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SCORPION is a stacking‑based 
ensemble learning framework 
for accurate prediction of phage 
virion proteins
Saeed Ahmad1, Phasit Charoenkwan2, Julian M. W. Quinn3, Mohammad Ali Moni4, 
Md Mehedi Hasan5, Pietro Lio’6 & Watshara Shoombuatong1*

Fast and accurate identification of phage virion proteins (PVPs) would greatly aid facilitation of 
antibacterial drug discovery and development. Although, several research efforts based on machine 
learning (ML) methods have been made for in silico identification of PVPs, these methods have certain 
limitations. Therefore, in this study, we propose a new computational approach, termed SCORPION, 
(StaCking-based Predictior fOR Phage VIrion PrOteiNs), to accurately identify PVPs using only protein 
primary sequences. Specifically, we explored comprehensive 13 different feature descriptors from 
different aspects (i.e., compositional information, composition-transition-distribution information, 
position-specific information and physicochemical properties) with 10 popular ML algorithms to 
construct a pool of optimal baseline models. These optimal baseline models were then used to 
generate probabilistic features (PFs) and considered as a new feature vector. Finally, we utilized a two-
step feature selection strategy to determine the optimal PF feature vector and used this feature vector 
to develop a stacked model (SCORPION). Both tenfold cross-validation and independent test results 
indicate that SCORPION achieves superior predictive performance than its constitute baseline models 
and existing methods. We anticipate SCORPION will serve as a useful tool for the cost-effective and 
large-scale screening of new PVPs. The source codes and datasets for this work are available for 
downloading in the GitHub repository (https://​github.​com/​saeed​344/​SCORP​ION).

Bacteriophages are viruses that can infect and thrive in bacteria. It can be found in several environments includ-
ing soil, freshwater and marine. The infectious phage particle is essentially comprised of a nucleic acid component 
(i.e. either DNA or RNA) in which they are encapsulated in a coat of protein known as capsids1. Individual types 
of bacteriophage can display an extremely high specificity towards a particular susceptible bacterial host spe-
cies. The surface of which they will typically attach themselves irreversibly to and inject their genetic materials 
to the cellular interior. They are able to persist in the host by using one of two major strategies that are termed 
lytic and lysogenic life cycle2. Bacteriophages may represent a promising alternative to antiobiotics owing to the 
following properties: a lack of toxicity toward human cells, lack of harm caused to normal flora and ability to 
target antibiotic-resistant bacteria3. Phage structural proteins (PVPs) consists of capsid proteins, tail proteins 
and phage particle enzymes. PVPs are mainly responsible for orchestrating bacteriophage interaction with their 
specific bacterial hosts so their manipulation may represent an avenue to generate novel classes of antimicrobial 
agents4. Current experimental approaches for the identification of PVPs from non-PVPs include many scientific 
instruments and methodologies such as mass spectrometry, sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-GE) based proteomic methods and protein analysis arrays5–7. While these methods represent gold 
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standard approaches for PVP identification, they are difficult to employ for the analysis of PVPs at large scale as 
they are laborious and costly methods. Thus, researchers have invested much in efforts to develop computational 
models for predicting PVPs directly from their sequence information as a useful alternative.

