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Atypical processing pattern 
of gaze cues in dynamic situations 
in autism spectrum disorders
Jia Liu1, Jinsheng Hu1*, Qi Li1, Xiaoning Zhao1, Ying Liu1 & Shuqing Liu2

Psychological studies have generally shown that individuals with Autism Spectrum Disorder (ASD) 
have particularity in the processing of social information by using static or abstract images. Yet, a 
recent study showed that there was no difference in their use of social or non-social cues in dynamic 
interactive situations. To establish the cause of the inconsistent results, we added gaze cues in 
different directions to the chase detection paradigm to explore whether they would affect the 
performance of participants with ASD. Meanwhile, eye-tracking methodology was used to investigate 
whether the processing patterns of gaze cues were different between individuals with ASD and TD. 
In this study, unlike typical controls, participants with ASD showed no detection advantage when 
the direction of gaze was consistent with the direction of movement (oriented condition). The results 
suggested that individuals with ASD may utilize an atypical processing pattern, which makes it 
difficult for them to use social information contained in oriented gaze cues in dynamic interactive 
situations.

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with repetitive behaviors and 
restricted interests as the core features of social interaction and communication  disorders1. These symptoms 
manifest in many areas of people’s development, such as verbal communication, behavioral responses, and estab-
lishment of social relationships. Recent studies have shown that individuals with ASD have difficulties in the 
processing of information containing social meaning, and their cognitive competences are different from  others2. 
For many typically developing (TD) individuals, detection of other people’s gaze direction, head orientation 
and other information in social interactions occurs  spontaneously3–6. These behavioral patterns can help people 
infer the attentional focus, mental state and behavioral intention of others. However, it is hard for individuals 
with ASD to process social information in this way. This phenomenon appears early in the development of the 
disorder as revealed by retrospective  studies7,8, and it is thought that it may lead to atypical development of social 
cognition, such as difficulty in comprehending and explaining another’s behavior, as well as guidance of one’s 
own behavior based on such information.

A sizeable literature has been devoted to studying the effect of gaze cues on cognitive processing in individu-
als with  ASD3,9,10. Researchers have used social (eye, face orientation) and non-social orientation cues (chair 
orientation) to explore the orientation adaptation of individuals with ASD and found that they have weaker 
ability to adapt to orientation cues in social  situations11. The evidence from eye movement research suggested 
that individuals with ASD are responsive to gaze as a perceptual cue but ignore its representational meaning. 
Congiu et al.8 used eye-tracking methodology to compare spontaneous gaze following in young children with 
ASD to that of TD children. The results showed that the processing of gaze cues in children with ASD was mainly 
driven by perceptual features, such as the position of the irides in the sclera, rather than information about social 
significance provided by gaze cues. These results echoed the deficit in understanding the social meaning of social 
cues that was identified by Klin, Jones, Schultz, Volkmar, &  Cohen12,13. Klin et al.13 analyzed the visual scanning 
paths of the adult viewers with autism to verbal and non-verbal cues in a social scene from a film. The results 
suggested that the viewer with ASD responded primarily to the verbal cue and neglected the non-verbal gesture. 
They also found that whereas TD viewers converge on the eye region, some individuals with ASD converge on 
the mouth regions, and other individuals with ASD converge on peripheral to the  face13. These studies suggested 
that individuals with ASD have an atypical processing pattern for gaze cues.

In real life, gaze cues are often associated with other social movements such as approach and escape, but pre-
vious studies have rarely put these cues into some type of dynamic situation. Instead, gaze cues are presented as 
static or abstract images as well as simple displays of head  spinning14,15. Therefore, we used a special experimental 
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paradigm called chase detection, in which gaze cues are added to moving subjects. In this paradigm, originally 
designed by Gao, Newman and  School16, a ball (referred to as ‘wolf ’) is chasing another (referred to as ‘sheep’) and 
this chasing behavior was defined by the degree to which the wolf reliably moved in the direction of the sheep. 
Accuracy for identifying chasing behavior can be evaluated under different levels of difficulty by manipulating 
chasing subtlety (set by adjusting the angular deviation of the heading of the wolf relative to the sheep) and 
three different orientation gaze cues to explore their influence on chase detection by TD individuals. The results 
showed that accuracy was significantly higher under oriented gaze cue conditions than under perpendicular and 
reverse cue conditions. The performance advantage generated by the alignment of gaze direction and movement 
direction is called the oriented advantage, and it is considered one of the typical processing patterns of gaze cues 
in dynamic situations.

