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An efficient self‑attention 
network for skeleton‑based action 
recognition
Xiaofei Qin1, Rui Cai1, Jiabin Yu2,3*, Changxiang He4 & Xuedian Zhang1,5,6,7

There has been significant progress in skeleton‑based action recognition. Human skeleton can be 
naturally structured into graph, so graph convolution networks have become the most popular 
method in this task. Most of these state‑of‑the‑art methods optimized the structure of human 
skeleton graph to obtain better performance. Based on these advanced algorithms, a simple but 
strong network is proposed with three major contributions. Firstly, inspired by some adaptive graph 
convolution networks and non‑local blocks, some kinds of self‑attention modules are designed to 
exploit spatial and temporal dependencies and dynamically optimize the graph structure. Secondly, a 
light but efficient architecture of network is designed for skeleton‑based action recognition. Moreover, 
a trick is proposed to enrich the skeleton data with bones connection information and make obvious 
improvement to the performance. The method achieves 90.5% accuracy on cross‑subjects setting 
(NTU60), with 0.89M parameters and 0.32 GMACs of computation cost. This work is expected to 
inspire new ideas for the field.

Human action recognition is an important task that can be used in video analysis, human-computer interaction 
and so  on1–3. There are two kinds of human action recognition methods: video-based and skeleton-based. The 
main challenges of video-based methods are variation of background, viewpoint and people appearance, etc. 
Some  researchers4 obtained multi-view videos of the human body through multiple cameras, and fused these 
videos to cope with these challenges. 3D skeleton data is a type of well-structured data of human major joints 
and can be regarded as the refinement of video data, which can be easily obtained by using depth camera and 
pose estimation  technology5. Compared with video data, skeleton data is more robust to the above  challenges6.

Skeleton data naturally structured into graph by connecting major points according to nature links in human 
body structure. Every joint represents node (or vertex), every bone represents edge. That is why many researchers 
use graph convolution network (GCN) to solve skeleton-based action recognition in recent years. But the nature 
links of human structure just process one local neighborhood at one graph convolution layer. For example, when 
people clap hands, the movements of two hands contain most important information. But the features of two 
hands have to be transferred through two arms and chest, finally fused together. Self-attention mechanism is an 
effective algorithm to solve such long-distance dependence problems.

Self-attention mechanism has been widely used recently to improve modeling capabilities of GCN in skeleton-
based action  recognition7,8. Some previous approaches have discussed the self-attention mechanism in spatial 
perspective but without systematically discussing the design approach of the self-attention mechanism in the 
spatial, temporal, and spatio-temporal perspectives. Inspired by non-local neural  network9, the self-attention 
mechanism is discussed from these three perspectives in this work.

Researchers usually use two-stream or multi-stream methods to improve accuracy, but this brings about 
several times of parameters and computation  costs7,10–13. These multi-stream methods fuse high-level features 
of joints and bones at the end of each  stream7,12. But in another view, low-level features from joints and bones 
can also be fused together to enrich prior information and generate more representative features. In this work, 
a trick is used which plays an important role in achieving better performances. The representations of bones 
and joints are concatenated together at the input layer and use a single-stream network to achieve the same 
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performance of multi-stream network. Unlike those multi-stream methods, this method basically does not 
increase the calculation costs.

The contributions of this work are as follows. Firstly, various variants of self-attention network based on a 
general structure are systematically proposed and discussed for the task of skeleton-based action recognition. Sec-
ondly, a trick to enhance the representation capability of skeleton data is proposed, which significantly improves 
the accuracy while introducing few parameters and computational costs. Finally, based on these innovations, a 
new network architecture is designed, and the comparison with some state-of-the-art methods is shown in Fig. 1.

Related work
Skeleton‑based action recognition. The goal of this task is using skeleton data to recognize the action 
of instance. The input is skeleton sequence in the form of a graph, and what needs to be requested is the class of 
action. Skeleton data consists of two parts, one part is a vector composed of joint point positions, and another 
part is a matrix formed by the connection relationship of the joints.

