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Estimating the generation 
interval from the incidence rate, 
the optimal quarantine duration 
and the efficiency of fast switching 
periodic protocols for COVID‑19
Eugenio Lippiello1*, Giuseppe Petrillo1,3 & Lucilla de Arcangelis2,3

The transmissibility of an infectious disease is usually quantified in terms of the reproduction 
number R

t
 representing, at a given time, the average number of secondary cases caused by an 

infected individual. Recent studies have enlightened the central role played by w(z), the distribution 
of generation times z, namely the time between successive infections in a transmission chain. In 
standard approaches this quantity is usually substituted by the distribution of serial intervals, which 
is obtained by contact tracing after measuring the time between onset of symptoms in successive 
cases. Unfortunately, this substitution can cause important biases in the estimate of R

t
 . Here we 

present a novel method which allows us to simultaneously obtain the optimal functional form of 
w(z) together with the daily evolution of R

t
 , over the course of an epidemic. The method uses, as 

unique information, the daily series of incidence rate and thus overcomes biases present in standard 
approaches. We apply our method to one year of data from COVID‑19 officially reported cases in the 
21 Italian regions, since the first confirmed case on February 2020. We find that w(z) has mean value 
z ≃ 6 days with a standard deviation σ ≃ 1 day, for all Italian regions, and these values are stable 
even if one considers only the first 10 days of data recording. This indicates that an estimate of the 
most relevant transmission parameters can be already available in the early stage of a pandemic. We 
use this information to obtain the optimal quarantine duration and to demonstrate that, in the case 
of COVID‑19, post‑lockdown mitigation policies, such as fast periodic switching and/or alternating 
quarantine, can be very efficient.

An accurate estimate of transmission parameters is fundamental in monitoring the spreading of a disease during 
a  pandemic1–9. The coronavirus disease 2019 (COVID-19) pandemic has shown the relevance of an accurate 
evaluation of the time-dependent reproduction number Rt to monitor the effect of non-pharmaceutical inter-
ventions (NPI) imposed by local governments. Rt(t) represents the average number of secondary cases that 
each infected individual would infect if the conditions remained as they were at a given time t. A decreasing of 
Rt indicates that the epidemic is in decline with values Rt(t) < 1 suggesting that the epidemic may be regarded 
as being under control at time t. In the epidemiological models considered in our study, structured by time 
since infection, the estimate of Rt depends on the probability distribution w(z) of the generation time z, i.e. 
the time difference between the dates of infection of successive cases in a transmission chain. Since the times 
of infection are rarely known, w(z) is usually approximated by the distribution of the serial intervals, which is 
the difference in dates of symptom onset between a pair of a primary and its secondary case. The serial interval 
distribution can be obtained via contact tracing and data collected for COVID-19, in different geographic areas, 
indicate that its mean value ranges from 4 to 7.5 days, with a standard deviation σs ranging between 3 days up 
to 6 days inside each  area10–12. Recent  studies13–15, however, suggest that, whilst the average value of generation 
times z is well approximated by the mean value of serial intervals, the standard deviation σ of generation times 
is significantly smaller than σs . This difference hinders the possibility to correctly tune the optimal duration of 
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quarantine tQ and also to plan optimized lock-down strategies. For example, tQ should be reasonably larger than 
z + σ , in order to significantly quench existing infections. Furthermore, it has been recently  shown16,17 that the 
distribution of serial intervals obtained from contact tracing is altered by NPI and, in particular, the mean serial 
interval becomes smaller when NPI are enhanced. This introduces a bias in the estimate of Rt , which could be 
avoided if the parameters controlling the functional form of w(z) were directly extrapolated from the infection 
data. An attempt in this direction can be found in Wallinga and Teunis (WT)18. In their seminal paper WT pro-
pose a method based on the maximization of the likelihood L, formulated in terms of w(z) and of the infection 
network, in which the nodes represent cases and the directed edges between the nodes represent transmission 
of infection between cases. White and Pagano (WP)19 have subsequently proposed a simpler formulation for L, 
expressed only in terms of the daily series of incidence rate I(t), i.e. the rate of infected individuals at the calendar 
time t. Their study, however, is restricted to the evaluation of w(z) in the case of a constant reproduction number 
Rt(t) = R0 = const.

Here we present a generalization of the WP approach which allows us to extract from I(t) the temporal 
evolution of Rt(t) together with the optimal functional form of w(z) consistent with the epidemic curve. More 
precisely, we are able to explore the whole range of parameters controlling w(z) and to identify the optimal 
ones. Our procedure also provides as an output the daily number of imported infected cases µ(t) , which can be 
implemented in numerical simulations to test the efficiency of the procedure. We discuss in details the results of 
our approach using data for the COVID-19 disease in Italian regions, taking also into account the influence of 
periodicity in the collection of epidemic data. Finally, we enlighten the relevance of the information contained 
in w(z) in order to design alternative strategies for virus containment in absence of vaccines.

Basic definitions
A key quantity in outbreak analyses is the transmissibility β(t, s) , defined in such a way that β(t, s)dt is the 
average number of people someone, infected at the calendar time s, infects during the subsequent time interval 
[t, t + dt) , where dt is a small time interval. In the following we always assume that the time t is larger or equal 
to the time s. Under stationary conditions β(t, s) is time translationally invariant and it is usually written as 
β(t, s) = R0w(t − s) , where R0 is the reproduction number, defined as the average number of secondary cases 
per primary case over a fully susceptible population. The quantity w(z = t − s) is the generation time distribu-
tion ( 