By adding gaze cues to the paradigm, Vanmarcke and his colleagues recently tested the role of social inter-
pretations of adolescents with and without  ASD17. Their results showed that the ASD group was less accurate 
than the control group and the accuracy of both groups was better in the social condition than in the non-social 
condition, but there was no interaction between group and condition. This may indicate that adolescents with 
and without ASD did not differ in their use of the added social or non-social cues. The intact performance of 
adolescents with ASD in this study seems inconsistent with the view that individuals with ASD have an atypical 
processing pattern for gaze cues.

The theory of enactive mind (EM) offers an approach to social cognitive development intended to explain 
how individuals with ASD search for meaning when presented with naturalistic social  scenes18. It proposes a 
developmental hypothesis of autism in which the process of acquisition of embodied social cognition is derailed 
early on as a result of reduced salience of social stimuli and concomitant enactment of socially irrelevant aspects 
of the environment. Further, individuals with ASD seem to be fully capable of collecting social information, but 
cannot learn the social meaning represented by the information nor how to translate it into socially adaptive 
 behaviors12,13. Based on this, we speculate that the reason why social cues had a positive effect on the performance 
of the participants with ASD in the Vanmarcke et al. study may be due to their distinctive processing mode of 
social cues. In other words, these cues may have physical, but not social, implications for individuals with ASD. In 
addition, the design of Vanmarcke et al. experiment was unable to explore the processing patterns of individuals 
by comparing their performance to gaze cues in different directions. It is a computer-based behavioral experi-
ment, unable to further explore other indices related to potential processing mechanisms.

Therefore, we wanted to explore the processing pattern of gaze cues in individuals with ASD by using chase 
detection paradigm and eye-tracking methodologies. We mainly focused on two questions in our experiment. 
The first was whether there is a difference between the processing mode of gaze cues in individuals with or 
without ASD in a dynamic chasing context. The second question examined the influence of a variety of gaze 
cues on visual processing and cognitive processing in the chase detection process. We used three kinds of gaze 
cues: oriented, reverse, and perpendicular.

This not only ensured that the physical characteristics are highly similar, but also enabled us to identify differ-
ences in the processing patterns of the participants through the comparison of the cues. To be specific, all three 
conditions are advantageous to chasing detection and have directivity if the participants did not regard them as 
social information. For example, let’s assume that the participants imagined a motion ball with the reverse cues, 
which can be seen as something like a rocket, and the two red dots at the back of the ball are like the tail fin of 
the rocket. If the participants had a typical processing mode for the gaze cues, we predicted that participants: 
(1) could understand the social information contained in gaze cues, (2) would pay more attention to where the 
gaze cues are pointing, and (3) oriented gaze cues would be effective cues for participants to detect the chase, 
while reverse and perpendicular gaze cues would hinder detection. However, if participants had an atypical 
processing mode, they would not have the oriented advantage. In addition, to further explore the participants’ 
visual and cognitive processing, eye-tracking methodology was combined with the behavioral assay. This study 
assumed that participants with ASD use an atypical processing pattern in the chase detection task, consistent 
with the viewpoint of EM.

