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Design of robust cubature 
fission particle filter algorithm 
in multi‑source cooperative 
navigation
Wei Sun & Jingzhou Liu*

As a part of the multi‑source cooperative navigation scheme, data fusion has a significant impact 
on the quality of state estimation. Particle filtering has gradually become the focus of many fusion 
methods due to its unique theoretical advantages in nonlinear non‑Gaussian systems. However, the 
particle degradation and the resulting sample impoverishment restrict its application in complex 
engineering scenarios. In this paper, a robust cubature fission particle filter (RCFPF) is proposed to 
deal with these problems. First, in the framework of cubature rule, Huber function is used to combine 
the L2 norm and L1 norm to improve the importance density function(IDF), suppress the observation 
noise. Meanwhile, the proposed distribution(PD) is further optimized by combining the Gaussian 
distribution with Laplace distribution to alleviate particle degradation. Second, the particle swarm is 
fissioned before resampling, and the particle weight is reconstructed by fission of high weight particles 
and covering low weight particles to inhibit sample impoverishment. The vehicle experiments of 
multi‑source cooperative navigation show that the proposed algorithm achieves better test results in 
accuracy and robustness than extended Kalman filter (EKF), strong tracking particle filter (STPF), and 
cubature particle filter (CPF).

The relative position provided by cooperative navigation is the basis of vehicle intelligent transportation and 
location-based  service1,2, which can meet a variety of road traffic requirements, including smart transportation, 
collision avoidance, and congestion reduction. Therefore, it has attracted extensive attention in recent years. In 
order to improve the efficiency of position perception and obtain higher precision cooperative navigation solu-
tions, scholars have made a lot of research work and gradually improve the quality of navigation  parameters3–7. 
However, most of these studies integrate new navigation modes from the perspective of measurement and update 
the cooperative navigation system to obtain better solutions. There are few improvements on the data fusion 
methods that play an important role in the solution. The improvement of relevant literature remains within the 
framework of Kalman filter (KF) requiring linear Gaussian  system8. Because of the inherent theoretical deficiency, 
its accuracy in dealing with multi-source complex systems is always limited to some extent. Unlike Kalman filter, 
particle filter (PF) has almost no requirements for the system and noise  characteristics9, so it becomes a possibility 
of multi-source cooperative navigation data fusion.

As one of the realization methods of Markov-Bayesian recursion, PF uses a set of weighted particles to itera-
tively update to approximate a posteriori probability density distribution of the system model. In theory, it can 
carry out probability reasoning and recursive estimation for any  system10. Gordon et al. performed resampling 
after Monte Carlo importance sampling, so that PF began to have a basis for practical  applications11. Since then, 
PF has gradually become a focus in the field of data fusion and improved with various  theories12–18. Although 
particle filtering has made great progress in recent years, particle degradation and the resulting sample impov-
erishment problem have always restricted the further development and application of the above-mentioned 
various improved  PFs12–18. Particle degradation means that after multiple iterations, only a small number of 
particles in the particle swarm have large weights, while most of the particles have negligible weights, so that a 
lot of calculation time and resources are wasted on particles with small weights, which affects the performance 
of the  algorithm19–21. Kong has proved that particle degradation is an inherent problem of  PF22. Doucet and 
Wang further pointed out that the variance of particle weight increases with  time23,24. However, the proposed 
distribution (PD) generated by the importance density function (IDF) in PF is the direct approximation of the 
particle to the posterior probability distribution, and its simulation accuracy has an important impact on the 
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estimation performance. Selecting an appropriate IDF can suppress the weight variance and alleviate the degra-
dation  problem25. Therefore, researchers have carried out a lot of researches around IDF.