∫∞
0 dzw(z) = 1 ), i.e. the distribution of how infection events are distributed as a function of time since 

the infection. Nevertheless, in the large majority of cases, the hypothesis of stationarity does not hold, mostly 
because of changes in contact patterns also induced by public health measures such as social distancing or case 
isolation. Furthermore also the change in the percentage of susceptible individuals, including the one produced 
by vaccinations, is responsible for the dependence of β(t, s) on both times t and s. For this reason one usually 
introduces an effective reproduction number Rt(t) by assuming β(t, s) = Rt(t)w(t − s) , where w(t − s) still 
represents the normalized generation time distribution “in an ideal large closed setting where contact rates are 
constant”20. The basic idea below this approximation is that w(t − s) is an intrinsic  distribution17 which reflects 
the biological process of disease progression and whose functional form remains substantially unaltered over 
time. All the changes in the contact structure of the population are conversely described by the temporal evolu-
tion of Rt(t) which, for instance, provides information about the efficiency of NFI. In a different, but substantially 
equivalent formulation, one introduces the case reproduction number Rc(s) , defined by β(t, s) = Rc(s)w(t − s) , 
representing the average number of people someone infected at time s can expect to infect at subsequent times. 
The two quantities Rt(t) and Rc(t) are intimately connected

which indicates that Rc(s) is a smoothed function of Rt(t) . The standard procedure adopted to evaluate Rc(s) 
is based on the algorithm developed by Wallinga-Teunis (WT) [see Eq. (5) in “Methods”]18 whereas the direct 
evaluation of Rt(t) can be obtained by means of the algorithm developed by Cori et al.21. These two algorithms 
have been recently combined to improve the estimate of the effective reproduction number during temporal 
periods of small  incidence22.

All the above mentioned algorithms assume that w(z) is already known. This represents a big problem in the 
early stage of a disease when specific data for w(z) are not available. Early studies of COVID-19, for example, 
implement the functional form of w(z) obtained in previous similar diseases such as SARS or  MERS23,24, which 
however presented a mean generation time much larger than the one subsequently found for COVID-19. As 
soon as specific data become available, the standard approach is represented by the identification, via contact 
tracing, of the correct infector-infectee pairs. Unfortunately, the accurate timing when an individual is infected 
is very difficult to be established and generation intervals are often replaced by serial intervals sij , defined as the 
interval between times of onset of symptoms in the infector i and in the infectee j. More precisely, indicating 
with zij the generation time between an infector i and an infectee j and introducing qi as the incubation period 
of the infector i ( qj is the incubation period of j), one  has15,25 sij = zij + qj − qi (see Fig. 1  in15 for an illustration). 
Under the assumption that qi and qj are independent and identically distributed variables, the approximation of 
w(z) with the serial interval distribution is reasonable only if one is interested in the mean values z of zij , which 
is expected to roughly coincide with the mean value of sij . On the other hand, because of the large variability of 
incubation times, the standard deviation of sij ( σs ) is expected to be significantly larger than the standard devia-
tion of zij ( σ ) and the serial interval distribution is expected to be much broader than w(z). As an example, under 
the assumption that zij is uncorrelated to both qi and qj one obtains σs =

√

2σ 2
q + σ  where σq is the standard 

deviation of qi . It has been recently shown that approximating w(z) with the serial interval distribution can lead 

(1)Rc(s) =
∫ ∞

s
dtRt(t)w(t − s)
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to a systematic underestimate of Rt(t)26. In order to overcome this problem, in ref.13–15 elegant methods based 
on log-likelihood maximization have been developed to infer the generation time from intervals of exposure 
and onset of symptoms. These approaches lead to an estimate of σ which is much smaller than the value of σs , 
previously obtained from the serial interval distribution of the corresponding data set. More precisely, these 
methods  give13 for Singapore σ = 1.72 to be compared to σs = 4.32 and for Tianjin σ = 1.51 to be compared to 
σs = 4.24 . At the same time, combining 5 different data-sets it has been  obtained15 σ = 1.8 to be compared with 
σs = 3.8 . These results, however, explicitly depend on the functional form of the distribution of qi and it is not 
possible to exclude that they can have been affected by the erroneous identification of the correct infector-infectee 
pair. This becomes more probable when the percentage of asymptomatic individuals becomes higher and one is 
often compelled to consider small statistical samples containing a limited number of pairs, whose infection his-
tory is well under control. For example, in the case of Lombardy, considered in our study, the previous estimate 
of σs (Ref.11,12) was achieved with a sample containing 90 observations of individual serial intervals divided in 
55 clusters. As further examples ref.27 considers 66 infector-infectee transmission pairs from China, ref.28 consid-
ers 18 pairs from Taiwan and ref.14 40 pairs from different geographic areas.

We finally remark that the distribution of time delays between the symptom onset in an infector-infectee 
pair, measured during the ongoing of an epidemic, can be significantly different from the intrinsic serial interval 
 distribution16,17. Indeed, it is more probable to observe a shorter time delay when the incidence of primary events 
is increasing. In the early stage of COVID-19 in China, for example, the mean serial interval decreases from an 
initial measured value of about 7.8 days to a measured value of about 2.6 days, after one  month16.

Summarizing, the substitution of w(z) with the serial interval distribution, measured via contact tracing, is 
responsible of important biases in the evaluation of Rt(t) during an ongoing epidemic. In the following we present 
a new method which provides the optimal functional form of w(z), without resorting to contact tracing. More 
precisely, the only empirical parameter we consider is the daily incidence which is a discrete series {I(m)}m=1,..N , 
where I(m) represents the daily number of infected individuals recorded on the m-th day and N is the number 
of considered days. The key quantity is the daily transmissibility β(m, j) , representing the average number of 
infections induced during the m-th day by infected cases on the j-th day. Accordingly, the daily case reproduc-
tion number Rc(m) can be defined as β(m, j) = Rc(j)w(m− j) , where w(m) =

∫ m+1
m w(z)dz is the discretized 

generation time distribution. If the temporal evolution of {Rc(m)}m=1,...,N and the functional form of w(m− j) 
are assigned, the expected value E[I(m)] of the daily incidence on day m can be obtained from the past history 
according to the renewal  equation1,3,20

where µ(m) is the daily number of imported cases during the m-th day, i.e. infectors coming from outside the 
considered region. A similar equation can be written in terms of the effective reproduction number Rt(m) , 
however we prefer to consider the case reproduction number Rc(m) which is more suitable for numerical imple-
mentation. Indeed, for a given temporal profile of {Rc(m)}m=1,...,N and of {µ(m)}m=1,...,N , we can easily simulate 
the epidemic curve {I(m)}m=1,...,N from Eq. (2), according to a generation tree algorithm (see “Methods”).