Method
Participants. Twenty adults with ASD were recruited for this study (4 females and 16 males). We excluded 
two males with ASD because they failed to pass the calibration procedure. Thus, the final sample consisted of 
eighteen adults with ASD. They were recruited from the Aina autism service center in Dalian. All diagnoses were 
completed at qualified hospitals (e.g., Peking University Sixth Hospital). Six participants with ASD had their 
diagnosis confirmed by the Autism Diagnostic Interview-Revised (ADI-R) and twelve of them were confirmed 
by the Autism Diagnostic Observation Schedule (ADOS-2). The control group consisted of eighteen individuals 
recruited through bill-posting (4 females and 14 males, mean age = 19.51, SD = 0.98). IQ was measured using 
the Chinese version of Wechsler Adult Intelligence Scale—Third Edition (WAIS-III;19). Detailed descriptions of 
participant characteristics can be found in Table 1. There were no significantly differences between the ASD and 
control groups in chronological age, verbal IQ, performance IQ, and full-scale IQ. All participants had normal 
or corrected-to-normal vision.

The research was conducted according to the principles of the Declaration of Helsinki and was approved 
by the Ethical Committee of School of Psychology at Liaoning Normal University. We checked whether the 
participants with ASD were capable of understanding the task requirement through interviews. We obtained 
written informed consent from all participants and their parent and/or legal guardian. They were debriefed and 
thanked following their participation.
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Material. The displays were made by Matlab2014a and presented on a PC computer. Each of them contained 
four green balls (apparent size: 1° of visual angle) with two red eyes shown for 10,000 ms. We made references to 
the experimental material design of Gao et al.16 and Vanmarcke et al.17. At the start of each trial, three of the balls 
started moving at a constant speed of 14.5°/s and moved haphazardly by randomly changing direction within a 
120° window (approximately every 170 ms). The fourth ball was termed the ‘wolf ’ and moved differently. The 
heading of the wolf towards the sheep (the ball being chased), was manipulated by altering its maximal angular 
deviation (chasing subtlety). We set three different chasing subtleties: 15°, 45°, and 75°. For example, when the 
chasing subtlety was 15°, the wolf could move in any direction within a 30° window which always centered on 
the sheep (Fig. 1). To maintain a similar movement pattern, the wolf chased an invisible ball in chase-absent tri-
als, whereas it chased one of the three visible balls in chase-present trials. Furthermore, the chasing behavior of 
the wolf was delayed for 170 ms at the start of each trial to make the chasing appear smoother.

We also set three conditions. In oriented conditions, the direction of red eyes always matched the directions 
in which they were moving. In reverse conditions, the balls moved in opposite direction to the direction of red 
eyes. In perpendicular conditions, the orientation of the eyes was always perpendicular to the direction of the 
balls’ motion (Fig. 1).

Procedure. The displays were presented on a 21 inch DELL computer with a 60 Hz refresh rate and 1024 × 768 
pixel resolution, and were viewed from 60 cm in a dimly lit room. Eye movements were recorded monocularly 
by Eyelink 1000 with a sampling rate of 1000 Hz and a spatial resolution of 1°. Each participant was instructed to 
position their chin in a chin rest to hold their head stationary and to avoid blinking as much as possible during 
each trial.

Before each block, participants completed a five-point calibration phase. After successful completion of the 
calibration phase, they were told to observe the stimuli displayed on the screen. An experimenter operated the 
eye tracker from a laptop computer not visible to the participants.

The test phase included 3 blocks (conditions) and took about 30–40 min. All participants completed 39 trials 
per condition (13 per chasing subtlety, of which 10 were chase-present and 3 were chase-absent trials). Then 
participants completed a training phase to make sure they comprehended the instructions. After each trial, they 
were given visual feedback. Training ended when the participant responded correctly in 6 consecutive trials. 
These trials were not included in the formal analysis.

Table 1.  Participant characteristics for ASD and TD groups.