To date, a variety of machine learning (ML)-based methods, including iVIREONS8, Feng et al.’s method9, 
PVPred10, PVP-SVM11, PhagePred12, Tan et al.’s method13, Ru et al.’s method14, Pred-BVP-Unb15 and PVPred-
SCM16, Zhang et al.’s method17, Meta-iPVP18, iPVP-MCV19 and VirionFinder20 have all been developed and 
proposed for PVP identification. Table 1 provides a summary of these machine learning-based methods along 
with their employed ML algorithms, feature descriptors and evaluation strategies. In 2013, Seguritan et al. devel-
oped the first PVP predictor called iVIREONS8 based on ANN algorithm trained with AAC and PIP to predict 
viral structural proteins. Shortly afterward, Feng et al. created a high-quality dataset consisting of 99 PVPs and 
208 non-PVPs, and also developed a NB-based predictor9 cooperating with AAC and DPC. Most recently, Han 
et al. developed an ensemble-based model named iPVP-MCV19 by combing three types of PSSM descriptors 
(i.e. PSSM-AAC, PSSM-composition and DP-PSSM). Until now, iPVP-MCV have represented a state-of-the-
art predictor for PVP identification. More detail information for all of the existing methods is summarized in 
an article by Kabir et al.21. Although above mentioned methods do efficiently facilitate the prediction of PVPs, 
there are some issues that still need to be addressed. First, the training dataset used by several existing methods 
in PVP identification was relatively small. This is an important consideration, as several previous studies have 
demonstrated that training with a large number of datasets is crucial for building a comprehensive predictive 
model18,22–24. Second, almost all of the existing methods were developed by employing single ML methods to 
train the model. Therefore, their performance might not be optimal in some cases. However, ensemble models 
are capable to provide a greatly improved performance compared to baseline models22,24–27. Finally, the prediction 
performance for these existing methods is still not satisfactory for many real therapeutic applications.

To address these limitations, we present a novel approach, termed SCORPION (StaCking-based Predictior 
fOR Phage VIrion PrOteiNs) to improve the accurate prediction of PVPs. The overall procedure for the develop-
ment of SCORPION is illustrated in Fig. 1. Notably, SCORPION employs 13 different sequence-based feature 
descriptors from multiple perspectives (i.e., compositional information, composition–transition–distribution 
information, position-specific information and physicochemical properties) to extract the key pattern of PVPs. 
These feature descriptors were used to train a total of 130 baseline models by using 10 popular ML algorithms. 
Probabilistic features (PFs) were then generated by using these 130 baseline models, and considered as a new 
feature vector. To improve the predictive performance, a two-step feature selection strategy was applied to identify 
m out of 130 PFs. Finally, the optimal PF feature vector were used to develop an effective stacked model (SCOR-
PION) by using the stacked ensemble learning strategy. Our comparative results base on cross-validation and 
independent tests indicate that SCORPION outperformed its baseline models. Moreover, SCORPION achieved 
a better performance than several existing methods for PVP prediction in terms of in terms of ACC (0.873), 

Table 1.   Characteristics of the existing methods for PVP prediction. ANN artificial neural network; CNN 
convolutional neural network, LR logistic regression, NB naive bayes, RF random forest, SCM scoring card 
matrix, SVM support vector machine, AAC​ amino acid composition, AACPCP amino acid composition 
and physicochemical properties, AKSNG adaptive k-skip-n-Gram Algorithm, APAAC​ pseudo amino acid 
composition, ATC​ atomic composition, Bi-PSSM bigram position-specific scoring matrix, CTD composition 
translation and distribution, DPC dipeptide composition, PSSM_DP position-specific scoring matric based 
on dipeptides, GGAP g-gap dipeptide composition, GGAPTree g-gap feature tree, PAAC​ pseudo amino 
acid composition, PCP physicochemical properties, PF probabilistic features, PIP protein isoelectric points, 
PSSM position-specific scoring matrix, PSSM_AAC​ position-specific scoring matrix based on amino acid 
composition, PSSM_COM position-specific scoring matrix based on composition, PSSM Profiles position-
specific scoring matrix based on profiles, SAAC​ split amino acid composition, Seq-Str sequence-structure, 
10CV tenfold cross-validation, IND independent test, LOOCV leave-one-out cross-validation.