In our procedure, illustrated in the next section, we assume that w(m− j) is stationary in time and we look 
for the optimal temporal profiles of {Rc(m)}m=1,...,N and of {µ(m)}m=1,...,N which, implemented in Eq. (2), give 
an expected value E[I(m)] which is the closest to the observed one I(m) for each of the m days m ∈ [1,N] . After 
this optimization, achieved by means of a log-likelihood maximization procedure, we identify, among a wide 
range of possible functional forms of w(m− j) , the one which presents the maximum value of the log-likelihood.

Log‑likelihood evaluation
In the generation process the number of individuals infected on the m-th day is assumed to be Poisson distrib-
uted, PP[I(m)] = E[I(m)]I(m)e−E[I(m)]

I(m)!  , with the expected value E[I(m)] obtained from Eq. (2). The likelihood of the 
time series {I(m)}m=1,...,N , for assigned sequences {Rc(m)}m=1,...,N , {µ(m)}m=1,...,N and for a given functional 
form of w(m− j) is given by L({I}, {Rs}, {µ}, {w}) =

∏N
m=1 Pp[I(m)] . The best series {Rc}, {µ}, {w} compatible 

with the recorded data {I} are the ones that maximize the likelihood. We perform this maximization process 
assuming that the functional form of w(m− j) is assigned and depends on few tuning parameters. More precisely 
we consider a generation time distribution w(z) which is either a Gamma, or a Weibull or a log-normal distribu-
tion, which are the typical functional forms proposed in the  literature3,10,13–15,29. For all three distributions, w(z) 
is fully characterized by its average value z and the standard deviation σ , therefore the search for their optimal 
values is among the main purposes of our approach. This leads to an expression for L({I}, {Rc}, {µ}, z, σ) which 
is equivalent to the one obtained by  WP19, except that we keep explicitly into account the temporal dependence 
of Rc(m) . Furthermore, we introduce a smoothness constraint on Rc(m) , by penalizing its second  derivative30, 
in order to impose that Rc(m) does not change abruptly between two subsequent days. The final step in our 
approach is to consider the logarithm of the likelihood LL = log (L) and this allows us to split LL into the sum 
of different terms which can be more easily evaluated, thus providing a more efficient maximization procedure. 
The final expression for LL is given by

where V is the parameter that controls the degree of smoothness of Rc(m).

(2)E[I(m)] =
m−1
∑

j=0

Rc(j)w(m− j)I(j)+ µ(m)

(3)

LL({I(m)}, {Rc}, {µ}, z, σ ,V) =
N
∑

m=1

I(m) log (E[I(m)])−
N
∑

m=1

E[I(m)]−
1

2V

N−1
∑

m=2

(Rc(m− 1)+ Rc(m+ 1)− 2Rc(m))2
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It is worth noticing that, according to Eq. (2), a variation of Rc(m) produces a change of E(I(m)) which is 
different from the one produced by a variation of µ(m) and it is therefore possible to discriminate between 
the role of the two quantities. This idea is at the basis of the method defined stochastic declustering used for 
instance in seismology to discriminate between triggered and spontaneous  earthquakes31,32. We have then 
developed an optimized procedure, based on the Markov-chain-Monte–Carlo method (see “Methods”), which 
identifies the changes of {Rc(m)}m=1,...N and of {µ(m)}m=1,...N that, implemented into Eq. (2), provide values 
of {E(I(m))}m=1,...N which are closer to the experimental {I(m)}m=1,...N . In particular the method gives, for a 
fixed w(z), the best series {Rc(m)}m=1,...N and {µ(m)}m=1,...N which correspond to a global maximum of the 
log-likelihood LL33,34. Our algorithm is sufficiently fast that we can easily obtain the maximum LL for different 
choices of w(z) and therefore we are able to explore the full range of relevant values of z and σ.

In the “Methods” section we also show that our method is not affected by the existence of a temporal delay 
�trec between the day of the infection and the day when this infection is identified and recorded in the data set. 
The presence of this delay, indeed, does not change the renewal equation Eq. (2) under the reasonable assump-
tion that Rc(m) does not change too fast.

Results of our analysis are presented in the next section for the region Lombardy where the first outbreak of 
Covid-19 has been documented in Europe and which is characterized by a widespread diffusion of the disease 
since March 2020. The same analysis has been performed for all the other Italian regions and in the Supplemen-
tary Information (SI) we present results for other five more populated regions (Lazio, Campania, Sicily, Veneto, 
Emilia-Romagna).

Results: the case reproduction number R
c
 and the optimal generation time 

distribution
In Fig. 1 we plot {I} which clearly shows the presence of two waves in the disease spreading with the peak of 
infection reached on March 24, 2020, during the first wave, and on November 10, 2020, during the second one. 
Here we present results assuming that w(z) is a Gamma distribution, w(z) =

(

τ−a/Ŵ(a)za−1
)

exp(−z/τ) , which 
depends on two parameters, a ≥ 1 and τ > 0 , and where Ŵ(a) is the Gamma function. The mean value of w(z) 
is given by z = aτ and its standard deviation σ =

√
aτ . In the SI (Figs. Suppl. 4, 5) we show that a log-normal 

and a Weibull distributed w(z) produce similar results.
We use the data plotted in Fig. 1 to extract the information about {Rc} , {µ} and w(z) according to our maximi-

zation procedure of LL({I}, {Rc}, {µ}, z, σ ,V) , exploring in detail a wide range of z and σ values. In Fig. 2 we plot 
the temporal variation of Rc(m) and µ(m) , which have been obtained for z = 6.2 and σ = 0.95 corresponding 
to a maximum of LL (Fig. 3) and therefore representing an optimal description of the recorded sequence {I} . In 
order to verify the efficiency of our procedure we implement these optimal series {Rc} , together with the optimal 
choices of z and σ , in the generation tree algorithm (“Methods”). It is worth noticing that in order to obtain the 
value of Rc(m) on the m-th day it is necessary to know the incidence rate of subsequent days, and a reasonable 
estimate of Rc(m) is possible only up to the time m � N − z.

