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Rigorous comparisons of human and machine learning algorithm performance on the same task 
help to support accurate claims about algorithm success rates and advances understanding of 
their performance relative to that of human performers. In turn, these comparisons are critical 
for supporting advances in artificial intelligence. However, the machine learning community has 
lacked a standardized, consensus framework for performing the evaluations of human performance 
necessary for comparison. We demonstrate common pitfalls in a designing the human performance 
evaluation and propose a framework for the evaluation of human performance, illustrating guiding 
principles for a successful comparison. These principles are first, to design the human evaluation with 
an understanding of the differences between human and algorithm cognition; second, to match trials 
between human participants and the algorithm evaluation, and third, to employ best practices for 
psychology research studies, such as the collection and analysis of supplementary and subjective 
data and adhering to ethical review protocols. We demonstrate our framework’s utility for designing 
a study to evaluate human performance on a one‑shot learning task. Adoption of this common 
framework may provide a standard approach to evaluate algorithm performance and aid in the 
reproducibility of comparisons between human and machine learning algorithm performance.

While progress has been made in artificial intelligence (AI) and machine learning (ML) research towards achiev-
ing human performance on perception tasks, one of the biggest challenges facing the field is the creation of 
algorithms endowed with flexible cognition - the innate ability to balance and switch between multiple tasks 
that theoretically underpins human general  intelligence1,2,3. Towards understanding algorithm performance, 
researchers commonly compare the performance of algorithms under study to that of previously established 
models (e.g.,4) and sometimes to human participants (e.g.,5,6). In some cases, when algorithm performance is 
compared against that of human participants, researchers make exciting claims that the ML algorithm exceeds 
human performance. While these algorithms undoubtedly advance the field, these comparative results should 
be approached with caution; when human factors, psychology, or cognitive science research experts, and experts 
in other fields that study human behavior scrutinize the methods used to evaluate and compare human and 
algorithm performance, claims that the algorithm outperforms human performance may not be as strong as 
they originally  appeared7.

It is not always clear that algorithms fairly outperform human participants on a specified task. These human 
performance studies may be limited in scope or poorly-controlled (e.g.,6). Furthermore, some researchers do not 
report important information about the human participants used in the study. For example, they may not report 
how many human participants were tested or the level of expertise that the human performers have in complet-
ing the task (e.g.,8,9). When human performance is evaluated for use in comparison to algorithms, reporting 
this information as a key part of the research, as opposed to an afterthought, may aid the research community 
in assessing not only how accurate algorithms are at the given task, but also what makes human cognition and 
algorithm intelligence different within the context of the task. This comparison between human and algorithm 
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performance may serve to advance algorithm capabilities. Through these comparisons, researchers may gain 
inspiration from the ways in which human performers succeed - or fail - at a given task and use this inspira-
tion in the model refinement process. Human-algorithm comparison presents opportunities to generate more 
accurate claims about the performance of particular algorithms and to gain greater insight into the intricacies 
of human cognition. In doing so, researchers may find new areas where human cognition fails as well as areas 
where algorithms must continue to improve.

A framework for evaluating human performance in machine learning is necessary. It is becoming more 
common for major machine learning conferences to review a reproducibility checklist as part of the submission 
evaluation process. For example, the 2021 Neural Information Processing Systems (NeurIPS) conference has a 
section of their reproducibility guidelines dedicated to crowdsourcing and work with human subjects, institut-
ing basic requirements for authors that employ the use of such data including review by relevant ethical authori-
ties when working with human participants and reporting on the task provided to human  participants10–12. Not 
all conferences currently require this information about human data to be reported, and a dedicated framework 
for carrying out human studies for comparison to machine learning performance may aid the machine learning 
community in the pursuit of producing and reporting these results.