Predictors/tools Year Algorithm Feature descriptors Type Evaluation strategy

iVIREONS8 2012 ANN AAC, PIP Single 10CV

Feng et al.’s method9 2013 NB AAC, DPC Single 10CV

PVPred10 2014 SVM GGAP Single LOOCV, IND

Zhang et al.’s method17 2015 SVM CTD, bi-profile Bayes, PAAC, PSSM Ensemble 10CV, IND

PVP-SVM11 2018 SVM AAC, ATC, CTD, DPC, PCP Single 10CV, IND

PhagePred12 2018 NB GGAP Single 10CV, LOOCV

Tan et al.’s method13 2018 SVM GGAP Single 10CV, IND

Ru et al.’s method14 2019 RF CCPA, AKSNG, Seq-Str Single 10CV

Pred-BVP-Unb15 2019 SVM CT, Bi-PSSM, SAAC​ Single LOOCV, IND

PVPred-SCM16 2020 SCM DPC Single 10CV, IND

Meta-iPVP18 2020 SVM AAC, APAAC, DPC, CTDC, CTDD, CTDT and PAAC​ Ensemble 10CV, IND

iPVP-MCV19 2021 SVM PSSM-AAC, PSSM-composition and DP-PSSM Ensemble LOOCV, 10CV, IND

VirionFinder20 2021 CNN AAI Deep learning 10CV, IND

SCORPION This study RF AAC, AAI, APAAC, CTDC, CTDD, CTDT, DDE, DPC, EAAC, PAAC, PSSM_AAC, 
PSSM_Com and PSSM_DP Ensemble 10CV, IND
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Sp (0.905), MCC (0.748) and AUC (0.891) on the independent dataset. These comparative results highlight the 
effectiveness and generalizability of SCORPION.

Materials and methods
Overall framework of SCORPION.  As can be seen in Fig. 1, there exist four major steps, including data-
set construction, baseline models construction, new feature representations and the stacked model develop-
ment. First, The same benchmark dataset derived from Charoenkwan et al.18 were used to train and optimized 
baseline models and SCORPION. Second, 13 different feature descriptors were individually fed to 10 different 
ML algorithms to build the 130 baseline models using tenfold cross-validation. In addition, we comprehensively 
compared 13 different feature descriptors to determine the feature descriptors that are beneficial to PVP identifi-
cation. Third, we constructed variant stacked models by using different sets of feature vectors. Forth, the optimal 
PF vector was determined and fed to RF algorithm in order to construct the final stacked model (SCORPION) 
by using the stacked ensemble learning strategy. Finally, we compared the predictive performance of SCOR-
PION against its constitute baseline models and existing methods.

Dataset collection.  As described in an article by Kabir et al.21, there are three well-known benchmark data-
sets (i.e. Feng20139, Manavalan201811 and Charoenkwan2020_2.018) that have been established for developing 
existing PVP predictors. In this study, we utilized the Charoenkwan2020_2.0 dataset established by Charoenk-
wan et al.18 as the benchmark dataset to assess the performance of SCORPION. Below, we provided two main 
reasons why we used the Charoenkwan2020_2.0 dataset. First, the Charoenkwan2020_2.0 dataset contained a 
larger number of PVPs and non-PVPs than other datasets. Specifically, the Charoenkwan2020_2.0 dataset com-
bined Feng20139 and Manavalan201811 datasets along with novel PVPs and non-PVPs obtained from the Uni-
Prot database (release 2019_11)28. Second, a lower CD-HIT threshold of 0.4 was used to exclude more redundant 
sequences in the Charoenkwan2020_2.0 dataset. As a result, the Charoenkwan2020_2.0 dataset contained of 313 
PVPs and 313 non-PVPs. In the Charoenkwan2020_2.0 dataset, the training and independent datasets (PVPs, 
non-PVPs) consisted of (250, 250) and (63, 63), respectively. All datasets used in this study are available on 
https://​github.​com/​saeed​344/​SCORP​ION.

Feature encodings.  In this study, we used 13 different sequence-based feature descriptors contain-
ing amino acid composition (AAC), amino acid index (AAI), amphiphilic pseudo-amino acid composition 
(APAAC), composition in CTD (CTDC), distribution part of CTD (CTDD), transition in CTD (CTDT), dipep-
tide deviation from expected mean (DDE), dipeptide composition (DPC), enhance Amino Acid composition 
(EAAC), pseudo amino acid composition (PAAC), PSSM_AAC, PSSM_DP and PSSM_COM to extract the key 
information of PVPs and non-PVPs. These sequence-based feature descriptors provides us four different aspects 
consisting of compositional information, composition-transition-distribution information, position-specific 
information and physicochemical properties having sufficient information to develop a comprehensive predic-
tive model. Details of all 13 feature descriptors are provided in Table 2. Here, the iFeature Python package29 was 
utilized to calculate all the 13 feature descriptors.