In the algorithm we also implement the optimal series {µ} extracted from the LL maximization and therefore 
only one free arbitrary parameter I(0), representing the initial value of infected people on the 0-th day, survives. 
In Fig. 1 we show that the numerical sequence {I} simulated via the generation tree algorithm very well overlaps 
with the experimental one. As a further support we also compare our findings for Rc(m) with the one provided by 
the Wallinga–Teunis (WT) algorithm [see Eq. (5) in “Methods”]18. We observe (Fig. 2) that the two approaches, 
for the same w(z), provide very similar results. Fig. 2 also shows a clear decrease of Rc(m) after the application 

Figure 1.  Black continuous lines represent the daily incidence of COVID-19 for the Lombardy from 
02/24/2020 up to 02/24/2021. Color vertical lines indicate the starting time of different containment measures, 
which combines lockdown restrictions and closures with measures such as testing policy and contact tracing, 
etc. We adopt a color code ranging from red, orange, yellow up to green as a rough indicator of the severity of 
these restrictions, decreasing from red to green, i.e strong restrictions are imposed in the temporal period after 
a red line whereas weak ones after a green one. Magenta diamonds represent the result of numerical simulations 
implementing the best estimate for {Rc} and {µ} , for τ = 0.15 , a = 6.2τ , provided by the LL maximization 
procedure. The overlap with experimental data is achieved setting I(0) = 250.
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of strong confinement measures (after red lines) with a weak tendency to an increase after the removal of these 
measures. In particular, it is interesting to observe a clear peak of Rs(m) in the middle of August which reflects 
the intense social activity typical of Italian summer vacation at the turn of the Assumption (August 15th). The 
observed behavior of Rc(m) is therefore consistent with its expected dependence on the contact rate. In the lower 
panel of Fig. 2 we plot the weekly average value of µ(m) which fluctuates around an average value µ ∼ 15 daily 
cases. We notice that a clear decrease of µ(m) from µ(m) ≃ 40 to µ(m) ≃ 10 is observed at March 2020 at the 
beginning of the recording series (first red line in Fig. 2) in correspondence with the introduction of the first 
lockdown in Lombardy. A decreasing trend, but much less pronounced (from µ(m) ≃ 20 to µ(m) ≃ 10 ), is also 
observed in correspondence with the introduction of the other two lockdowns (second and third red line in 
Fig. 2). We conversely observe that the release, or the partial release, of lockdown (green lines in Fig. 2) substan-
tially does not affect µ(m) . The origin of this behavior can be attributed to the occurrence of the release when the 
incidence rate was in a fast decreasing period (Fig. 1). Accordingly, the increase in the mobility of individuals has 
been substantially balanced by the decrease of the percentage of infected individuals, leading to an about constant 
µ(m) . There are no other estimates for µ(m) in Italian regions whereas the number of imported cases has been 
recorded by the Hong Kong Centre for Health Protection (HKCHP)35. Preliminary results indicate a qualita-
tive agreement between our estimate of µ(m) in Hong Kong and the number of imported cases in the HKCHP 
dataset. At the same time, we can perform an indirect test of the efficiency of our approach by implementing the 

Figure 2.  (Upper panel) The case reproduction number Rc(m) of COVID-19 for the Lombardy from 
02/24/2020 up to 02/18/2020. Color vertical lines indicate the starting time of different containment measures 
(see caption of Fig. 1). Black circles represent Rc(m) obtained by means of the log-likelihood maximization 
procedure whereas cyan diamonds are used for Rc(m) estimated from the WT method [Eq. (5) in “Methods”]. 
(Lower panel) The daily number of imported cases µ(m) estimated by the log-likelihood maximization 
procedure is plotted in thin grey whereas solid line is used for its weekly average.

Figure 3.  (a) The log-likelihood LL({I}, {Rc}, {µ}, z, σ ,V) obtained from the daily incidence of COVID-19 in 
Lombardy, is plotted as a function of z = aτ . Different curves correspond to different values of τ , which implies 
a different σ = a

√
τ  . (b) As in the upper panel for LL

(

{I(φ)}, {Rc}, {µ}, z, σ ,V
)

 with I(φ)(m) given in Eq. (4) for 
φ = φ∗ = 5E − 4.
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value of µ(m) , obtained by our method, as the input parameter of the generation tree algorithm (see “Methods”) 
which allows us to simulate a synthetic sequence {I} . In Fig. 1 we show that this synthetic sequence is in excellent 
agreement with the recorded daily incidence and this represents a strong check supporting the validity of our 
inversion procedure for both Rc(m) and µ(m).