Many instances exist in which human performance is not adequately studied or reported when drawing 
comparisons to machine learning performance. For instance, the Stanford Artificial Intelligence Index  Report13 
writes that some natural language processing models are able to outperform human ability on language process-
ing  tasks14, based on the SuperGLUE  Benchmark15. However, limited information is available about how the 
human performance baselines were derived. Key pieces of information missing include the number of human 
participants  studied8,9, the recruitment method for their research  participants8, measures of variability between 
human  participants14–17, and detailed information about the human task itself (e.g., with a schematic of the task 
design)16,17. Another study referenced in the Report claimed that classifier performance exceeded human per-
formance on an image classification task, however this study used only one human annotator and did not detail 
the methods used for human  evaluation18. (To the Report authors’ credit, they do caveat these findings with a 
statement indicating that these results do not mean that classifier performance exceeds human performance in 
general).

There are notable instances in which the study of human performance and subsequent comparison with 
machine learning performance are executed well. In this work, we provide a framework to consolidate the prac-
tices found in these instances. Rajalingham et al.19 investigated the differences between human and machine 
learning algorithm behavior on an object recognition task. Examples of practices used in this study that make it 
an exceptionally good example of human performance evaluation include the use of naturalistic synthetic images 
due to cited differences in human and algorithm  cognition20, matched trials and experimental paradigm between 
human participants and the model evaluation, and following best practices in psychology research studies. These 
included using stimuli validated by a separate pilot study, recruiting a large subject pool, and controlling for 
performance strategies such as memorization of task images. Another example of a well-executed study comes 
from Mohseni et al., who created a benchmark through study of human participants to evaluate model saliency 
explanations, towards the ultimate goal of providing more interpretable  AI21. These researchers employed many 
of the practices we advocate in this work, including a recruiting large human participant pool, completion of 
relevant ethical reviews, and matching of trials across evaluation groups. These are not the only examples of well-
executed and well-reported comparisons between human and algorithm performance; for example, Buetti-Dinh 
et al. (2009) provide information about the human subject pool under study and justification for the sample 
subject  pool22. The specific best practices employed by these well-executed studies and those like them may not be 
directly applicable for all machine learning researchers and all tasks. As such, we extract higher-level guidelines 
for completing a rigorous human evaluation that may be applied to a diverse range of machine learning tasks.

In this work, we advocate for the rigorous evaluation of human performance for subsequent comparison to 
the performance of machine learning models, with the recognition that it is intractable to expect all machine 
learning researchers to gain the appropriate domain knowledge in psychology to design these comparison stud-
ies alone. As such, we outline a set of high-level best practices for the comparison of human performers and 
machine learning algorithms and provide a demonstration of our approach for human-algorithm evaluation on 
a one-shot learning task.

The framework has three components. First, the similarities and differences between human and algorithm 
abilities should be examined with the goal of conceptualizing a test framework that doesn’t unfairly advantage 
or disadvantage either party (AI/ML or human). Second, specific aspects of the human evaluation should be 
matched to the algorithm evaluation, including using the same stimuli and trials between evaluation groups. 
Finally, the evaluation study should be implemented under best practices for psychology research studies, even if 
the focus of the comparison is not solely in human performance. These practices, such as augmenting experimen-
tal data with subjective data and reporting on these results, may aid in validating findings and improving study 
replicability. This work builds off of that of Firestone 2020, which advocates for three factors when comparing 
human and machine performance: to “limit machines like humans”, “limit humans like machines”, and “species-
species task alignment”23. Through our framework, we provide steps to specifically limit humans like machines 
and align the task of interest between humans and machines, with added information for the machine learning 
researcher regarding best practices in conducting studies of human performance.

Guiding principles for successful human evaluation
Comparisons between algorithm and human performance provide a baseline against which algorithm perfor-
mance may be evaluated. However, it can be challenging to design a human study such that a successful compari-
son between machine learning and human performance can be made. Towards development of a standardized 
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framework for evaluation, we present three broad guiding principles for designing and implementing a successful 
evaluation of human performance, towards the goal of aiding the machine learning community in designing 
high-quality, reproducible studies.

Design with the differences (and similarities) between human and algorithm cognition in 
mind. A computer vision algorithm - for example, one trained to recognize pedestrians on the  street24 - is 
endowed with the “skills” that it has been trained to develop. In this case, we can count on the algorithm being 
trained to differentiate human pedestrians from street signs in a crowded scene, but we cannot, for example, 
expect it to “know” what the street signs surrounding pedestrians say. Additionally, the algorithm doesn’t tire of 
completing a given task; researchers can ask the algorithm to do many trials multiple times without worrying if 
performance might degrade due to fatigue.