ASD group TD group Statistic p

N 18 18

Age(years)
Mean 20.84 19.51

t (34) = 1.62 0.11
SD 3.36 0.98

Gender ratio
Females 4 4

χ2 (1) = 0.00 1.00
Males 14 14

WAIS IV Verbal IQ
Mean 96.01 102.22

t (34) = 1.86 0.07
SD 11.25 8.61

WAIS IV Performance IQ
Mean 106.78 109.28

t (34) = 0.99 0.33
SD 8.43 6.70

WAIS IV Full Scale IQ
Mean 105.01 108.22

t (34) = 1.12 0.27
SD 9.33 7.83

Figure 1.  Illustration of the three cue conditions and chasing subtlety. The left image shows oriented cues, the 
center left one shows reverse cues, the center right image shows perpendicular cues, and the right image shows 
15° chasing subtlety. The black arrows represent the direction of movement of the balls.
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All instructions were provided on the computer screen, and every trial started with a 1-s fixation display 
before the chasing display was presented (Fig. 2). The eye tracker recorded the participant’s eye movement 
during the 10-s animation. At the end of each trial, the participants were required, without time constraints or 
feedback, to indicate whether or not the trial contained a chase. All participants had to complete all three blocks 
presented in a counterbalanced order.

Data analysis. Some researchers suggested that two visual exploration strategies which are used by partici-
pants to detect a chase: either following 1 agent for a certain amount of time (and jumping to another agent until 
a chase is detected), or looking roughly at the barycenter of all four agents, thus obtaining an optimal view of 
the movements of all agents  simultaneously20,21. To determine the strategies of participants through eye move-
ment data, we identified two dynamic areas of interest (AOIs) on each display for analysis (See Fig. 3). Based on 
these AOIs, we calculated five indicators: agent-looking rate, barycenter-looking rate, stray-looking rate, ocular 
sensitivity and cognitive sensitivity.

Agent-looking rate was defined as the ratio of fixation count of AOI1 (FC1) to the sum of FC1 and FC2. 
Barycenter-looking rate was defined as the ratio of fixation count of AOI2 (FC2) to the sum of FC1 and FC2. 
Stray-looking rate was defined as the proportion of gaze falling anywhere else (excluding AOI1 and AOI2). 
Because agent- and barycenter-looking rate are complementary, we analyzed all indicators except barycenter-
looking rates.

We also used a previously described measure related to the distribution of gaze across the 4 agents: the agent 
preference index (API), defined as the standard deviation (SD) of looking rates on each of the 4  agents22. The 
idea is that if participants detect the chase, they will tend to track the sheep and the wolf and, hence, will show 
unevenly distributed looking rates across agents and a high SD. In contrast, if they do not detect the chase, all 
agents should have an equal probability of being tracked, and the SD should be lower. Thus, API provided a 
measure of participants’ implicit detection of chasing, independent from the explicit response. Two additional 
sensitivities were derived from the API using the same signal detection approach as used for the chasing detec-
tion sensitivity. Ocular sensitivity measures the extent to which the API reveals the implicit detection of chasing. 

Figure 2.  Graphical overview of the trial design.

Figure 3.  Samples of AOIs. The four blue areas were AOI1, which were located within 2.5 times the radius of 
every agent. The yellow area was AOI2, which was located within 2.5 times the radius of agent at the barycenter 
of 5 agents.
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Cognitive sensitivity measures the extent to which explicit chase responses reflect the implicit detection of chas-
ing. Cognitive sensitivity is thus more related to high level decisional processes about intentional information. 
This was calculated as:

H is the hit (correctly detecting a chase) rate, F is the false-alarm (saying a chase exists when one did not) rate 
and z is the inverse function of the normal distribution. Null values of H and F were replaced by 1/2 N, with N 
being the number of trials per participant (39). When H and F were equal to 1, they were replaced by 1 − 1/2 N.

Result
Behavioral data. Total fixation duration of AOI1 and AOI2(s) that were less than 3 SD above their group’s 
mean were excluded from the analysis (2.98% of trials of ASD group, 1.71% of trials of TD group). Based on 
the dichotomous nature of the dependent variable, we analyzed the accuracy (correct/incorrect) scores by using 
multilevel logistic regression (MLR)  model23. In the model, participants were specified as random intercepts. 
Chasing subtlety and type of gaze-cues were specified as crossed random effects with random slopes. Group, 
chasing subtlety and type of gaze-cues were treated as fixed factors. Table 2 illustrated the statistical estimates of 
the fixed effects and random effects of accuracy scores in MLR model. The results showed that the main effects of 
the groups and chasing subtlety were significant. Compared with TD group [mean = 0.85 SD = 0.08], ASD group 
had lower accuracy [mean = 0.72 SD = 0.19] (p < 0.001). Both groups’ accuracy in 15° condition [mean = 0.87 
SD = 0.14] was higher than 45° condition [mean = 0.84 SD = 0.12] (p = 0.017) and 75° condition [mean = 0.65 
SD = 0.17] (p < 0.001).