The state equation is the earliest and most extensive choice of IDF because of its relative simplicity and easy 
 accessibility26. This choice is easy to implement and will not increase additional computational load. However, 
using the state transition probability density represented by the state equation as the PD does not consider the 
current measurement information. Since the particle weight is proportional to the likelihood function, choos-
ing the equation of state as the IDF will make the variance of the particle weight larger, especially when the 
likelihood function is relatively "steep" or located at the tail of the state transition probability distribution, it will 
accelerate the degradation and even cause the filter  divergence27. To solve this problem, related scholars intro-
duced the annealing algorithm to optimize the probability  density28,29. Although the number of particles in the 
likelihood region is increased, the loop process introduced by the annealing optimization also greatly increases 
the computational load and limits the practical application of PF. Another idea of IDF selection is to introduce 
measurement, i.e., using existing filtering methods to make the a priori distribution and the likelihood function 
have a larger overlap area through the measurement so as to better match the posterior distribution. According 
to different Bayesian integral approximation strategies, commonly used improved PF includes extended particle 
filter (EPF)30 based on EKF, unscented particle filter (UPF) based on Unscented Kalman filter (UKF)31, and cuba-
ture particle filter (CPF) based on cubature Kalman filter (CKF)32. Since the use of existing filtering as IDF can 
greatly improve the calculation performance of PF under the condition of appropriately increasing the amount 
of calculation, this method is more and more favored by researchers and has achieved considerable development. 
Liu and Hu have obtained a strong tracking particle filter (STPF) based on the improved EKF, which was used to 
compensate the model error and apply it to fault  detection33,34. Zhang uses the truncated adaptive theory to gen-
erate the proposed distribution under the CPF framework to optimize the accuracy of the algorithm in strongly 
nonlinear  systems35. Havangi uses a particle swarm optimization algorithm to improve UKF, adjust the position 
and velocity of the particle swarm to improve the accuracy of the posterior probability of particle  simulation36.

However, the various studies mentioned above all use different methods to improve the KF to produce PD to 
approximate the posterior probability density within the PF framework. Although its accuracy is continuously 
improved through the combination of various theories, the theoretical basis of these methods are based on the 
central limit theorem and limited to the Gaussian distribution of L2 norm estimation. The fusion of the L1 norm 
only revolves around its sparsity and fails to make full use of other properties of the L1  norm16–18. In fact, for more 
complex multi-source systems, the posterior distribution is often affected by multiple factors, which is difficult 
to approximate it with a single distribution as "irregular". The definition of PD in Gaussian distribution limits 
the superiority of PF in dealing with general nonlinear non-Gaussian systems. At the same time, various studies 
focus on the approximation of the real model of the system and few literatures pay a attention to suppressing the 
interference of various noises of the sensor itself to the PD.

In this paper, for the above-mentioned deficiencies and limitations the Huber M estimation based on the 
third-order cubature law is applied to generate PD in PF. After the cubature rule is applied to transfer the system 
states, the algorithm combines the L2 norm and L1 norm using the Huber function for a better approximation of 
the posterior probability distribution. The posterior probability distribution of the system is redefined through 
their corresponding Gaussian distribution and Laplace distribution. The proposed idea also can make full use 
of the robustness of the L1 norm to suppress the interference of observation noise to PD. In order to further 
deal with the sample impoverishment problem, the algorithm uses the fission method to derive the high weight 
particles before resampling, and uses the offspring particles to cover the low weight particles in the parent to 
reconstruct the particle swarm weight. Finally, the robust cubature fission particle filter is formed. The vehicle 
experiments of multi-source cooperative navigation show that RCFPF performs better in accuracy and robustness 
than EKF, STPF, and CPF. It provides a new idea for optimizing PD, alleviating particle degradation and sample 
impoverishment, and also provides a new algorithm for data fusion of multi-source cooperative navigation.

The rest of the paper is organized as follows: the second part introduces the cooperative navigation system, 
mainly the measurement of each subsystem that needs data fusion. The third part introduces the specific methods 
of the algorithm, including the process of classical PF, the construction of IDF and the specific process of particle 
swarm weight reconstruction. In the fourth part, the vehicle experiment of cooperative navigation is carried out, 
then the results comparison and analysis are given. The fifth part summarizes the paper and gives the conclusion.