In contrast to the algorithm, a human driver scanning the road for pedestrians while driving cannot separate 
what they know about pedestrian appearance and behavior from their knowledge of the meaning of street signs. 
The human driver uses knowledge that is outside the realm of pure visual search to anticipate where pedestrians 
are likely to appear, increasing their ability to quickly and accurately recognize pedestrians when they see  them25. 
Not all of these additional abilities, intertwined with the ability to perform visual search for pedestrians, correlate 
with positive task performance. For example, the ability to attend to multiple tasks at once may make a driver 
distracted, leading to a failure in identification of the  pedestrian26.

In our example above, we illustrate some of the stark cognitive differences between human and machine 
learning algorithms. The different facets of human cognition are intricately tied together and cannot be easily 
decoupled even in simple tasks. Algorithms are specially trained for their specific purpose which may aid their 
performance, but they cannot bring past experience to tasks, which may be at their detriment when compared 
to human performers. These facts become extremely important when developing a task that accurately compares 
human and algorithm performance.

When designing a comparison task, it is important to remember these differences in cognitive ability in 
order to evaluate the two parties fairly. As an example, if a researcher is to evaluate the visual search abilities of 
humans versus an algorithm, she should bear in mind that human memory is fallible and take action to limit 
how much she asks her participants to remember throughout the task. Failing to control for this may result in 
artificially low performance measures for human participants. On the other hand, humans may be advantaged 
in a particular task if they’re able to bring past experience to the table. This may result in a comparison in which 
the machine learning performance appears far lower than that of its human counterparts, simply because of 
inflated human performance.

Attempts to control for the facets of cognition that may be available to humans but not machine learning mod-
els may be helpful when attempting to compare human and machine learning performance on a particular spe-
cialized task. Some facets of human cognition that a researcher may want to exert a level of experimental control 
over include language ability, memory (both in terms of past experience and working  memory27), and attention. 
The specific cognitive abilities that should be considered when designing the comparison task will depend on 
the type of algorithm and comparison desired; comparison of human and algorithm performance on speech 
recognition task may recruit different cognitive functions and have different constraints than a comparison of 
capabilities on a visual search task, especially depending on the response modality for human participants. Enu-
meration of the cognitive demands on human participants (e.g., “memory”, “focus”) and the cognitive advantages 
of human participants (e.g., “reading”, “real-world experience”), even loosely, may aid researchers in designing 
an evaluation that is balanced to both parties.

Match trial type and anticipated difficulty between algorithm and human participants. When 
designing the human evaluation, the stimuli chosen should match those that will be presented to the machine 
learning algorithm at time of testing. It may not be possible to evaluate both human and algorithm performance 
on every individual stimulus or trial; however, performance comparison claims will be more robust if main fea-
tures of the datasets used are matched to be as similar as possible.

Variability in trials can often be helpful to test human and machine performance under a wide variety of 
conditions. Criteria for trial selection in the final experiment could seek to maximize variability in difficulty 
level or other features that are expected to influence performance, such as the spatial distribution of target 
objects in a visual search task. It can also be helpful to screen trials and exclude ones that may be too difficult or 
frustrating for human participants to complete, as this could lead to data quality issues due to disengagement 
by human participants.

The evaluation paradigm should also consider known human physical (e.g., visual acuity) and cognitive limi-
tations to ensure that researchers do not unfairly disadvantage human performance on the task, especially due 
to differences in qualities human participants and machine learning algorithms that are not of research interest. 
In some cases, this quality of human cognition may be of interest if the goal is to see whether machine learning 
algorithms can perform better than humans on highly fatiguing tasks. In other cases, however, researchers may 
be more interested in comparing machine and human performance on one-shot tasks in which measurement 
of fatigue is not the primary research interest. In this setting, it may be prudent to try to eliminate causes of 
unnecessary fatigue.