The interaction of all three factors was significant. Post hoc analyses showed that in the 15° and 45° chase 
subtlety conditions, the accuracy of the TD group was higher with all types of gaze-cues than the ASD group. 
However, the accuracy of the two groups was similar in the 75° condition. Moreover, in the 75° chase subtlety 
condition, the TD group’s accuracy with oriented cues [mean = 0.77 SD = 0.12] was higher than with reversed 
[mean = 0.59 SD = 0.15] (p < 0.001) or perpendicular cues [mean = 0.63 SD = 0.14] (p = 0.007), whereas the ASD 
group’s accuracy showed no significant difference between the three types of gaze cues (Fig. 4).

Eye movement data. Data were analyzed by linear mixed models (LMM) using the lme4 package in  R24. 
In the models, participants were specified as random effects with both random intercepts and random slopes. 
Group, chasing subtlety and type of gaze-cues were treated as fixed factors. Means for the eye movement data 
are shown in Table 3, and the fixed effects estimates for these data are shown in Table 4. The results showed that 
the effects of group were significant. Compared with the TD group, the ASD group had higher agent-looking 
rate, stray-looking rate, ocular sensitivity, and lower cognitive sensitivity (|t|s > 5.40, ps < 0.001). In other words, 
the two groups had different eye movement patterns during chasing detection, indicating that their processing 
methods are different.

The interaction between gaze-cues and group factors was significant for agent-looking rate (b = 0.02, t = 2.90, 
p = 0.004, 95% CI = [0.01, 0.04]), stray-looking rate (b =  − 0.07, t =  − 2.15, p = 0.03, 95% CI = [− 0.13, − 0.01]), 
and ocular sensitivity (b = 0.29, t = 2.48, p = 0.01, 95% CI = [0.06, 0.53]). But it was not significant for cognitive 
sensitivity (t =  − 0.93, p > 0.05). Further analyses showed that the ASD group’s agent-looking rate for the three 
kinds of gaze-cues were all higher than the TD group. In the TD group, agent-looking rates with oriented cues 
[mean = 0.56 SD = 0.07] were higher than with reversed cues [mean = 0.50 SD = 0.08] (p < 0.001) or perpendicular 
cues [mean = 0.51 SD = 0.07] (p < 0.001). However, there was no significant effect of gaze-cue in the ASD group 
(Fig. 5).

The ASD group’s stray-looking rates for the three kinds of gaze cues were significantly higher than the TD 
group. For the TD group, stray-looking rates with oriented cues [mean = 0.37 SD = 0.04] were lower than with 
reversed cues [mean = 0.41 SD = 0.04] (p = 0.006) or perpendicular cues [mean = 0.40 SD = 0.05] (p = 0.004). 
However, there were no significant cue-related effects on the stray-looking rates of the ASD group (Fig. 6). The 
ASD group’s ocular sensitivity to oriented cues [mean = 1.31 SD = 0.39] was significantly higher than that of the 
TD group [mean = 1.09 SD = 0.28] (p = 0.004), and their ocular sensitivity to perpendicular cues [mean = 1.32 

Sensitivity : d
′

= z(H)− z(F)

Table 2.  Fixed effects and random effects of accuracy scores.

Fixed effects Random effects

b z p Variance Std. Dev

(Intercept) 5.42 5.58  < 0.001 4.17 2.04

Condition 0.35 0.89 0.37 0.09 0.3

Subtlety –1.31 –3.72  < 0.001 0.46 0.68

Group –2.64 –2.33 0.02

Condition: subtlety –0.24 –1.67 0.09 0.01 0.11

Condition: group –0.68 –1.61 0.11

Subtlety: group 0.62 1.38 0.14

Condition: subtlety: group 0.35 2.12 0.03
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Figure 4.  Accuracy of detection of the two groups in the 75° chase subtlety condition. Note ** p < 0.01, *** 
p < 0.001.