Cooperative navigation
Vehicle cooperative navigation is generally realized on the platform of vehicle ad hoc networks (VANET). In 
order to simplify the system and facilitate interpretation, this paper takes the working logic between vehicles a 
and b (receiver a and receiver b) in VANET as an example, and its algorithm and conclusion can be extended to 
ad hoc networks with more  vehicles7. In this article, the cooperative positioning system uses the pseudo range 
and Doppler frequency shift acquired by the receiver, the relative distance measured by Ultra Wide Band(UWB) 
to realize it. The workflow of relative position sensing of cooperative navigation is shown as follows: vehicle a 
obtains additional information through UWB communication, i.e., the pseudorange and Doppler frequency 
shift of vehicle b, makes double difference in combination with local pseudorange and Doppler frequency shift, 
measures the distance between two vehicles with UWB, and performs data fusion of the navigation system with 
the help of RCFPF to obtain the final cooperative navigation positioning solution. In order to fully demonstrate 
the algorithm process, we first introduces the fusion measurements required by each navigation system. Second, 
the system equations of cooperative navigation are given, and the data fusion is carried out in its framework.

GPS observation. As one of the most important observations of the receiver, the pseudorange can be used 
to determine position information through single-point positioning, i.e., three-dimensional coordinates and 
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time can be calculated through the pseudorange of at least four satellites. In tightly integrated cooperative navi-
gation, the system only obtains pseudoranges for data fusion and avoids directly obtaining position information. 
Define the pseudorange between the receiver and satellite at time t as shown in Eq. (1):

where ρe
a is the observed pseudorange from receiver a to satellite e; Re

a is the true distance from receiver a to 
satellite e; δa is the clock error of receiver a; �e is the common error related to satellite e, such as satellite clock 
error, atmospheric delay error, etc.; ζ ea is the non-common error related to satellite e, such as the thermal noise 
of receiver a, multipath interference and other non-line-of-sight errors.

When satellite e and satellite j are observed by receiver a and receiver b at the same time, the receiver clock 
error and satellite-related common error in Eq. (1) can be eliminated by the double differenced pseudoranges 
of the two satellites, as shown in Eq. (2):

where ρej
ab represents the double differenced pseudorange observed by receiver a and receiver b on satellite e and 

satellite j; Rej
ab is the double differenced true distance from receiver a and receiver b to satellite e and satellite j; ζ ejab 

is the non-common error residual of receiver a and receiver b to satellite e and satellite j that cannot be eliminated 
by double difference. Define the unit line-of-sight vector −→κsat from receiver rec to satellite sat:

where, rsat and rrec  are satellite and receiver positions, respectively.
The single difference definition of the real distance between the receiver and the satellite is given by −→κsat:

where −→κe  and −→κj  are the unit line-of-sight vectors from receiver a (or receiver b) to satellite e and satellite j, 
respectively. −→rab is the relative distance vector between receiver a and receiver b.

Then the double differenced true range Rej
ab can be obtained according to Eq. (4), as shown in Eq. (5):

Substituting Eq. (5) into Eq. (2), we can get:

It should be noted that since the positioning error of Global Positioning System (GPS) is generally within 
tens of meters, which is almost negligible compared with the distance from the navigation satellite to the earth’s 
surface, the unit line-of-sight vector between the receiver and satellite can be obtained by using the approximate 
receiver position and the known satellite  ephemeris37.

Doppler frequency shift is the signal frequency change caused by the relative movement between a satellite 
and a receiver, and can be used to obtain the moving speed of the receiver. In this paper, the definition of Doppler 
frequency shift ϑe

a(t) of satellite e by receiver a at time t is shown in Eq. (7):

where c is the speed of light; qu is the carrier frequency of the satellite signal; γ e
a  is the Doppler observation error. 