When implementing the study, especially if doing so outside of a research laboratory setting (e.g., on a crowd-
sourcing platforms), it is important to consider the ways that human participants will interact with the task. This 
may influence the trials that are selected for human annotation. For example, on a visual search or identifica-
tion task, participants may use computers with different screen sizes and browsers with different resolutions. 
Each of these factors could impact how participants view the stimuli and respond to prompts, especially if the 
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task involves small or blurry images. It is important to ensure that the evaluation paradigm does not put some 
participants at an unfair disadvantage due to these potential constraints. Collecting data on these constraints 
such as through surveys asking questions about the equipment participants are using to complete the task and 
imposing equipment requirements as part of the experiment inclusion criteria can help address these issues, as 
can ensuring trials are compatible with a wide range of consumer-grade hardware.

Employ best practices for executing psychology research studies. Our final guiding principle is 
broader: the machine learning researcher should aim to employ best practices for the execution of psychology 
and human factors studies when implementing their evaluation of human performance. These best practices 
include choosing a platform that allows human participants to interact with the task easily, recruiting an appro-
priate population in terms of population size and demography, conducting internal pilots of the study, collect-
ing supplementary data in addition to main study data, and reporting analysis in terms of the main measure of 
interest (e.g., accuracy), as well as on other axes (e.g., time to complete the trial, patterns of false positives and 
false negatives).

Collecting small-scale pilot data may aid researchers in developing their human performance study further 
by testing that human participants understand what they are being asked to do, the task is not more or less tax-
ing than anticipated, the compensation rate is fair and reasonable, and there are no technical issues that may 
influence human performance. Reporting measures of variability among human performers, such as amount of 
agreement, the standard deviation, or a 95% confidence interval on performance is also helpful for interpreting 
results. Finally, counterbalancing of the trials or, more simplistically, presentation of a random order of trials 
to each participant, may be helpful for controlling for serial order carryover effects. These practices are com-
mon in experimental psychology and may help machine learning experts design a rigorous evaluation of human 
performance.

Given that many researchers may choose to use a crowd-sourcing platform to conduct their studies, and the 
movement in the field toward more in-depth reporting of the human experimental design and results when 
comparing to machine learning algorithms, we provide more in-depth considerations for crowd-sourcing, col-
lection of supplementary data, and respect for human participants below.

Considerations for crowd‑sourcing. Numerous tools exist for collecting human performance rapidly at scale. 
Online crowd-sourcing sites such as Amazon Mechanical Turk and Prolific can help researchers collect large 
numbers of user responses in a short period of time. Crowd-sourcing sites have been commonly used by machine 
learning communities for generating labeled datasets, and psychologists have long used these sites for perform-
ing studies. In the setting of a human performance evaluation, stimulus presentation may be accomplished 
natively within these platforms and/or externally via providing a link to a custom web application, possibly 
equipped with a stimulus presentation software (e.g.  PsychoPy28,  PsychToolbox29).

When using crowd-sourcing platforms for deployment of comparison studies, it is important to build in 
methods for monitoring data quality. When participating in an online experiment participants may be more at 
risk of distraction or lack of attention, which can lead to less reliable  data30. Fortunately, many research studies 
have demonstrated that classic psychology experiments can be replicated with high fidelity via online crowd-
sourcing methods, especially when methods are built-in for screening out participants with poor data  quality31. 
These methods include building attention check trials into the experimental design that can help detect when 
participants are not paying careful attention to the task and gold standard trials that are easier, or have a clear 
correct answer, which help assess whether participants answered easy trials  correctly32.

Using recruitment criteria that favor participants who are likely to give good effort, such as setting a mini-
mum thresholds for number of previous crowd-sourcing tasks completed and percentage of past acceptable data, 
may aid researchers in finding reliable research participants. Identifying and screening out workers producing 
poor-quality or inattentive responses is essential to ensuring that the human performance data can be used as 
a reliable comparison.

Collection of demographics and task‑related subjective data. Surveying tools such as Qualtrics exist for collect-
ing supplementary data from participants about the difficulty of trials and about the participants themselves, 
allowing for greater insight into their performance behavior. