the Jaccard index to compare the similarity of this 
partition with that of our dynamical communities and community structure. The larger the Jaccard coefficient, 
J  , the more similar the cluster partitions are (with J = 1 indicating a perfect match).

In our analysis we consider the following real networks from the literature: 

(A)	 The journal and magazine network38 is undirected, weighted, and contains N = 124 nodes. Each node 
represents a journal or magazine and an edge represents the number of people who read them both.

(B)	 The Train Bombing social network39 is undirected, weighted and contains N = 64 nodes. Each node rep-
resents a terrorist involved in the 2004 train bombing in Madrid, and an edge between them signifies a 
contact between two terrorists.

(C)	 The Kangaroo network is undirected, weighted and contains N = 17 nodes. The network describes inter-
actions between free-ranging eastern grey kangaroos in the Nadgee Nature Reserve in New South Wales, 
Australia. A node represents a kangaroo and an edge represents an interaction between them. The edge 
weights denote the number of interactions.

(D)	 The Southern Women Club social network40 is labeled, and contains N = 18 nodes. The data comes from 
observed attendance of fourteen social events, where an edge between two nodes (subjects) represents the 
number of social events attended in common.

(E)	 The stock market network is weighted and undirected and contains N = 62 nodes. The network is obtained 
from the analysis of temporal correlations among the time-series of stocks in the New York Exchange 
Market between January 2012 and December 2014.

(F)	 The IEEE 118-bus system41 is undirected and unweighted (weights between 0 and 1), it is an approximated 
representation of the U.S. Midwest Electric Power system as of December 1962.

Figure 8 shows the Jaccard index versus the number of clusters k, for both our dynamical communities (in red) 
and community structure37 (in blue) when applied to the previously described real networks (A)–(F). For all the 
networks and for all values of k we see that our method based on dynamical communities consistently outper-
forms community structure in predicting synchronized behavior.

Conclusions
In most real networks, node-node couplings are rarely characterized by identical strengths; in fact, weighted net-
works provide the most general paradigm to model interactions occurring in a complex system. In this work, we 
faced the problem of characterizing approximate cluster partitions and their ‘dynamical communities’ in weighted 
networks. We proposed a method based on calculation of a correction cost, namely a parameter quantifying how 
much the network has to be modified to obtain an exact cluster partition, and a statistical significance test to 
determine a minimum balanced coloring. Remarkably, our method retrieves the exact cluster partitions when 
applied to unweighted networks, as in that case the correction cost vanishes. Our variation to the BH algorithim 
for finding dynamical communities is not computationally demanding. It is not comparable to the speed of 
Newman’s fast algorithim, however, can still yield reasonable calculation speeds for small to moderately sized 
networks. If a test for statistical significance is desired (which includes calculating the correction cost over several 
random samples), the speed of the calculations decreases drastically with the size of the network.

Early studies had pointed out that the emergence of coordinated motion of clusters of nodes in unweighted 
or labeled graphs is only possible when the clusters form an equitable partition2,7,8,10,15,23. Methods to retrieve all 
the possible equitable partitions of a given network have been developed in33,42. Here we extend these concepts 
to the realm of weighted networks, for which equivalences between nodes may be satisfied approximately rather 
than exactly. The analysis of the correction cost in both synthetic and real networks reveals important features of 
dynamical communities. The correction is typically seen to change gradually as the number of clusters increases, 
with clusters breaking into groups of nodes of lower cardinality. Dynamical communities have been also consid-
ered in43, although in a different perspective. In43, a novel definition of quasi-symmetries relying on structural 
equivalence rather than the invariance of a particular topological property has been proposed based on the 
dynamical behavior of the Kuramoto-Saguchi model associated to the network nodes. However, in this case, the 
fact that nodes displaying similar states are almost symmetrical has to be considered as an a priori assumption 
rather than the result of structures with underlying similar patterns of connectivity. On the contrary, the notion 
of correction cost allows one to  account for the similarity   between different  interaction topologies, measuring 
the perturbation needed to transform one adjacency matrix into another.

Quite importantly, the dynamical communities considered in our work profoundly differ from network 
communities22 that account for modules with dense connections within the members of each module but sparse 
connections between members of different modules. In contrast with network communities, dynamical com-
munities identify nodes that will produce approximately the same dynamical time evolution. Consequently, the 
presence of dynamical communities directly impacts the dynamics emerging from the network. For instance, 
our results show that nodes from the same dynamical community (from different dynamical communities) tend 
to display similar (different) consensus and synchronization dynamics and for the case of oscillatory chaotic 
dynamics, dynamical communities are seen to produce approximate cluster synchronization. Our work, therefore, 
paves the way towards the identification of relationships among the nodes that characterize a far from trivial 
interplay between dynamics and structure. For example, it may help uncover patterns of synchronous dynamics 
that may emerge in a network from knowledge of the network structure, even when very little is known about 
the dynamics itself. We expect that our methodology will find application in diverse fields, as we see from our 
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analysis of real data sets that statistically significant nearly equivalent cluster partitions and dynamical com-
munities are present in a large variety of social, biological, and technological networks (though not in all these 
networks.) Our approach could also be extended to the case of multilayer networks9,44.

For all the real networks examined, we see that our method based on dynamical communities consistently 
outperforms community structure in predicting synchronized behavior. Our work provides a unique perspec-
tive into the hidden relationship between network structure and network dynamics. We show that the analysis 

(B)(A)

(D)(C)

(F)(E)

Figure 8.   We plot the Jaccard index versus the number of clusters k, for both our dynamical communities (in 
red) and community structure (in blue). We plot the results for several real world networks, and see a strong 
advantage of using dynamical communities over community structure. The networks considered here are: (A) 
Journal and magazine38 (B) Train bomber39 (C) Kangaroo (D) Southern Women40 (E) Stock market (F) Power 
grid.
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of the structure of a given network provides insight into the patterns of synchronous dynamics that may emerge 
in the network, even if very little is known about the dynamics itself. Our approach provides a fundamental 
advantage in understanding the dynamics of complex heterogeneous systems from different areas of biology 
and of the social sciences.

Code availability
The code used in this paper to find dynamical communities in weighted networks can be found here: https://
github.com/chadnathe/Dynamical-Communities.gitGitHub Repository.
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