Figure 1.   Schematic flowchart of the development of the SCORPION. It consists of dataset construction, 
baseline models construction, new feature representations and the stacked model development.

https://github.com/saeed344/SCORPION
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Stacking ensemble learning framework of SCORPION.  In this study, the stacked ensemble learning 
strategy was utilized to develop SCORPION for improving the prediction of PVPs. Unlike other ensemble learn-
ing strategies, this strategy enables an automatic integration of different ML classifiers in order to construct a 
single robust prediction model23. The stacked strategy has successfully achieve better performance as compared 
with its constituent baseline models23,24,27,30,31. The stacking strategy consists of two main steps, while the cor-
responding models at each step are referred to as baseline and meta models, respectively.

In the first step, the PVPs and non-PVPs in the training dataset were extracted by using 13 different feature 
encoding schemes from four different perspectives containing AAC, AAI, APAAC, CTDC, CTDD, CTDT, DDE, 
DPC, EAAC, PAAC, PSSM_AAC, PSSM_DP and PSSM_COM with corresponding dimensions of 20, 11, 22, 
39, 39, 195, 400, 400, 20, 21, 20, 400 and 400, respectively32–35. Herein, we used the default iFeature parameter 
settings29 to generate APAAC and PAAC descriptors. Then, each feature descriptor was individually employ to 
train 10 different ML algorithms (KNN, RF, SVM, decision tree (DT), extremely randomized trees (ET), logistic 
regression (LR), multi-layer perceptron (MLP), naive Bayes (NB), partial least squares regression (PLS) and 
extreme gradient boosting (XGB)). To enhance the predictive performance, all ML classifiers were trained and 
optimized using the scikit-learn package in Python (version 0.22)36. Specifically, the optimal parameters of ET, 
LR, MLP, RF, SVM and XGB classifiers were carefully determined under the tenfold cross-validation procedure 
on the training dataset, where the search range is shown in Supplementary Table S1. In the case of the remaining 
ML classifiers, they were constructed by using their default parameters. Therefore, we obtained a total of 130 
baseline models (10 MLs × 13 encodings).

In the second step, each baseline model provided us three types of features from three perspectives contain-
ing PF, class feature (CF) and the combination of PF and CF (PCF). The PF is based on the predicted probability 
scores to be PVPs which is in the range of 0–1. In case of the CF, the protein sequence P is labeled as 1 if its 
predicted probability scores is greater than 0.5, otherwise the protein sequence P is labeled as 0. As a result, the 
protein sequence P was represented to 130-D, 130-D and 260-D feature vectors for PF, CF and PCF, respectively. 
The PF, CF and PCF were considered as new feature vectors. RF algorithm was employed as the meta model 
(called mRF) to train the stacked model. As result, we obtained three different stacked models based on three 
new feature vectors (i.e. PF, CF and PCF). To improve the discriminative ability of the new feature vectors, we 
used a two-step feature selection strategy to optimize PF, CF and PCF feature vectors. At the first step, we used 
XGB classifier to rank the features in PF, CF and PCF. The XGB classifier is widely used in the feature importance 
analysis23,37. Using the XGB classifier, we constructed a ranking list of features with respect to their importance 
scores. Higher ranked features in this list are the most important features. At the second step, we constructed 
n different feature subsets containing the top ranked features ranging from top 5 to top 100 features with an 
interval of 5. Then, we inputted all feature subsets into mRF models and optimized the mRF models’ parameters 
using tenfold cross-validation scheme. The feature subset achieving the highest Matthews correlation coefficient 
(MCC) was considered as the optimal feature subset. The implementation of these classifiers in the two-step 
feature selection strategy is the same as used in our previous studies18,31,38–41

Performance evaluation strategies.  In order to examine the performance of our proposed predictor, we 
used five common statistical metrics including ACC, MCC, sensitivity (Sn) and specificity (Sp)24,42 as described 
follows:

(1)ACC =
TP+ TN

(TP+ TN+ FP+ FN)
,

Table 2.   Summary of 13 different sequence-based feature descriptors along with their corresponding 
description and dimension.