An interesting result is provided by Fig. 3a where we plot LL({I}, {Rc}, {µ}, z, σ ,V) as function of z . The 
equivalent of Fig. 3a for a log-normal and for a Weibull distributed w(z) is presented in Figs. Suppl. 4a and 5a in 
SI. We find that LL, at fixed τ , presents a non-monotonic behavior with two maxima which are more evident for 
small τ values. The position z of the absolute maximum appears to be quite independent of τ . We wish to stress 
that the presence of local maxima makes very complicated the identification of the optimal a and τ by means of 
standard methods for LL  maximization36. Automatic procedures can be indeed trapped in a local maximum. Con-
versely, our fast LL evaluation allows us to explore a wide range of a and τ values, except for τ < 0.03 which are 
not numerically accessible because of the divergence of Ŵ(a) when a ≫ 1 . Considering data at fixed z we notice 
that LL tends to decrease for increasing τ , i.e. increasing σ . The main result is that the optimal value (maximum 
value of LL) is obtained for z = 6.2 days and τ = 0.03 , corresponding to σ = 0.45 days. A previous estimate 
z = 6.6 days was provided for Lombardy from the distribution of serial intervals, extracted from the analysis of 
contact tracing  data11,12. We find that the estimates for z are in reasonable agreement whereas important differ-
ences are found in the σ values. For instance serial intervals in Lombardy give σ = 4.9  days11,12 which is much 
larger than our estimate σ = 0.45 days. We remark that we obtain a similar estimate of σ ≃ 0.5 days for all 21 
Italian Regions and for the different functional forms of w(z) (see SI).

How to manage periodicity in data collection
Figure 3a indicates that the maximum of LL is located at the smallest accessible value of τ ( τ = 0.03 ) and there-
fore does not exclude that a larger LL can be obtained for a even smaller value of τ . This would correspond to an 
even smaller σ and, as a consequence, to an even more peaked distribution w(z). This scenario can be excluded 
by the behavior of LL({I}, {Rc}, {µ}, z, σ ,V) obtained implementing a log-normal distributed w(z) (Fig. Suppl. 
4a). In this case we are able to explore values of σ as small as 0.1 days and we find (Fig. Suppl. 4a) that the peak 
of LL({I}, {Rc}, {µ}, z, σ ,V) at z = 6 is non monotonic as function σ with a maximum value for σ = 0.45 , in 
agreement with the results of Fig. 3a. However, in this section we show that the weekly periodicity in the testing 
procedure can be responsible of a underestimate of the correct σ value. The periodicity is caused by the fact that 
a smaller number of tests are performed during the weekend with respect to the working weekdays and can be 
clearly enlightened by the daily number of new tested people {nT } whose Discretized Fourier Transform (DFT) 
presents (Fig. 4) a peak at a frequency value equal to one, when time is measured in week units. The behavior of 
the DFT of {nT } at small frequencies can be conversely related to the periodicity caused by the two waves. Indeed, 
an increasing (decreasing) number of infected induces a larger (smaller) number of tests, leading to a correlation 
between the two signals {nT } and {I} . The same peak at small frequencies is indeed also found in the DFT of {I} 
where a second smaller peak at f = 1week−1 is still observed (Fig. 4). This second peak can be attributed to the 
weekly periodicity in the number of tests.

In the following we develop a simple argument to disentangle the daily number of infected {I} from the 
daily test number {nT } . More precisely we assume that number of identified infected, during the m-th day, can 
be viewed as the sum of two contributions I(m) = I(φ)(m)+ Iran(m) . Here Iran(m) represents asymptomatic 
individuals who are identified as infected, on the m-th day, substantially by chance, according to a random 
search within a population NP . Indicating with ITOT (m) the total number of new infected individuals during 
the m-th day, and taking into account that the search is not fully random but it is usually focused on a subset 
NPφ1 of the total population, we have Iran(m) = nT (m)ITOT (m)/(φ1NP) , with φ1 < 1 . The quantity I(φ)(m) 
conversely includes all infected with symptoms and all individuals who have been in strict contact with them. It 

Figure 4.  The DFT of the series {I} (black lines), {nT } (red circles) and {I∗} (blue triangles) as function of the 
frequency. Time is measured in week units such that the peak in 1 corresponds to a weekly periodicity. (Inset) 
The Pearson’s correlation coefficient ρ

(

{I(φ)}, {nT }
)

 as function of φ . The horizontal red line represent the value 
ρ
(

{I∗}, {nT }
)

.
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is reasonable that these individuals are always tested and therefore their identified infection is not related to the 
daily number of performed tests. We define it as the “disentangled” incidence rate since we expect that its value 
does not depend on nT (m) . Assuming that I(φ)(m) is a fixed fraction φ2 < 1 of the total number of infected, 
I(φ)(m) = φ2I

TOT (m) , we obtain I(m) = ITOT (m)φ2 + ITOT (m)nT (m)/(φ1NP) , and therefore the disentangled 
incidence daily rate I(φ)(m) can be written as

where φ = φ1φ2 is a parameter which can be fixed by imposing that {I(φ)} is not causally related to {nT } . More 
precisely we observe that (inset of Fig. 4) the Pearson’s correlation coefficient, ρ

(

{I(φ)}, {nT }
)

 , between the tem-
poral series {I(φ)} and {nT } is a monotonic increasing function of φ . We therefore identify the optimal threshold 
φ∗ for decorrelation by imposing ρ

(

{I(φ)}, {nT }
)

= ρ
(

{I∗}, {nT }
)

 . Here {I∗} is the temporal series obtained by 
randomly reshuffling the original series {I} in such a way that I∗(m) = I(m∗) , where m∗ = m+ k∗ and k∗ is an 
integer random number uniformly distributed in the interval [−3 : 3] . By construction {I∗} cannot present the 
weekly periodicity of {I} , as confirmed by its DFT (Fig. 4). The condition ρ

(

{I(φ)}, {nT }
)

= ρ
(

{I∗}, {nT }
)

 , there-
fore, allows us to obtain, after setting φ = φ∗ in Eq. (4), a series {I(φ)} whose daily variation is uncorrelated to the 
weekly periodicity of {nT } . In Fig. 3b we plot LL(φ) = LL

(

{I(φ)}, {Rs}, {µ}, z, σ ,V
)

 as function of z , for different 
values of τ and φ = φ∗ . This figure still shows the presence of a maximum at z = 6.1 and interestingly, at fixed 
z , LL(φ) non monotonically depends on τ , with the largest value reached for τ = 0.15 . This leads to σ = 0.95 
days which represents a more reasonable estimate than the smaller value suggested by Fig. 3a. Similar results are 
obtained for similar choices of φ ∈ (0.2φ∗, 5φ∗) , for different functional form of w(z) and also for the majority 
of Italian regions (see SI) even if, in few cases, the value of φ∗ is so small to hide the information contained in 
{I(φ)} leading to a less significant LL(φ) (see Fig. Suppl. 11d, as an example).