Several years ago, convolution neural networks (CNNs) and random forest (RF) were widely used to deal 
with the task. But CNNs fail to model the structure of skeleton data properly because skeleton data are naturally 
embedded in the form of graphs rather than a vector sequence or 2D grids. After firstly applied to this task in 
ST-GCN14, GCNs have been the mainstream methods and make great achievements. AGC-LSTM15 proposed 
another idea on how to use GCNs in this task, and step further to higher accuracy. In these algorithms, the graph 
of nature links plays a significant role. Some researchers optimize the graph structure by adding edges which is 
hand-designed, such as MS-G3D11. Some other researchers proposed adaptive  GCNs7,12,16, which produce the 
dependencies totally different from the graph of human structure. All in all, these methods tried to solve the prob-
lem of dependencies in space. In another view, the major joints locations represent the poses in each frame, and 
the changes of posture determine the action. The dependencies between frames should also be considered. Some 
methods added links or made a shift in the features between adjacent  frames10,14,17,18. Some others transferred the 
module that was often used to process time series, such as recurrent neural network (RNN) and long short-term 
memory (LSTM), to a new one by replacing CNN units with GCN  ones15,19. Most recently, some researchers 
have generated adjacent matrix dynamically by using self-attention mechanism and lower the complexity of 
 networks7,8. However, these researchers discussed the self-attention mechanism only in the spatial dimension.

Graph model. Graph is a kind of data structure which models a set of objects (nodes) and their relation-
ships (edges). Recently, researches of analyzing graphs with machine learning have received more and more 
attention for its wide  applications20–22. As a unique non-Euclidean data structure for machine learning, graph 
analysis focuses on node classification, link prediction, and clustering. Inspired by CNN which is the most 
popular methods in many fields, GCN is generated. As the input of GCN, the nodes signals are embedded in a 
vector, whose relationships are embedded in a matrix named adjacent matrix. Graph model can be divided into 
directed graphs and undirected graphs, and their adjacent matrixes are different. Adjacent matrix is symmetric 
in undirected graphs, and it is not symmetric in directed graphs.

Self‑attention mechanism. Self-attention mechanism has been successfully used in a variety of tasks. 
Attention mechanism can be described as Attention(Query, Source) = �

Lx
i=1Similarity(Query,Keyi) · Valuei

23. 
When Query, Key, Value are same, it is self-attention mechanism. Non-local neural network is a kind of self-
attention application in computer vision.

In brief, self-attention mechanism exploits the correlation in a sequence, and each position is computed as 
the weighted sum of all positions. The weight of every position in similarity matrix is generated dynamically. The 
proposed self-attention block is transferred from non-local neural network. It works like an abstract graph neural 

Figure 1.  Comparisons of state-of-the-art methods in cross-subject setting (NTU60). The bubble size reflects 
the parameters of the method , and the center of the bubble represents the computation cost and accuracy.
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network and the similarity matrix can be seen as a weighted adjacent matrix. Some researchers have discussed 
the designs and effects of self-attention mechanism on the task of human skeleton-based action recognition, 
and used it to model spatial dependencies of the human skeleton. However, in addition to spatial dependencies, 
temporal and spatio-temporal dependencies can also be modeled by the self-attention mechanism.

The methods
Pipeline. The framework of the network is shown in Fig.  2. For the original skeleton data of position 
P ∈ R

C×V×T , C denotes the channel number, V and T denote the numbers of joints and frames.
Different from position input, the original input is enriched with bones information and it is named multi-

representation method. As shown in Fig. 3, a root joint is set, whose index is 0 in the skeleton data. Every joint 
is transformed to a vector which points from front joint to the current one, while the vector of root joint is 0. In 
order to compute easily, firstly an identity matrix WJ×J is given, then set some elements whose column index is 
same to the directed connection joints to be −1 . For example, there are connected nodes p2, p1 , directed edge e2 
is calculated by e2 = p2 − p1 = ((x2 − x1), (y2 − y1), (z2 − z1))

T and the element (2,1) in W is set to be −1 . The 
representation of bones is E = P ·W . Then E and P are concatenated as the input of the network:

where I ∈ R
2C×V×T.