Order Descriptors Description Dimension References

1 AAC​ Frequency of 20 amino acids 20 46,47

2 AAI Different biochemical and biophysical properties extracted from the AAindex 
database 11 46,48

3 APAAC​ Amphiphilic pseudo-amino acid composition 22 49

4 CTDC Percentage of particular amino acid property groups 39 46,50,51

5 CTDD Percentage of mutual conversion in amino acid properties 39 46,50,51

6 CTDT Distribution of amino acid properties in sequences 195 46,50,51

7 DDE Dipeptide deviation from expected mean 400 52

8 DPC Frequency of 400 dipeptides 400 47,53,54

9 EAAC​ Enhance amino acid composition 20 52

10 PAAC​ Pseudo amino acid composition 21 49

11 PSSM_AAC​ Traditional AAC from the primary sequence to the PSI-BLAST profile 20 55

12 PSSM_DP Traditional PDC from the primary sequence to the PSI-BLAST profile 400 55

13 PSSM_COM Position-specific scoring matrix composition 400 55
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where TP, TN, FP and FN represent the number of true positives, true negatives, false positive and false negatives, 
respectively. In addition, the area under the receiver operating characteristic (AUC) was employed as another 
statistical metric39–41,43.

Results and discussion
Performance evaluation between different classifiers and feature encodings.  In this section, 
we investigated the effect of individual feature descriptor for PVP identification. Specifically, 13 different feature 
encoding from multiple perspectives (i.e. compositional information (AAC, APAAC, DDE, DPC, EAAC and 
PAAC), composition-transition-distribution information (CTDC, CTDD and CTDT), position-specific infor-
mation (PSSM_AAC, PSSM_DP and PSSM_COM) and physicochemical properties (AAI)) were inputted to 
10 different ML algorithms (DT, ET, KNN, LR, MLP, NB, PLS, RF, SVM and XGB) for developing 130 baseline 
models. We evaluated the predictive performance of the 130 baseline models with a default threshold of 0.5 by 
performing tenfold cross-validation and independent tests on the training and independent datasets, respec-
tively. For convenience of discussion, Fig. 2 shows the performance of the 30 best-performing baseline models 
in the term of cross-validation MCC. In addition, the performance results for all the 130 baseline models are 
provided in Supplementary Tables S2 and S3.

From Fig. 2, Supplementary Tables S2 and S3, several observations can be made. First, PSSM_AAC descrip-
tor was the most powerful one for PVP identification with average cross-validation AAC and MCC of 0.802 and 

(2)Sn =
TP

(TP+ FN)
,

(3)Sp =
TN

(TN+ FP)
,

(4)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

,

Figure 2.   Performance evaluations of top 30 baseline models. (A,B) Cross-validation ACC and MCC of top 30 
baseline models. (C,D) Independent test ACC and MCC of top 30 baseline models.
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0.610, respectively. In the meanwhile, PSSM_COM and AAC descriptors performed well with the second and 
third highest average cross-validation MCC of 0.582 and 0.556, respectively. Second, SVM-based and LR-based 
classifiers outperformed other ML-based classifiers in terms of ACC (0.782–0.784), Sp (0.780–0.788), MCC 
(0.570–0.576) and AUC (0.849–0.850). Third, among all the 130 baseline models, the baseline model trained with 
MLP algorithm in conjunction with PSSM_COM descriptor (MLP-PSSM_COM) attained the best performance 
with cross-validation AAC and MCC of 0.840 and 0.684, while its ACC, MCC and AUC were 0.778, 0.556 and 
0.859, respectively, as evaluated by the independent test. Taken together, the single feature-based models were 
not effective enough for PVP identification. On the other hand, the integration of variant ML classifier for con-
structing a single meta-predictor might improve the model’s performance.