We remark that the disentangled incidence rate {I(φ)} also allows us to take better into account the incidence 
of asymptomatic people that remain undetected. Their contribution can be neglected in the hypothesis that their 
percentage remains constant over time, whereas their temporal variations could introduce a wrong estimate of 
the transmission parameters. Nevertheless, since the quantity {I(φ)} should represent all individuals which are 
certainly tested it is expected to be much less affected by the contribution of asymptomatic undetected people 
with respect to the original incidence rate {I} . Accordingly, the observation that the two incidence rates {I(φ)} 
and {I} lead to similar results indicates that our procedure is only weakly affected by temporal variations in the 
percentage of asymptomatic people. To further support this conclusion, in Suppl. Fig. 8 we present results using 
for the incidence rate the daily number of individuals entering the intensive care units IICU . We obtain results 
that do not differ significantly from the one obtained for {I(φ)} , further supporting the stability of our findings. 
In Suppl. Fig. 3 we also show that a similar estimate of the optimal z and τ value is obtained by applying a But-
terworth filter to I(m) to filter out Fourier components in the frequency range [1/7.5, 1/6.5]days−1.

Optimal quarantine duration & fast switching protocols
Using the best estimate z = 6.1 and σ = 0.95 we obtain that the residual risk of virus transmission after a quar-
antine period of 10 days is smaller than 0.05% . Our estimate is smaller than the one considered by the Centers 
for Disease Control and Prevention (CDCP) which indicates that at Day 10, with symptom monitoring but 
without diagnostic testing, the estimated residual post-quarantine transmission risk is 1.4% with a range 
[0.1%− 10.6%] . We remark that this estimate is mostly based on the model proposed in Ref.37 which uses as a 
key information the serial interval distribution obtained in ref.27. As already shown in Ref.15, the estimate of σs 
obtained by the serial interval analysis of Ref.27 is significantly larger than the standard deviation σ of generation 
time and this can be responsible for an overestimation of the post quarantine transmission risk. In order to better 
explore the effect of σ on the optimal quarantine duration tq , we consider the numerical model [Eq. (2)] under 
the assumption that individuals which have been in contact with an infected person can be put in isolation for 
a quarantine period tq . More precisely, we consider a constant number of daily imported cases µ(m) = 10 , a 
constant reproduction number Rt(t) = R0 = 3 and a mean value of the generation time z = 6 days. We then 
assume that a fraction ξ , randomly selected within the population of infected individuals, are put in quarantine. 
This corresponds to remove from the infectious tree all the secondary cases infected by a primary case during 
his quarantine period. To evaluate the efficiency of the quarantine policy, for different values of ξ , we measure 
the effective exponent α = log

(

I(tf )

I(t0)

)

 with tf = 350 days and t0 = 100 days. The exponent α controls the slope 
of the epidemic curve and, for instance, a value α = 0 indicates a constant I(t) whereas in the case of an expo-
nential growth of I(t), α becomes much larger than 1.

The contour plot of α as function of σ and tq is presented in Fig. 5 which shows that, for all values of ξ , there 
exists a transition between the smaller α from the larger α � 1 region and therefore it is easy to identify the 
optimal duration of the quarantine period toptq  such as for tq > t

opt
q  one is always in the α � 1 region where the 

virus spreading is under control. We find that toptq  is an increasing function of σ , as expected, and for ξ ≤ 2/3 no 
quarantine option appears efficient in spreading reduction if σ � 4.

We next discuss the influence of σ in fast periodic switching  protocols38 where periods of stringent lockdown 
alternate with periods when only weak social constraints are imposed. The same consideration applies to the 
protocol of alternating  quarantine39, where the population is subdivided in two non interacting subsets, each one 
subject to a fast periodic switching protocol in phase opposition: While one subset is in full lockdown, the other 
subset has regular activity. These protocols have the advantage to suppress the virus outbreak, while at the same 
time they allow for continued economic activities. More precisely, we take as reference value Rc(m) = 3 meas-
ured in Lombardy at the beginning of October 2020, in a temporal period where substantially all the activities, 

(4)I(φ)(m) =
I(m)

1+ nT (m)
φNP
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including schools, were open. We therefore assume that during an interval of duration TNLD the reproduction 
number Rt(m) assumes the constant value Rt(m) = 3 , whereas in the subsequent period of duration TLD a rigid 
lockdown decreases Rt(m) to very low values. It is quite intuitive that in order to quench existing infections, it is 
necessary that TLD > z + σ , so that an infected individual will have a low probability to be still infectious when 
s/he comes back to normal activity. To test this point we simulate the evolution of I(m) over a temporal interval of 
one year, assuming a periodic Rt(m) which alternates, each TLD = TNLD = 2z , between the values of Rt(m) = 3 
and Rt(m) = 0.25 , leading to a periodic Rc(m) (inset of Fig. 6) which, according to Eq. (1) follows Rt(m) with a 
delay which depends on σ . We always assume a Gamma distributed w(z) with z = 6.1 days, obtained from our 
analysis, and we consider two values of σ , σ = 0.95 obtained from our analysis and σ = 4.9 days estimated from 
serial  intervals11,12. Results (Fig. 6) clearly show that for a sufficiently large σ , I(m) presents fluctuations around 
an average exponential growth which is steeper for larger σ . Obviously, in this case the fast switching protocol 
does not work. Conversely, for σ = 0.95 the exponential growth is replaced by a much slower power law increase 
and I(m) fluctuates around an average value which changes very slowly in time. We can finally conclude that 
only in the case of small σ fast switching strategies give the possibility to keep the disease spreading always under 
control leaving simultaneously enough space to normal activities.