(1)I = cat(P, P ·W)

Figure 2.  Model architecture.

Figure 3.  Representations of joints and bones. The left part shows the representation of joints which is naturally 
embedded into graph. The right shows the representation of bones.
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Firstly, the velocities of human joints and bones are calculated separately. It is easy to understand that the 
movements of joints are important for the action recognition and it is calculated as:

Especially, vt=0
p = 0.

But some movement of the joints may caused by the front joints movement which is absolute motion that 
sometimes should be ignored. For example, when reaching for something, there is a considerable movement of 
the hand, which is actually caused by the movement of the elbow. In this case, the actual grasp movement of the 
hand is ignored because the grasp movement of the hand is not obvious compared to this large movement of the 
elbow. And the difference between adjacent frames of the vectors presenting bones between is relative motion:

Similarly, vt=0
en

= 0.
In every moment, the vt can be calculated, then they can be concatenated to have V  and V ∈ R

2C×V×T . Then 
the V  is embeded into high dimensional space by two 1× 1 convolution layers:

Similarly, the I is embeded into same high dimensional space:

And they are fused together by summation:

where W1,W3 ∈ R
C1×2C and W2,W4 ∈ R

C1×C1 , ReLu denotes the ReLu activation function.
After embedding the input signals, Z is fused with the encoded joint type and frame index. One-hot encod-

ing is adapted to encode the semantics of joint type and frame index, then the method described in Eqs. (4) and 
(5) is used to promote representativity of semantics by mapping them into higher dimension. Finally, fuse the 
encoded semantics of time and space with Z:

J̃ and T̃ is the encoded semantics of joint type and frame index.
After several stacks of self-attention blocks which will be illustrated in next section, the feature maps are 

pooled from RC×T×V to RC×1×1 in global pooling layer. Finally, after a linear layer, the classes of the actions 
are generated.

Self‑attention block. Figure 4 shows a spatio-temporal self-attention block. Some reshaping operations 
are designed that vary from the types of self-attention block.

(2)vt+1
p = pt+1

− pt

(3)vt+1
en

= et+1
n − etn = (pt+1

n − pt+1
n−1)− (ptn − ptn−1) = (pt+1

n − ptn)− (pt+1
n−1 − ptn−1)

(4)Ṽ = ReLu(W4(ReLu(W3V)))

(5)Ĩ = ReLu(W2(ReLu(W1I)))

(6)Z = Ṽ + Ĩ

(7)Z′
= cat(Z, J̃)+ T̃

Figure 4.  Spatio-temporal self-attention block. C is the channel size; T and V are the number of frames and 
joints. θ , φ , g and h denote 1× 1 convolution. If C1 < C , it is a kind of bottleneck.
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x denotes input signal and y denotes output in the following illustration of the algorithm. And the general 
self-attention block can be described as:

f (x) is a function to generate the similarity matrix: f (x) = softmax(θ(x)Tφ(x)) . And g(x) and h(x) are linear 
embedding: g(x) = Wgx , h(x) = Whx . Actually it is a 1× 1 convolution operation. The final +x denote a residual 
connection.

Same to g(x) , 1× 1 convolution operation is used to embed the Query and Key: θ(x) = Wθx , φ(x) = Wφx . 
And the f (x) can be calculated as:

The Wh,Wθ ,Wφ ,Wg are learnable.
The reshaping operation that is not described in the equations is illustrated in Table 1. In spatio-temporal self-

attention block, the feature maps of θ operation is reshaped to RTV×C1 , and we denote this as θ(x)T ∈ R
TV×C1 . 

Similarly, φ(x) ∈ R
C1×TV , g(x) ∈ R

TV×C1.
In spatial self-attention blocks, the reshaping operations are different. Depending on two kinds of ways 

dealing with time dimension, there are two kinds of spatial blocks. If the similarity matrix differs in every 
moment, then θ(x)T ∈ R

T×V×C1 , φ(x) ∈ R
T×C1×V , g(x) ∈ R

T×V×C1 . The similarity matrix is f (x) ∈ R
T×V×V 

and f (x)g(x) ∈ R
T×V×C . Another way is that the similarity matrix do not change in every moment, then 

θ(x)T ∈ R
V×TC1 , φ(x) ∈ R

TC1×V , g(x) ∈ R
V×TC1 . The block is much more like spatio-temporal self-attention 

block, and it is easy to have f (x) ∈ R
V×V , f (x)g(x) ∈ R

V×TC.
As for temporal self-attention blocks, there are two kinds of temporal blocks because of the same reason 

shown in spatial self-attention blocks, these two can be easily obtained by switching T and V in spatial self-
attention block. So there is no need to go into details.

There are some more interesting things to consider. The self-attention block works like dynamical GCN. Actu-
ally, the similarity matrix is considered as adjacent matrix, the graph is directed. For example, in one frame, the 
weight from neck to head may not be same as the weight from head to neck. The positions of these two weights 
in the similarity matrix are symmetric. Are these two weights same? And should these two be same? Some 
experiments have been done about these illustrated in experiments section. If the similarity matrix should be 
symmetric, Wφ is set same to Wθ:

Another problem is how to model the temporal sequences if spatial self-attention block is adapted. Similarly, 
how to model space if only temporal self-attention block is used? In residual connection, when the channel size 
of input and output are different, 1× 1 convolution operation is adopted. The 1× 1 convolution operation is 
replaced in residual connection with 1× 3 or 3× 1 convolution operation to model time or space. The changes 
of residual connection may not decrease the performance of the network. Because the network is light and there 
is no need to consider much about learning abilities of the network when stacking deeper.

The generic self-attention operation is flexible. Some convolution operation can be removed from self-atten-
tion block in practice. And based on the analysis above, there are many variants of self-attention block. For 
example, Fig. 5 shows a kind of spatial self-attention block. T is treated as batch size in this spatial self-attention 
block , and similarity matrix is calculated by Eq. (10).

Experiments
Dataset. NTU‑RGBD5. It is a large-scale action recognition dataset containing 56,880 skeleton sequences 
of 60 action classes, which is also known as NTU60. This dataset is performed by 40 distinct subjects and cap-
tured by three Kinect cameras at the same height but from different horizontal angles: −45◦ , 0◦ , 45◦ . Each human 
skeleton is represented by 25 joints with 3D coordinates. For Cross-View (CV) settings, skeleton data from two 
cameras are used for training while the other is used for testing. For Cross-Subject (CS) settings, 40,320 clips 
from 20 subjects are used for training, and the rest for testing. 10% of the training sequences is randomly selected 
for validation for both the CS and CV settings.

(8)y(x) = ReLu(h(f (x) · g(x))+ x)

(9)f (x) = softmax((Wθx)
T (Wφx))

(10)f (x) = softmax((Wθx)
T (Wθx))

Table 1.  Reshaping operations. The types of self-attention blocks vary from the different reshaping operation. 
ST: spatio-temporal block; S1 and S2 : two kinds of spatial blocks; T1 and T2 : two kinds of temporal blocks.

θ (x)T φ (x) f (x)

ST TV × C1 C1 × TV TV × TV

S1 T × V × C1 T × C1 × V T × V × V

S2 V × TC1 TC1 × V V × V

T1 V × T × C1 V × C1 × T V × T × T

T2 T × VC1 VC1 × T T × T
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NTU‑RGBD12024. It is an extension of NTU-RGBD dataset. It contains 114,480 skeleton sequences of 120 
action classes performed by 106 distinct subjects. For Cross-Subject settings, half of subjects are used for train-
ing while the others for testing. In the Cross-Setup setting, clips of half setup IDs are used for training and the 
rest for testing.