Performance evaluation of different stacked models.  As mentioned in the “Materials and methods” 
section, we designed and developed three different stacked models based on three types of new feature represen-
tations consisting of PF (130D), CF (130D) and PCF (260D). Specifically, these three new feature representations 
were inputted to RF algorithm for developing three different mRF models. The performance comparison results 
amongst the three mRF models are provided in Tables 3 and 4. As can be seen, it is clear that PF and PCF feature 
vectors achieved better performance in terms of all performance metrics based on both tenfold cross-validation 
and independent tests. To further improve the discriminative ability of our new features, we utilized the two-step 
feature selection scheme to optimize PF, CF and PCF feature vectors. Herein, the feature selection scheme identi-
fied 50, 5 and 5 informative PFs, CFs and PCFs, respectively, for generating three optimal feature sets. Tables 3 
and 4 shows that the three optimal feature sets attained a similar performance based on tenfold cross-validation 
test. In case of the independent test results, optimal PF feature vector outperformed other feature sets in terms 
of four out of five performance metrics (i.e. ACC, Sp, MCC and AUC). Particularly, ACC, Sp, MCC and AUC of 
optimal PF feature vector were 0.881, 0.952, 0.770 and 0.922, respectively (Table 4). The optimal PF feature vec-
tor consisted of the 50 informative features of PF. More details of the 50 informative features of PF were reported 
in Supplementary Table  S4. Overall, we observed that the optimal PF feature vector was the most powerful 
feature for effectively capturing the key pattern of PVPs. For convenience of discussion, the mRF model trained 
with the optimal PF feature vector is referred herein as SCORPION.

New feature representations improve the predictive performance.  To investigate whether the 
optimal PF feature vector is effective in improving the predictive performance, we investigate and performed 
three sets of comparative experiments as follows. First, we compared the performance of SCORPION (50D) 
with the model without the optimal PF feature vector (80D). Second, the performance of the optimal PF feature 
vector was compared with 13 different feature descriptors. Finally, we compared the performance of SCORPION 
with its constituent baseline models. The performance comparison results between SCORPION and other meth-
ods are provided in Figs. 3, 4, Supplementary Tables S5 and S6.

From Fig. 3, we observe that SCORPION performed better than that of the model without the optimal PF 
feature vector in terms of all the five performance metrics on both the training and independent datasets. Impres-
sively, ACC, Sn, Sp, MCC and AUC of SCORPION were 10.40%, 7.55%, 8.54%, 20.78% and 4.61%, respectively, 
higher than that of the model without the optimal PF feature vector on the independent dataset. After that, we 

Table 3.   Cross-validation results for different feature representations using class and probabilistic information.

Features Dimension ACC​ Sn Sp MCC AUC​

PF 130 0.858 0.840 0.876 0.722 0.914

CF 130 0.838 0.848 0.828 0.684 0.895

PCF 260 0.864 0.880 0.848 0.733 0.920

Optimal PF 50 0.868 0.884 0.852 0.743 0.920

Optimal CF 5 0.868 0.880 0.856 0.743 0.902

Optimal PCF 5 0.868 0.884 0.852 0.741 0.907

Table 4.   Independent test results for different feature representations using class and probabilistic 
information.