The double differenced Doppler frequency shift ϑej
ab(t) is obtained as:

in Eq. (8), γ ej
ab is the residual error of the Doppler observation error between satellite e and satellite j by receiver 

a and receiver b. Substituting the double differenced true distance into it gets:

where −→vab is the relative velocity between receiver a and receiver b.

UWB observation. UWB takes the half of the product of signal propagation time and propagation speed 
as the relative distance, and uses at least three reference stations with known coordinates to obtain the three-
dimensional coordinates of the target point through resection. Under normal circumstances, the vehicles run 
on the same road and the driving track is regular, this paper assumes that there are no obstacles between UWB 
transceivers. In Shen’s  work7, the quadratic polynomial error model is derived using the real pulse UWB data 
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of multispectral Solutions Inc. (MSSI) provided by Joseph et al38. The experimental results by Shenshowed that 
the probability density of the UWB ranging error can be assumed to obey the zero-mean Gaussian distribution 
with variance of 0.3 m2 , and the UWB measurement data were simulated through these conclusions. In order to 
control variables and more closely compare and analyze the performance of the proposed algorithm, the UWB 
data used in this paper remains the same as that inShen’s work. The definition of UWB ranging here meets the 
following requirements:

where x , y , s are the three-dimensional positions of vehicles a and b, respectively; ςab is the observation noise 
at UWB distance.

System modeling. The state equation of the cooperative navigation system is defined as:

where τ is the measurement interval; χ is the state vector; � is the state transition matrix; Ŵ is the process noise 
model; ς is the three-axis relative acceleration noise, and satisfies a zero-mean Gaussian distribution with a 
standard deviation of σ = 1 . The covariance matrix of the process noise is set to Q = σ 2ŴŴT . The specific rep-
resentations of each matrix are as follows:

The measurement equation of the system is showed as the Eq. (12):

where Z is the vector of measurements, including the double differenced pseudoranges, double differenced Dop-
pler frequency shifts and relative distances between vehicles; h is a nonlinear function composed of Eqs. (6), (9) 
and (10); ζ is the noise of the observation vector; the covariance matrix of the system’s observations is defined as 
� . If the number of simultaneously observed GPS satellites is L, the system observation vector and its observa-
tion error can be defined as:

In order to obtain the covariance matrix of observation noise, we first need to define the observation error 
variance of pseudo range σ 2

ρ , Doppler frequency shift  σ 2
ϑ , UWB ranging error σ 2

r  and the matrix A as the follow: 

where 1 represents a matrix whose elements are all 1. Then, the observation noise matrix can be obtained, as 
shown in Eq. (14):

where �ρ = σ 2
ρAA

T , �ϑ = σ 2
ϑAA

T , �r = σ 2
r .

Robust cubature fission particle filter
Classical particle filter. Filtering can fuse a variety of measurement data, and use these data to finally 
obtain the estimated target parameters. Its purpose is to estimate, but the process can be regarded as the fusion 
of multiple measurement data. The particle filter uses weighted particles to perform Bayesian estimation based 
on Monte Carlo idea. Under the assumption of the first-order Markov process, the algorithm logic is divided 
into two stages, namely state prediction and time  update39. In the state prediction stage, the algorithm predicts 
the particle state through the kinematic model of the system. Liu et al. have proved that q
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 40. However, in the actual algorithm implemen-
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)
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k to generate new particle states, and each state is evaluated by the particle weight obtained 

by time update, as shown in the following equation:

where N is the number of particles and δ() is the Dirac function. The particle weight is calculated as follows:
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where p
(
Zk|χi

k

)
 is the likelihood function, p(χi

k|χi
k−1) is the state transition probability, and q(χi

k|χi
k−1,Zk) is 

the importance density. In order to update the particle state, the weight needs to be normalized:

Considering the problem of particle degradation, resampling technology is used in classical particle filters. 
First, the effective particle number Neff  needs to be judged. When the number of effective particles is less than 
the specified threshold Nth , the algorithm performs resampling to avoid resource waste and improve comput-
ing efficiency by eliminating small-weight particles. The calculation of effective particle number is as follows:

The corresponding threshold Nth should be set according to engineering experience, generally 0.3 ~ 0.8 Neff  . 
Resampling is performed if Neff  is less than the threshold. Otherwise, the posterior estimation of the state is 
obtained directly to complete the particle filter.