Figure 5.  The contour plot of the effective exponent α which controls the growth velocity of the disease is 
plotted for different σ and different duration of the quarantine period tQ , for numerical simulated I(t) with 
µm = 10 and Rc(m) = 3 and a precentage ξ of population put in quarantine. Left panel presents results for 
ξ = 0.75 whereas right panel for ξ = 0.66 . We assume that w(z) is Gamma distributed with z = 6.1 days.

Figure 6.  The simulated daily incidence I(m) for a periodic fast switching protocol which alternates period 
without constrains to rigid lockdown periods, each one lasting 12 days. We assume I(0) = 1000 at the starting 
time. Different colors and symbols are used for different values of σ in the probability distribution of generation 
time w(z), which is Gamma distributed. The green dashed line is a power law fit m1/2 for the temporal evolution 
of the average value of I(m) when σ = 0.95 . (Inset) We plot with dashed orange line the evolution of Rt(m) 
implemented in the numerical model. The other curves represent the evolution of Rc(m) for different values of τ , 
with the same color code and symbols of the main panel.
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Discussion and conclusions
We have presented a detailed analysis of the log-likelihood LL({I}, {Rc}, {µm}, z, σ ,V) for the daily incidence rate 
{I} of COVID-19 in different Italian regions. We have presented a new method which provides, for a fixed func-
tional form of the generation time distribution w(z), the daily evolution of the case reproduction number Rc(m) 
together with the daily number of imported infections µ(m) . The optimization method is sufficiently fast to allow 
us to explore a wide range of the parameters z and σ , controlling the functional form of w(z). In this way we are 
able to estimate the optimal value for all transmission parameters which appear in the renewal equation (Eq. 2). 
In particular we obtain both the daily evolution of the reproduction number but also the optimal functional form 
of w(z). The efficiency of the method is demonstrated by the fact that implementing these optimal values in the 
numerical code we find a numerical daily incidence rate which is in very good agreement with the experimental 
one. The achieved information can be used to test and optimize control strategies to mitigate the damage via 
the identification of the key parameters z and σ which can be obtained in a learning period m ∈ [1,mlearning ] . 
Interestingly, when we consider mlearning = 10 days or mlearning = 30 days, we already find (see Fig. Suppl. 6) the 
optimal values z = 6.1 and σ = 0.95 , in agreement with results obtained when mlearning = 1 year. This indicates 
that we can have a good estimate for the generation time distribution already after 11 days from the starting of 
data collection. Other  methods13–15 based on contact tracing, conversely, needs a longer temporal window to 
collect the correct infector-infectee pairs and to have sufficient data to measure the incubation period distribu-
tion. The stability of the optimal values of z and σ , for different learning period, also indicates that their estimate 
appears only weakly influenced by the enhancement of NPI. which conversely strongly  affects16,17 the evaluation 
of the mean serial interval obtained via contact tracing.

In particular, the small value of σ ≃ 1 shows that an individual remains infectious in a small temporal 
window between ∼ [4 : 8] days, from the starting time of his/her infection, and transmission risk is very small 
outside this interval. This information can be useful to better characterize the biological processes promoting the 
transmission of the disease and in planning optimized strategies for mitigating the spreading of the virus. For 
instance, our study indicates that it is sufficient a quarantine period no longer than 8 days. Moreover, we have 
shown that it could be possible to keep the number of daily infected quite constant by means of a fast periodic 
switching protocol which alternates periods of 12 days of rigid lock-down with unconstrained periods. In this 
way it is possible to avoid the exponential growth of the virus spreading while keeping socio-economic activity 
ongoing at about the 50% of maximum capacity.

Methods
The generation tree algorithm. We present a standard procedure for a self-exciting branching process 
where the time series I(m) is simulated according to a generation tree  algorithm40. The first step is setting the 
number I(0) of infected persons on the day 0 and use the daily number of imported infections µ(m) to obtain 
n0 = I(0)+

∑N
m=1 µ(m) , the number of infected people. Using the terminology of branching processes, this is 

the zero-th order generation and we index with k0 ∈ [1, n0] each infector, defined as mother element, which gen-
erates a number n(k0) of off-springs, i.e. the newly infected elements. The number n(k0) of off-springs depends 
on Rc(t(k0)) evaluated at the occurrence time t(k0) of their mother, according to a Poisson distribution PP(n(k0)) 
with the expected value E(n(k0)) = Rc(t(k0)) . This is the first order generation containing n1 =

∑n0
k0=1 n(k0) ele-

ments, each one infected at a time t(k1) = t(k0)+ z , where z is a random time extracted according to the prob-
ability generating function w(z). Only off-springs infected during the observational time window t(k1) ∈ [1,N] 
are considered. At the subsequent step (j + 1) the previous step is repeated considering as mother elements the nj 
off-springs of the previous (j − 1) generation. In this way one obtains nj+1 new off-springs and the process is iter-
ated up to the final generation jf  , such that njf+1 = 0 . The numerical code is available for open access at https:// 
github. com/ Stati stical- Mecha nics- Group- Caser ta/ covid- maxim um- logli kelih ood- estim ation.

The log‑likelihood maximization procedure. The algorithm assumes an initial trial value of {R0
c } 

and {µ0} . At each Monte-Carlo (MC) trial we randomly select a day m′ ∈ [1,N] and extract δR = qrrRs(m
′) 

with r uniformly distributed between [−1/2, 1/2] and qr ≪ 1 . We evaluate E[I(m)] replacing in Eq. (2) 
Rc(m

′) = Rc(m
′)+ δR . The new value of E[I(m)] is used in Eq. (3) for the evaluation of the trial log-likelihood 

LL′ . If LL′ > LL the new value of Rc(m′) is more consistent with data and its value is therefore retained, otherwise 
it is discarded. A similar procedure is applied to the series {µ} with the trial value µ(m′) = µ(m′)+ qµr (with 
qµ ≪ 1 ) accepted only if it leads to a larger value of LL′ > LL from Eq. (3). We complete a Monte-Carlo step 
when N trials have been performed. The new value Rc(m′) only affects terms with m > m′ in the first sum in the 
rhs of Eq. (3) and therefore the number of operation in a MC step is of order N × N/2 making the computation 
very fast with 5000 MC steps involving about 10 s of standard CPU time, when N = 360 days. Since {µ} only 
weakly affects LL, the evaluation is optimized by including the trials on {µ} only each 20 MC steps. We have 
verified that simulations evolve towards an asymptotic value which is independent of the specific initial choice 
of {R0

c } and {µ0} . Indeed, only the initial value R0
c (0) is relevant since it remains constant during the simulation 

and therefore affects the other values of Rc(m) , because of the smoothness constraint (Eq. 3). For this reason 
we extract this value by means of the Wallinga-Teunis (WT)  method18 which, from Eq. (1), can be written as 
Rc(m) =

∑N
j=m β(j,m) , leading to

w h i ch  i s  obt a i n e d  i mpl e m e nt i ng  t h e  d e f i n i t i on  β(m, j) = Rt(m)w(m− j) an d  u s i ng 
Rt(m) = E(I(m))/

∑N
j=1 w(m− j)I(j) , given by Eq. 2 after setting µ(m) = 0 . In particular, we use the initial 

(5)Rc(j) =
N
∑

m=0

I(j +m)w(j)
∑N

l=0 I(j + l −m)w(l)
,

https://github.com/Statistical-Mechanics-Group-Caserta/covid-maximum-loglikelihood-estimation
https://github.com/Statistical-Mechanics-Group-Caserta/covid-maximum-loglikelihood-estimation
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value of R0
c (m) from Eq. (5) for m ≤ 3 , whereas for m ≥ 4 we assume that R0

c (m) linearly decreases to R0
c (m) = 0.1 

and then remains constant at larger m. We also fix µ0(m) = 0 for all m ∈ [1,N] . Results do not depend on this 
initial choice. Concerning the value of the parameter V, from Eq. (1), we have that significant changes of Rc(s) 

are possible only on time scales larger than σ and we have verified that setting V = 3.5/

√

∑N
m=1 I(m) in Eq. 

(3) this condition is satisfied.
We have verified that after 5000 MC steps the simulation reaches its asymptotic value, namely {Rc} and {µ} do 

not vary appreciably for additional MC steps. The numerical code is available for open access at https:// github. 
com/ Stati stical- Mecha nics- Group- Caser ta/ covid- maxim um- logli kelih ood- estim ation.

The independence between w(z) and �t
rec

. We indicate with I(true)(m) the number of infections 
which truly occurred on the m-th day. This infection, however, is identified and reported only subsequent days. 
More precisely, we indicate with ψ(�trec) the distribution of the time delay �trec between the time of the infec-
tion and the time when this infection is identified and reported in the data set. Accordingly, the daily rate of 
recorded infections can be written as

where we extended the sum over n to the range (−∞,∞) assuming that I(true)(m) = 0 if m is smaller than the 
first detection day and also ψ(j) = 0 if j ≤ 0 . We have also assumed that ψ is a stationary distribution which 
depends only on the time difference m− n . The renewal Eq. (2) is expected to hold for I(true)(m)

but we will show that it also holds for I(m). We first introduce the quantity w̃(k) = w(k) if k > 1 and w̃(k) = 0 
if k ≤ 1 which allows us to write Eq. (7) as

Inserting Eqs. (8) in (6) we obtain

that after the change of variables k = n− j can be rewritten as

with µrec(m) =
∑∞

n=−∞ µ(n)ψ(m− n) . We next assume that the time evolution of Rc(j) is sufficiently slow to 
be considered roughly constant during the time scale where ψ(m− j − k) goes to zero

where in the last step we used Eq. (6). We finally obtain

which is the renewal equation for I(m) no longer depending on ψ(�trec) . In particular the generation time 
distribution w(z) obtained from Eq. (12), for the daily recorded incidence rate I(m), is the same controlling the 
evolution of I(true)(m) [Eq. (7)].

Data availability
We consider data provided by Protezione Civile for the 21 Italian regions and collected in https:// github. com/ 
David eMagno/ Itali anCov idData. We consider the time series from February 24, 2020 (m = 1) up to February 
24, 2021 (m = N) for global N = 366 days.
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(6)I(m) =
∞
∑

n=−∞
I(true)(n)ψ(m− n)

(7)E[I(true)(m)] =
m−1
∑

j=−∞
Rc(j)w(m− j)I(true)(j)+ µ(m)

(8)E[I(true)(m)] =
∞
∑

j=−∞
Rc(j)w̃(m− j)I(true)(j)+ µ(m).

(9)E[I(m)] =
∞
∑

n=−∞

∞
∑

j=−∞

(

Rc(j)w̃(n− j)I(true)(j)+ µ(n)
)

ψ(m− n).

(10)E[I(m)] =
∞
∑

k=−∞
w̃(k)

∞
∑

j=−∞
Rc(j)I

(true)(j)ψ(m− k − j)+ µ(rec)(m),

(11)
∞
∑

j=−∞
Rc(j)I

(true)(j)ψ(m−k− j) ≃ Rc(m−k)

∞
∑

j=−∞
I(true)(j)ψ(m−k− j) = Rc(m−k)I(m−k),

(12)E[I(m)] ≃
∞
∑

k=−∞
Rc(k)w̃(m− k)I(k)+ µrec(m) =

m−1
∑

k=−∞
Rc(k)w(m− k)I(k)+ µrec(m)

https://github.com/Statistical-Mechanics-Group-Caserta/covid-maximum-loglikelihood-estimation
https://github.com/Statistical-Mechanics-Group-Caserta/covid-maximum-loglikelihood-estimation
https://github.com/DavideMagno/ItalianCovidData
https://github.com/DavideMagno/ItalianCovidData
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