Features Dimension ACC​ Sn Sp MCC AUC​

PF 130 0.857 0.937 0.778 0.723 0.924

CF 130 0.817 0.746 0.889 0.642 0.892

PCF 260 0.857 0.778 0.937 0.723 0.925

Optimal PF 50 0.881 0.810 0.952 0.770 0.922

Optimal CF 5 0.802 0.794 0.810 0.603 0.859

Optimal PCF 5 0.873 0.841 0.905 0.748 0.891
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compared the optimal PF feature vector with 13 different feature descriptors. As can be seen from Supplemen-
tary Tables S5 and S6, amongst 13 different feature descriptors, the five best-performing descriptors in terms 
of cross-validation MCC contained PSSM_COM, PSSM_AAC, AAC, PSSM_DP and EAAC. Here, we built RF 
classifiers with the five best-performing descriptors and evaluate the RF classifiers’ performance based on the 
tenfold cross-validation and independent tests. The performance comparison results between the optimal PF 
feature vector and these five best-performing descriptors are depicted in Fig. 4. In the meanwhile, Supplementary 
Table S5 shows that the highest cross-validation ACC and MCC of 0.868 and 0.743, respectively, were achieved by 
using the optimal PF feature vector, while PSSM_COM performed well with the second highest cross-validation 
ACC and MCC of 0.814 and 0.633, respectively. In case of the independent test results, the optimal PF feature 
vector significantly outperformed the second-best descriptor in terms of four out of five performance metrics (i.e. 
ACC, Sp, MCC and AUC). Specifically, the optimal PF feature vector’s ACC, Sp, MCC and AUC were 12.70%, 
25.40%, 25.87% and 12.22%, respectively, higher than the second-best descriptor. In addition, we compared 
the distribution of the feature space of the optimal PF feature vector and the five best-performing descriptors 
on the training dataset by using the t-distributed stochastic neighbor embedding (t-SNE) based on the scikit-
learn (version 0.22)44,45. Figure 5 shows six t-SNE plots representing their distributions between positive (red 
spots) and negative (green spots) samples in a 2D feature space. As can be seen, we notice that a clear separa-
tion between red and green spots was achieved in the feature space of the optimal PF feature vector. Finally, we 
compared the predictive performance of SCORPION against its constituent baseline models. Figure 2 shows 
that MLP-PSSM_COM performed well with the highest cross-validation ACC and MCC. As can be seen from 
Fig. 6, SCORPION attained the overall best performance as compared with MLP-PSSM_COM in terms of all 
performance metrics on both training and independent datasets. Remarkably, SCORPION’s ACC, Sp, MCC 
and AUC were 10.32%, 19.05%, 21.40% and 6.35%, respectively, higher than MLP-PSSM_COM. This confirmed 
that the optimal PF feature vector derived from the integration of variant ML classifier were beneficial for PVP 
identification and could improve the model’s predictive performance.

Model interpretation.  In this section, we utilized the SHAP approach to analyze feature importance for 
SCORPION and three selected baseline models (i.e. RF-AAC, XGB-DPC and LR-XGB) for providing better 
understanding of these five models to generate their prediction outcomes. The impact of each feature on these 
three models’ prediction outcomes is illustrated in Fig. 7. To be specific, Fig. 7A–D show the top 20 PFs, top 
20 amino acids and top 20 dipeptides respectively, based on SHAP values along with its directionality for each 
model, where the top 20 PFs were obtained from 20 top-ranked important features having the highest XGB 
classifier’s feature importance scores. Details of the top 20 PFs along with their feature importance scores are 
provided in Supplementary Table S7. It should be noted that negative and positive SHAP values drive the pre-
dictions as PVP and non-PVP classes, respectively, while the feature with the largest SHAP values is the most 
important. As seen in Fig. 7A, it is apparent that when the top five PFs of the five baseline models of MLP-PSSM_
DP, NB-PSSM_AAC, MLP-PSSM_AAC, XGB-DPC and NB-PAAC had low SHAP values. Among these five 
baseline models, MLP-PSSM_AAC achieved the best performance in terms of cross-validation MCC (0.864). 
For a given unknown protein sequence P, it is predicted as PVP class if MLP-PSSM_AAC provides a low predic-
tion probability, otherwise it is predicted as non-PVP class. From Fig. 7B, the five top-ranked informative amino 
acids based on SHAP values are Cys, His, Gly, Lys and Thr. Amongst these five top-ranked informative amino 
acids, Cys His and Lys exhibited low SHAP values, while Gly and Thr exhibited high SHAP values, suggesting 
that Cys His and Lys. From Fig. 7C,D, the seven top-ranked informative dipeptide based on SHAP values are 
TD, YT, HL, SE, MK, TG and SN.