Table 3.  Means with standard deviations in parentheses of eye movement measures for the two groups.

Eye movement data ASD group TD group

Agent-looking rate 0.64 (0.04) 0.52 (0.06)

Stray-looking rate 0.48 (0.11) 0.39 (0.04)

Ocular sensitivity 1.25 (0.35) 1.05 (0.28)

Cognitive sensitivity 0.67 (0.29) 0.87 (0.26)

Table 4.  Fixed effect estimates of eye movement measures for the two groups. CI Confidence Interval.

Eye movement data

Group effect (ASD vs. TD)

b t p 95% CI

Agent-looking rate 0.11 16.89  < 0.001 [0.10, 0.13]

Stray-looking rate 0.09 9.36  < 0.001 [0.07, 0.11]

Ocular sensitivity 0.20 5.41  < 0.001 [0.13, 0.28]

Cognitive sensitivity  − 0.20  − 5.74  < 0.001 [− 0.27, − 0.13]

Figure 5.  Agent-looking rate of the two groups for the three types of gaze cues.
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SD = 0.38] was significantly higher than that of the TD group [mean = 1.00 SD = 0.29] (p < 0.001). But there were 
no group differences for the reversed cues.

The interactions of group × chasing subtlety was significant for cognitive sensitivity (b = 0.12, t = 2.99, p = 0.003, 
95% CI = [0.04, 0.20]). Further analyses showed that the ASD group’s cognitive sensitivity [mean = 0.72 SD = 0.32] 
was lower than the TD group [mean = 1.02 SD = 0.28] (p < 0.001) in the 15° condition. In the 45° condition, the 
ASD group’s cognitive sensitivity [mean = 0.69 SD = 0.30] was lower than the TD group [mean = 0.95 SD = 0.28] 
(p < 0.001), but not in the 75° condition (Fig. 7).

Discussion
In this study, the chase detection paradigm was used to compare the way that individuals with and without ASD 
processed gaze cues in dynamic interactive situations, and the eye-tracking method was used to explore the 
impact of gaze cues on their visual and cognitive processing during detection.

Our behavioral data show that in the low (15°) and moderate (45°) chasing subtleties, the influence of direc-
tional gaze cues did not appear to have obvious effects on accuracy of detection of either group. Under the high 
(75°) chasing subtlety, on the other hand, participants were influenced more by gaze cues. This suggests that 
when the task is of moderate difficulty, individuals will rely more on agents themselves to detect the chase, such 
as the way they move and how far away they are. When the chase subtlety cues provide less helpful information 
to accurately detect a chase, the role of gaze cues will be revealed (which was the purpose of setting the chasing 
subtleties). Chasing subtlety is the most significant factor affecting the accuracy of chase detection. With the 
increase of chasing subtlety, the accuracy of both groups decreased. Therefore, the effect size of the main effects 
of group is smaller than the main effects of chasing subtlety.

Further analysis shows that when the chasing subtlety is high, the accuracy of the TD group under the 
oriented condition is significantly higher than that under the reverse or perpendicular cue conditions. These 
participants showed a detection advantage under oriented conditions, which was similar to previous  studies25,26. 
In contrast, the ASD group showed no detection advantage under the oriented condition. When the chasing 
subtlety was high, there was no significant difference in their accuracy between the oriented condition and the 
other two gaze cue conditions, which is consistent with our hypothesis.

Figure 6.  Stray-looking rate of the two groups for the three types of gaze cues.

Figure 7.  Cognitive sensitivity of the two groups in the three chase subtlety conditions.
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Defects of executive functions, such as response inhibition and poor cognitive flexibility, will affect keyboard 
responses of the ASD group, thereby preventing behavioral data from revealing their processing pattern. To 
overcome this bias, we collected eye movement data during chase detection trials. These data were incorporated 
into the working model of chase detection described by Roux and his  colleagues22 to further comprehend detec-
tion processing of ASD participants.