Kinetics skeleton  40014. It is a large-scale action recognition dataset containing 240,000 training and 20,000 
testing skeleton sequences over 400 classes. The Kinetics 400 dataset is from the Kinetics 400 video  dataset25 and 
 OpenPose26 pose estimation toolbox. Each skeleton graph contains 18 major joints and each joint is represented 
with a tuple of (X, Y, C), in which the (X, Y) is 2D coordinates in pixel coordinate system and C is the confident 
scores given by toolbox. For the multi-people cases, two persons with the highest average joint confident scores 
are selected in each clip.

Implementation details. Data processing. Same to  SGN8, sequence level translation based on the first 
frame is performed to be invariant to the initial positions. If one frame contains two persons, this one is split into 
two frames by making each one contains one skeleton. During training, each skeleton sequence is segmented 
into 20 clips equally, and randomly select one frame from each clip to get 20 frames. During testing, similar to 
Glimpse  Clouds27, 5 sequences are randomly created in the similar manner and final main score is used to pre-
dict the class. For data augmentation, the skeleton data is rotated to some degrees. Three angles are randomly 
generated between [ −17◦ , 17◦ ] as the rotation angles of X, Y, Z axes for one sequence. Specially, angles is selected 
between [ −30◦ , 30◦ ] in NTU-RGBD CV setting, for its large view variation. As for Kinetics 400, two people with 
highest average joints confidence are selected, and data augmentation is not applied. During test, different from 
NTU datasets, only one sequence is used.

Training details. All of the works are implemented on one GTX 1080ti GPU. Adam optimizer is adopted and 
the initial learning rate is set to 0.001. The network is trained for 120 epochs, and the learning rate is decayed at 
60th, 90th and 110th epoch by a factor of 10. The weight decay is set to be 0.0001. The batch size is set to be 64 
for every dataset. Label smoothing loss function is used and the smoothing factor is set to be 0.1.

Ablation study. In this part, the influences of these self-attention blocks and the multi-representation 
method are studied on NTU60 dataset. Most comparative experiments are accomplished based on spatio-tem-
poral self-attention block shown in Fig. 4, except the comparisons between every kinds of self-attention block. 
The self-attention block is stacked four times.

The influence of different representations is shown in Table 2. Compared with two-stream  method7, the pro-
posed method reached same accuracy with half the amount of parameters. At the beginning of the network, the 
channel size is small, that is why the method of combining joints and bones at the beginning does not increase 
the parameters. Actually, the method increases only 0.002 M parameters which can be ignored. But multi-stream 
method repeats the network and fuse all the features in the final linear layer, that brings much more parameters. 
Multi-stream method is effective to achieve better results, but it is not cost-effective to increase the amount of 
calculation exponentially in order to improve a paltry effect.

Table 3 shows the influence of whether the graph is directed. The spatial self-attention block shown in Fig. 5 is 
used to accomplish this experiments. There is not much difference in accuracy between them, but the algorithm 
of directed graph has more parameters because one more 1× 1 convolution branch is needed. In this work, 
undirected graph is used.

Figure 5.  A kind of spatial self-attention block. C is the channel size; T is frame; V is the human joint. θ and g 
denote 1× 1 convolution. 3× 1 denote 3× 1 convolution.
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The influence of the number of stacked self-attention blocks is shown in Table 4. When the block is stacked 
deeper, the performance become better. But the performance stops benefiting from more stacked blocks when 
N is more than 4, and the model starts overfitting to the training set. In this work, N is set to 4.