Importance density function design. As mentioned earlier, IDF has a crucial impact on the perfor-
mance of a particle filter. Li et al. has proved that the measurement with significant noise will produce a less 
precise PD when introduced into the IDF, causing interference to the simulation of a posteriori  distribution41. 
For further explanation, we take CKF as IDF as an example. CKF is an L2 norm estimation based on Gaussian 
distribution. Although the cubature law compensates some errors from the perspective of system nonlinear 
error in the generation stage of PD. The L2 idea of minimum variance will square the error in the calculation 
process and amplify the accuracy loss caused by outliers. Therefore, the measurement outliers far away from the 
sample population have an obvious impact on the residuals squares sum of the sample population, resulting in 
the decline or even divergence of the overall estimation accuracy of CPF. Different from L2 estimation, the error 
probability distribution of L1 estimation belongs to Laplace distribution, which has more significant "thick tail" 
 characteristics42–44, when the variance of Laplace distribution is equal to that of Gaussian distribution, Laplace 
distribution has a higher probability density near and far from the mean than Gaussian distribution. So it is 
more suitable for the likelihood description of significant noise. At the same time, the error growth rate of L1 
norm estimation is "linear" and significantly slower than the quadratic growth of L2 norm error, which makes L1 
estimation have better suppression effect and stronger robustness against colored noise and outliers.

In this paper, we first fuse L2 and L1 estimation based on Huber function in the more advanced CKF algo-
rithm for nonlinear systems, and combine Gaussian distribution and Laplace distribution to better approximate 
the posterior probability of the system under the cubature law; secondly, the measurement update of CKF is 
transformed into linear regression, and solved by Huber M estimation. The M estimation uses Huber weight 
function as its weight function, which can give full play to the robustness of L1. So the algorithm will reduce 
the weight of the disturbed measurement, truncate and average the filtering innovation to achieve robustness. 

Cubature point calculation. CKF approximates the probability density function by weighting the cubature 
points. In order to realize function transfer, the algorithm first needs to generate a cubature point set with equal 
weight according to the cubature criterion:

where ξi is the cubature point; n is the state dimension; [eye]i represents the projection coordinates of the unit 
vector in the n-dimensional space on each axis; ωi is the weight of a cubature point.

State update. First, the cubature point ξi is used to obtain the updated state cubature point χi,k−1|k−1 according 
to the posterior state estimation χ̂k−1|k−1 and its covariance matrix Pk−1|k−1 at time k − 1:

Second, based on the system dynamics model, the function is transferred through the state cubature points, 
and the approximation χ∗

i,k|k−1 of the state transition probability density of each state cubature point is obtained:

Finally, the system priori state is obtained by equal-weighted fusion of the state cubature point information, 
and the priori error covariance matrix is estimated:
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where χ̂k|k−1 and Pk|k−1 are the priori state and its covariance matrix after the weighted average of each cubature 
point at time k.

Measurement update. Measurement update needs to use χ̂k|k−1 and Pk|k−1 obtained from state update. First, 
calculate the new cubature point χi,k|k−1 according to the a priori error covariance matrix:

In order to obtain the measurement likelihood description of each cubature point, it is necessary to use the 
new cubature point χi,k|k−1 to generate the observation cubature point zi,k|k−1 through the observation equation h:

Second, perform equal-weighted fusion estimation on the measured cubature points to obtain the measured 
estimated value ẑk|k−1:

Finally, the measurement variance matrix Pzz,k|k−1 and the covariance matrix between state and measurement 
Pχz,k|k−1 between the state prediction and the measurement prediction are obtained. The specific equations are 
as follows:

M estimation to solve linear regression. After the measurement update is completed, a linear regression equa-
tion needs to be constructed, and the measurement update is further transformed into solving the linear regres-
sion problem.