According to this model, the process of chase detection includes two aspects. The first is attention to the 
stimulus, which is mainly represented by the stray-looking rate describing the effects of low-level eye movement 
factors. The second is exploration, which includes the visual response stage and the behavioral response stage. 
Visual responding is measured by ocular sensitivity, which represents the extent to which the API reveals the 
implicit detection of chasing. The behavioral response stage is measured by cognitive sensitivity which shows 
the extent to which explicit chase responses reflect the implicit detection of chasing. In addition, an individual’s 
exploration strategies are mainly determined by their agent-looking rates. Accordingly, we will discuss the influ-
ence of gaze cues on the two stages of chase detection processing.

Previous studies have provided evidence of how eye movement patterns reflect global processing  strategies27–29. 
In our eye-tracking data analysis, the proportions of each participant’s eye gaze located within different areas 
of interest were calculated (agent-looking rate and stray-looking rates). We noticed that when TD participants 
detected the chase among four moving balls, they focused more on the central area of the balls rather than on 
individual balls. This suggested a processing strategy whereby TD participants tended to integrate multiple stimuli 
by paying close attention to their displacement relationships with each other. Under the oriented condition, the 
agent-looking rates of the TD group were significantly higher than in other conditions. This suggested that the 
oriented gaze cues helped the TD group detect chasing by enabling the participants to direct their eye gazes more 
to each agent than on the center of the agents.

For the ASD group, the agent-looking rate was approximately 0.63, significantly higher than that of the TD 
group, whether under the oriented, perpendicular or reverse cue conditions. This suggests that young adults 
with ASD are less likely to adopt the integral detecting strategy and more inclined to locate and process agents 
separately, regardless of the nature of the cue. These participants were insensitive to the gaze cues and were 
not good at adjusting detection strategies according to the different directions of the gaze cues. Our finding 
is consistent with a weak central cognitive processing style, which refers to the detail-focused processing style 
proposed to characterize  ASD30,31.

This viewpoint was also supported by the behavioral results showing that the chase detection accuracy of the 
two groups decreased as the difficulty of the chase subtlety increased, and the TD group had a greater reduc-
tion than the ASD group. This difference indicates that chase detection performance of the ASD group was less 
dependent on chasing subtlety than that of TD. These results were similar to those of Vanmarcke et al.17. They 
suggested that the processing of the motion relationship between agents has lost its saliency with higher chasing 
subtlety and a more attention-focused processing of each of the moving balls gradually became a better search 
strategy.

Previous studies in the field of social attention have shown that individuals with ASD process social informa-
tion differently from TD individuals. Vlamings et al.32 examined reflexive visual orienting following eye direc-
tion or symbolic (arrow) cues, either congruent or incongruent with target presentation, in persons with and 
without ASD. These investigators found that both the incongruent eye direction cues and the arrow cues enabled 
individuals with ASD to detect the direction of a target more quickly. This indicates that, unlike TD individuals, 
individuals with ASD might not possess a specialized module for the processing of gaze cues. Other researchers 
found that eye gaze cues attracted attention more effectively than the arrow in TD children, while children with 
ASD shifted their attention equally in response to eye gaze and arrow direction, suggesting they failed to show 
preferential sensitivity to the social  cue33. Combining behavioral and eye movement data, we guessed that the 
TD group socialized the gaze cues by focusing more on where the gaze is pointing. In the oriented condition, the 
ball was chased in the range indicated by the line of sight, which helped TD participants detect a chase. However, 
under the reverse and perpendicular conditions, the range of the line of sight was not followed by the chased ball, 
and the inconsistency between the line of sight and the direction of motion violated their social  perception11,34,35. 
Therefore, their detection accuracy was lower under these two conditions. But individuals with ASD are different 
from them, and there may be no differences in processing patterns of social cues and non-social cues.