Table 5 shows the comparison between different self-attention blocks. As shown in the table, the best results 
are achieved based on the variant of spatial self-attention block shown in Fig. 5. It is worth noting that the variant 
of spatial self-attention block has the familiar results with spatio-temporal self-attention block. This shows that 
the dependencies between joints are much more complex and important than frames. Actually, in the variant of 
spatial self-attention block, a simple 3× 1 convolution operation is adopted to model the dependencies between 
frames. In this work, the block shown in Fig. 5 is used.

Comparisons with other methods. This work concentrates on both accuracy and computation costs. 
The final model is compared with many state-of-the-art skeleton-based action recognition methods. In Table 6, 
the accuracy and the amount of parameters are compared with many influential methods on NTU60. The values 
of parameters amount in some paper are not given, in this case, they are gotten by using ptfloaps and their source 
code. If their source code is not available, the value of parameters in Table 6 is indicated by a “–”. 5 sequences are 
created and the final main score is used for testing while one sequence for training, so the testing computation 
cost is 5 times of training. In addition, Fig. 1 make comparisons more intuitively. The results show that the size 
of the network is much smaller than most other methods. Comparisons on NTU120 and Kinetics400 are shown 
in Tables 7 and 8.

The method achieves competitive accuracy with few parameters and little computation cost. Surely, more 
attention should be paid to the comparisons with  SGN8, because the size of this network is similar to the proposed 

Table 2.  Comparison between multi-representation and multi-stream. J denotes joints only, B denotes bones 
only, J + B denotes the multi-representation method, 2-stream denotes two-stream method

params (M) cs (%) cv (%)

J 0.89 89.0 95.1

B 0.89 87.4 94.9

2-stream 1.78 90.6 96.0

J + B (proposed) 0.89 90.5 96.1

Table 3.  Direct graph vs undirected graph.

params (M) cs (%) cv (%)

Directed 1.00 90.4 96.1

Undirected 0.89 90.5 96.1

Table 4.  Comparison between deferent number of stacked self-attention blocks.

N cs (%) cv (%)

2 73.0 80.0

3 86.5 90.3

4 90.6 96.1

5 90.5 96.1

Table 5.  Comparisons between different self-attention blocks. ST: spatio-temporal block; S1 and S2 : two kinds 
of spatial blocks; T1 and T2 : two kinds of temporal blocks. Their definitions are shown in Table 1. V denotes the 
block that shown in Fig. 5.

cs (%) cv (%)

S1 89.6 94.8

S2 89.3 94.8

T1 87.3 93.4

T2 86.5 93.0

ST 90.5 96.0

V 90.5 96.1
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Table 6.  Performance comparisons on NTU60 with the CS and CV settings in top-1 accuracy.

Methods Parameters (M) cs (%) cv (%)

GCA-LSTM28 – 74.4 82.8

VA-LSTM29 – 79.2 87.7

ST-GCN14 – 81.5 88.3

DPRL+GCNN30 – 83.5 89.8

SR-TSL31 – 84.8 92.4

AS-GCN18 7.40 86.8 94.2

GR-GCN17 – 84.8 92.4

2s-AGCN7 6.92 88.5 95.1

AGC-LSTM15 22.81 89.2 95.0

2s-SDGCN13 – 89.6 95.7

SGN8 0.69 89.0 94.5

DGNN32 8.16 89.9 96.1

Shift-GCN (2s)10 1.48 89.7 96.0

Shift-GCN (4s)10 2.94 90.7 96.5

MS-G3D (joint)11 3.20 89.4 95.0

MS-G3D (2s)11 6.40 91.5 96.2

MST (joint)33 3.0 89.0 95.1

MST (2s)33 6.0 91.1 96.4

Double-head (joint)34 3.0 90.3 96.1

Double-head (2s)34 6.0 91.7 96.5

Ours 0.89 90.5 96.1

Table 7.  Performance comparisons on NTU120 with the C-subjects and C-settings in top-1 accuracy.