Using state prediction and measurements combined with observation equation to construct linear regression 
equation. The relationship between true state and valuation can be expressed as:

where χk is the true value of the state at time k , and δχk is the state prediction error.
The measurement Eq. (12) can be approximated as:
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]T
 . Combining Eq. (29) and Eq. (30) to obtain a linear regression equation:

where I is the unit matrix. Simplify Eq. (31) as follows:
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(26)ẑk|k−1 =
1

2n

2n∑

i=1

zi,k|k−1

(27)Pzz,k|k−1 =
1

2n

2n∑

i=1

zi,k|k−1z
T
i,k|k−1 − ẑk|k−1ẑ
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where Tk = diag([�kPk|k−1]).
Huber M estimation is used to solve the above linear regression. Define loss function:

where M is the total dimension of the state and measurements, and ηi is the i-th value of residual vector 
η = �kχk −�k.

The Huber function as Function ρ(ηi) , shown as follows:

where γ is the constraint factor, in this paper, it is set to 0.25. When γ is close to 0, the ρ function is close to the 
Laplace distribution of L1 norm estimation. When γ is close to infinity, the ρ function is close to the Gaussian 
distribution of L2 norm estimation. M estimation requires the minimum loss function, i.e., it is equivalent to

where

Defining ψ(ηi) = ϕ(ηi)/ηi , and the matrix � can be obtained as follows:

Using the above-mentioned matrices to simplify Eq. (38), we obtain Eq. (41):

Defining µ as the number of iterations, using the iterative method to solve Eq. (41), a posteriori state χ̂k at 
time k can be obtained:

The corresponding a posteriori error covariance matrix Pk|k is calculated as follows:

Weight reconstruction. Resampling is a method to eliminate the low weight particles to avoid the waste of 
computing resources caused by particle degradation. At the same time, by selecting and copying the high weight 
particles, resampling can maintain the confidence level of the particle swarm while keeping the total number of 
particles unchanged. However, this will destroy the diversity of particles. After several iterations, the algorithm 
will approximate the posterior distribution by only a few high weight particles in the initial particle swarm. The 
most extreme case is that the offspring particles are the offspring of a "most reliable" particle in the primary gen-
eration, i.e., the sample impoverishment. The simplest way to avoid sample impoverishment is to increase the 
number of particles, but this method is not efficient and will greatly increase the computational load.

In order to further alleviate the sample impoverishment and minimize the increased computational load, 
fission technology is adopted to derive particles before  resampling45. First, when the number of effective particles 
is less than the threshold, the particle swarm is arranged in the order of weight from small to large. Second, fis-
sion: take the current particle as the parent, select the first Nth high weight particles, take their state as the mean 
of Gaussian distribution, randomly select the state particles from this distribution to obtain the offspring, and 
use the offspring particles to replace the low weight particles in the parent in turn,the number of fission particles 
is proportional to the weight of the parent particles . Finally, normalize the weight of the new particle swarm, 
take each parent and its offspring particles as a group, evenly distribute the weight of the parent particle, and 
complete the weight reconstruction of the particle swarm. Compared with other methods of weight reconstruc-
tion, the fission method is simple to calculate and easy to implement, which can further alleviate the problem 
of sample impoverishment.
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]
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Vehicle test results and analysis
In order to verify the performance of the RCFPF algorithm, compare and analyze its impact on the relative 
position perception of cooperative navigation, the data used in the experiment were consistent with that in the 
experiment by  Shen7. In order to obtain the original data of the algorithm, the relative distance between vehicles 
was obtained by UWB based on MSSI. Meanwhile, in order to obtain the reference truth value, the Leica GS10 
receiver and the Novatel INS-LCI system integrating GNSS-INS were equipped on vehicles a and b, respectively, 
and the real time kinematic (RTK) positioning of them was implemented to obtained high-precision position 
estimations, which was used as the truth value to evaluate the algorithm performance. The pseudorange, Dop-
pler frequency shift obtained by satellite receiver and UWB range were used to directly execute the proposed 
algorithm. Figure 1 shows the test environment and experimental settings. Table 1 shows the accuracy of the 
equipment under RTK.