Moreover, Šimkovic and  Trauble36 explored the role of eye movements in the detection of chasing. They 
argued that subjects do not compare the movement of the pursued pair to a singular template that describes a 
chasing motion. Rather, subjects bring certain hypotheses about what features of motion may qualify as chase and 
then, through feedback, they learn to look for a motion pattern that maximizes their performance. However, we 
did not observe this gradually optimized processing strategy in the eye movement data of the ASD group whose 
agent-looking rates were comparable in all gaze cue conditions. This indicated that their visual detection strategy 
was relatively stable and unaffected by gaze cues. This result also confirmed the EM hypothesis that individuals 
with ASD have difficulty changing their strategies to adapt to a change in the  environment18,37.

The results of sensitivity analysis showed that the ocular sensitivity of participants with ASD was generally 
higher than that of the TD group, while the cognitive sensitivity was generally lower. It revealed that the implicit, 
early and online detection of chasing was intact in participants with ASD. Their eye movements were more related 
to the presence of a chase, suggesting that they may have more often correctly processed chase information and 
detected chasing at the ocular level. Furthermore, their preferred local looking strategy partly explained the 
increased ocular sensitivity. The decreased cognitive sensitivity revealed difficulties deciding whether a chase was 
present or not and/or producing the appropriate response, even when their eye movement patterns reveal that 
the chasing information had been correctly processed at the visual  level22. The research of Sevgi et al.38 supports 
our result. They considered that autistic traits may not impair the ability to process social information per se, 
but rather by a low weighting or precision of social cues during decision-making.
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Although this study supports the hypothesis that the processing of gaze cues in individuals with ASD is 
atypical, there remain limitations in this study that should be addressed in future research. One limitation of 
this study is the small sample size. According to the effect size of this experiment, we made a post hoc power 
analysis by using G-Power 3.1.9.7. The result showed that 92.74% power was achieved with the final sample size 
of 36 participants for the experiment. Nonetheless, it is necessary to replicate the results in a larger sample. In 
this experiment, there were only four females in the ASD group, making it difficult to conduct a meaningful 
statistical analysis of gender differences. The intensity of ASD symptoms and comorbidities should be further 
evaluate with other instruments.

In addition, Genearalised Additive Multilevel Models (GAMMs) would be a much more precise and informa-
tive way to analyse gaze trajectories within trials. GAMMs allow for analysis of continuous variables and nonlin-
ear interactions. This is an advantage for analysis of fixation data, as processing is often influenced by continuous 
predictors, such as  time39.

Studies have shown that in TD individuals, the ability to estimate whether an object is social by motor cues 
appears early in infancy, but this ability is deficient in individuals with  ASD2,12,40. The different performance 
of their social cognition may result from a severe lack of social informational input at an early stage, leading 
to insufficient social informational processing needed to promote the development of corresponding systems 
within the nervous  system41,42. Participants selected for this study were younger adults with ASD because the 
chase detection paradigm requires higher attention and comprehension of participants. Children with ASD 
may be less likely to understand task requirements or unable to maintain a longer period of  concentration43,44. 
Therefore, future studies should be designed with more accessible and understandable experimental tasks to 
explore the causes of social cognitive abnormalities in children and adolescents with ASD, if possible, utilizing 
a developmental perspective.

In addition, in this study, eye-tracker technology was used to record the subject’s eye movements during 
the behavioral experiment. This method enabled us to distinguish their processing strategies at different phases 
of the task. Our findings show the value of eye movement technology in exploring dynamic interactive social 
processing-related problems of individuals with ASD. Using neurophysiological recording methods such as ERP 
and fMRI to further understand the neural mechanism and physiological activation of individuals with ASD 
may also be good ways to explore their processing of social information.

In conclusion, this study supports the hypothesis that the role of a variety of gaze cues in the chase detec-
tion process of individuals with ASD was significantly different from that of TD individuals. In contrast to TD 
participants, individuals with ASD utilize an atypical processing pattern, which makes it difficult for them to 
use social information contained in oriented gaze cues. In addition, there was a large discrepancy between their 
visual and behavioral responses. These findings may provide new evidence for the EM theory that individuals 
with ASD can process social information, but they cannot learn the social meaning represented by the informa-
tion nor how to translate it into socially adaptive behaviors.
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