Methods Year c-sub (%) c-set (%)

ST-LSTM35 2016 55.7 57.9

GCA-LSTM28 2017 58.3 59.2

Pose Evolution  Map36 2018 64.6 66.9

2s-AGCN7 2019 82.5 84.9

Shift-GCN10 2020 85.9 87.6

MS-G3D11 2020 86.9 88.4

SGN8 2020 79.2 81.5

MST (joint)33 2021 82.8 84.5

MST (2s)33 2021 87.0 88.3

Double-head (joint)34 2021 84.6 85.9

Double-head (2s)34 2021 87.9 89.1

Ours – 85.7 86.8

Table 8.  Performance comparisons on Kinetics400 dataset.

Methods Year Top-1 (%) Top-5 (%)

ST-GCN14 2018 30.7 52.8

AS-GCN18 2019 34.8 56.5

2s-AGCN7 2019 36.1 58.7

DGNN32 2019 36.9 59.6

MS-AAGCN12 2019 37.8 61.0

MS-G3D11 2020 38.0 60.9

MST (2s)33 2021 37.8 60.3

Double-head (joint)34 2021 36.6 59.5

Double-head (2s)34 2021 38.3 61.1

Ours – 37.6 60.1
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method. Compared to SGN, the accuracy is increased about 1.5% in cross-subjects setting (NTU60) at the 
cost of 0.2M extra parameters. In NTU120, the accuracy is increased about 6.5% in cross-settings and 5.3% in 
cross-subjects. As shown in Tables 7 and 8, the methods do not have very impressive accuracy. This is due to the 
complexity of the dataset. NTU120 and Kinetics400 are very complicated but the network is too lightweight that 
it may not be able to model the data properly.

Complexity discussion. The proposed network is very lightweight with 0.89M parameters and 0.32GMACs 
of computation cost. The following technologies are the key reasons that make the network so lightweight.

Firstly, every sequence is processed to only 20 frames. Most previous methods are based on ST-GCN14,37 and 
every sequence contains 150 frames. The size of data is much larger than the proposed method. More data comes 
with more information, but also more noise. With 150 frames, the networks have to be stacked deeper to obtain 
larger temporal receptive field. But in the proposed method, with 20 frames, fewer CNN layers are enough to 
model the time. Moreover, the motion of every joints and bones is computed which also contains some informa-
tion about time. This allows us to model time with ease.

Secondly, different from GCN, the self-attention block has global receptive field, there is no need to stack the 
blocks deep to obtain enough receptive field. So the proposed method based on self-attention mechanism could 
exploiting the long-range dependencies better with fewer stacked layers.

Thirdly, most operations in the proposed method are linear operations achieved by 1× 1 convolution. The 
parameters amount of 1× 1 convolution can be calculated as the input channel number times the output channel 
number. This operation requires little memory for parameters. The proposed self-attention block is based on 
non-local neural network. Although non-local neural network is computationally intensive when the input has 
high resolution, when it comes to skeleton-based action recognition, the input can be regarded as low resolution 
image about 25× 20 , which reduces the computation cost much.

Finally, the channel size is not set to be very large, which makes the network lighter. But this also brings us 
some problems. NTU120 and Kinetics400 are large-scale datasets with hundreds of action classes, which requires 
more feature channels to represent them. The proposed network is too lightweight to model such complex data, 
and do not achieve very impressive performance on these two datasets.

Conclusion
In this work, the application of self-attention mechanism in the task of skeleton-based action recognition is sys-
tematically analyzed and discussed, and a variety of self-attention modules are designed, which can be regarded 
as different adaptive graph convolution modules. Based on these modules, a novel model architecture is proposed. 
In addition, the trick of using low-level feature fusion instead of high-level feature fusion is proposed to improve 
network efficiency without bringing in additional computation costs and parameters. The method overperforms 
most previous methods in accuracy on NTU60 dataset. For those methods with higher accuracy, the parameters 
and calculations of the proposed method are dozens of times smaller than them. The proposed method in this 
paper may inspire the research of graph models in other fields. We will also further investigate the application 
of self-attention graph models in other tasks.
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