The data time in the experiment was about 9 min. During this time, the two vehicles transmitted measurement 
information through UWB communication. The data sampling rate of GPS was 1 Hz. At the same time, the Dif-
ferential Global Position System (DGPS) correction was executed through the GPS observations by a reference 
station of Nottingham Institute of geospatial research. In order to ensure a wide field of vision in the sky during 
data acquisition and ensure that the receiver can observe as many satellites as possible, the acquisition location 
is Clifton Boulevard between Derby road and Loughborough Road Road, Nottingham, UK. In the experiment, 
the initial relative position of the two vehicles is determined by GPS single point positioning, and the initial 
relative speed is set to zero. The initial state covariance matrix is set to 100×I6 , meanwhile σ 2

ρ = σ 2
ϑ = 1 which 

can be used to get the measurement noise matrix � according to the Eq. (14). The experiment is based on the 
EKF, CPF, STPF and RCFPF to perform data fusion and analysis to draw our conclusions.

Figure 2 shows the number of visible satellites at the time of data collection. It can be seen from the figure that 
the number of commonly visible satellites is greater than the four required for positioning in most of the time 
during the data acquisition. In a small amount of time less than four, we set the innovation in the Kalman filter to 
zero, enlarged the corresponding observation covariance matrix, and increased the distrust of the measurement 
to ensure the normal update of the state estimation. In order to highlight the accuracy of the approximation of 
a posterior distribution by RCFPF, the algorithm used a smaller number of particles and set it to 60. Because 
for approximate efficiency, it is meaningless to use a large number of particles for verification. And the EKF as 
the evaluation standard of particle approximation accuracy to judge whether these particles have accurately 
approximated the posterior probability from the accuracy of estimation results. The tight combination with 
UWB is defined as "T-CP with UWB". Figures 3, 4, 5 and 6 show the coordinate estimation errors of four "T-CP 
with UWB" filtering algorithms for three-axis and three-dimensional population.

As shown in Figs. 3, 4, 5 and 6, the accuracy of CPF, STPF, EKF, and RCFPF are successively improved, and 
the accuracy of RCFPF in each axis direction and overall accuracy is the best. This is because in the case of fewer 
particles, CPF and STPF used one-sided IDF, the PD that they produced cannot well approximate the posteriori 
distribution, which led to the fact that the accuracy of the two is inferior to that of EKF, and because STPF has 
adaptive function, its accuracy was slightly better than that of CPF. RCFPF combines the Gaussian distribution 

Figure 1.  Test environment and experimental settings.

Table 1.  RTK position accuracy parameters.

Equipment Horizontal accuracy (m) Vertical accuracy (m)

Leica GS10 0.01 0.02

Novatel INS-LCI 0.02 0.05
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and Laplace distribution to better approximate the system probability density, and combines the L1 norm to sup-
press observation noise, increasing the number of particles in the likelihood region, so it can obtain more accurate 
results under the condition of fewer particles. At the same time, it can be found that CPF has error fluctuation 
around 0 s and 200 s, which is because the DOP at these time is poor. Compared with other algorithms at this 
time, CPF is the most sensitive to DOP. The overall fluctuation of STPF is the strongest. This is because the state 
equation of the system is a linear equation and there is model error. STPF has a certain adaptive function. It 
mistakenly transfers the model error to the measurement error for adjustment, resulting in excessive adjustment 
at some times and large fluctuation of the results. Therefore, STPF may not be suitable for complex integrated 
navigation with model errors compared with other algorithms.