Comparison of SCORPION with conventional ML classifiers and existing methods.  In this sec-
tion, the same training and independent datasets established by Charoenkwan et al.18 were employed to assess 
and compare the predictive performance of SCORPION against and existing methods (i.e. PVPred, PVP-SVM, 
PVPred-SCM, Meta-iPVP and iPVP-MCV). The performance comparison results are shown in Tables 5 and 6. 
In case of the tenfold cross-validation results, SCORPION and iPVP-MCV achieved better performances than 
Meta-iPVP in terms of all performance metrics (Table 5). In addition, SCORPION secured the best predictive 
performance on the independent dataset, while iPVP-MCV attained the second-best performance value. Spe-
cifically, SCORPION significantly outperformed the compared existing method in terms of ACC, Sp and MCC, 
while iPVP-MCV achieved the best Sn (Table  6). In the meanwhile, SCORPION’s ACC, Sp and MCC were 
4.80%, 17.44% and 9.88%, respectively, higher than iPVP-MCV. Altogether, our comparative results indicate 
that our predictor was able to attain the best predictive performance of PVP identification as compared to the 
existing methods.

The significant improvement of our predictor SCORPION can be characterized to three major reasons. 
First, our predictor was trained and optimized using an up-to-date dataset established by Charoenkwan et al.18 
containing a larger number of PVPs and non-PVPs than other datasets. Second, our predictor combined vari-
ant sequence-based feature descriptors from different perspectives consisting of compositional information, 
composition-transition-distribution information, position-specific information and physicochemical properties. 
Third, the two-step feature selection scheme was utilized for identifying the most informative features that can 
help to precisely discriminate PVPs from non-PVPs.

Conclusions
In this study, we introduced SCORPION, a novel, stacked, machine learning-based approach for accurate iden-
tification of PVPs. Specifically, SCORPION employed 13 different feature encoding schemes (categorized into 
four main groups) to encode PVPs and non-PVPs sequences and used 10 popular ML algorithms to build a pool 
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Figure 7.   Feature importance from SCORPION (A) and selected three baseline models, where SHAP values 
represent the directionality of top features where negative and positive SHAP values influences the predictions 
toward PVPs and non-PVPs, respectively. SCORPION (A), RF-AAC (B), XGB-DPC (C) and LR-DPC (D).

Table 5.   Cross-validation results of SCORPION and existing methods on the Charoenkwan’s dataset. 
a Performance of existing methods were obtained from the work iPVP-MCV19.

Methodsa ACC​ Sn Sp MCC

Meta-iPVP 0.846 0.832 0.698 0.846

iPVP-MCV 0.864 0.876 0.728 0.864

SCORPION 0.868 0.852 0.743 0.868
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of baseline models. These baseline models were then used to generate and construct the PF feature vector, which 
were considered as new feature representations. Finally, the optimal PF feature vector was optimized by using 
a two-step feature selection strategy and used this feature vector to develop the stacked model (SCORPION). 
Extensive benchmarking experiments show that SCORPION was effective and outperformed its constitute 
baseline models. In addition, when compared with five well-known existing methods (i.e. PVPred, PVP-SVM, 
PVPred-SCM, Meta-iPVP and iPVP-MCV) on the independent dataset, SCORPION achieved a superior pre-
dictive performance as compared the compared methods for PVP identification in terms of ACC (0.873), Sp 
(0.905), MCC (0.748) and AUC (0.891), thereby highlighting its effectiveness and generalizability. We anticipate 
that SCORPION will be a valuable tool for facilitating antibacterial drug discovery and development.

Data availability
All the data used in this study are available at https://​github.​com/​saeed​344/​SCORP​ION.
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