In order to compare the performance of four data fusion algorithms in more detail, and simultaneously prove 
the robustness and accuracy of RCFPF. According to the filter estimation error 

[
�r′(t)− �r(t)

]
 and its covariance 

matrix α = cov
[
�r′(t)− �r(t)

]
 , the accuracy ACC = abs(ℓ−1

∑ℓ
t=1

[
�r′(t)− �r(t)

]
) representing the relative position 

estimation deviation and the precision PRE = sqrt(
∑3

i=1 αii) representing the algorithm robustness are defined 
outside root mean squared (RMS). Where �r′ is the relative position obtained by executing the algorithm; �r is 
the true relative position obtained by RTK; ℓ is the total number of measurement epochs; αii is the ith diagonal 
element of the covariance matrix α . The quantization standards of the four algorithms are shown in Fig. 7:

In order to further express the improvement of algorithm ̟  relative to algorithm ε , the variable β is defined 
as follows:
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Figure 2.  Number of commonly visible satellites.

0 100 200 300 400 500 600
Time (s)

-10

-8

-6

-4

-2

0

2

4

X
er
ro
r(
m
)

T-CP with UWB EKF
T-CP with UWB CPF
T-CP with UWB STPF
T-CP with UWB RCFPF

Figure 3.  X-axis distance error.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4210  | https://doi.org/10.1038/s41598-022-08189-x

www.nature.com/scientificreports/

Utilizing β to quantitatively compare the RMS, ACC  and PRE of the four algorithms, the percentage of RCFPF 
improvement over EKF, CPF and STPF in the three standards is obtained as follows.

It can be seen from Table 2 the RMS, accuracy, and robustness of RCFPF have greatly improved compared 
to the other three algorithms. The experimental results have confirmed that the algorithm can further optimize 
PD by improving the probability approximation method and suppressing the observation noise, which improves 
the estimation performance of particle filter in multi-source cooperative navigation and provides a new system 
quality control method for vehicle cooperative navigation.

Conclusion
Based on cooperative navigation as a platform, this paper proposes a robust cubature fission particle filter for 
multi-source data fusion. The algorithm can fit the a posteriori probability density of the system more flexibly 
through the Gaussian distribution and Laplace distribution. At the same time, it can use the theoretical advan-
tages of the fusion distribution itself to suppress the interference of the observation noise on the proposed distri-
bution without adding additional computational load. The improved importance density function combines the 
advantages of L2 and L1 norm estimation. Then the resampling combines particle fission smoothing weights to 

(44)β =
[
Standard ε - Standard̟

Standard ε

]
× 100%
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alleviate particle degradation and sample impoverishment. The vehicle experiment of multi-source cooperative 
navigation shows that compared with EKF, RCFPF improves RMS, Accuracy, and Precision by 26.12%, 30.67%, 
and 18.46%; compared with CPF, it increases by 45.68%, 27.22%, and 56.85% in RMS, Accuracy, and Precision, 
respectively, compared with STPF, the RMS, Accuracy, and Precision are increased by 39.56.%, 29.76%, and 
47.85% respectively, which achieves the theoretical optimization effect and further improves the accuracy and 
robustness of the particle filter. The experimental results confirm the superiority of the proposed algorithm, 
provide a new system state estimation strategy for the multi-source cooperative position, and also provide a way 
of thinking for the further improvement of the particle filter performance.
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Figure 7.  Algorithm quantization standards.

Table 2.  Experimental results and performance improvement.

Methods RMS (m) Accuracy (m) Precision (m)

RCFPF over EKF 26.12% 30.67% 18.46%

RCFPF over CPF 45.68% 27.22% 56.85%

RCFPF over STPF 39.56% 29.76% 47.85%
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Data availability 
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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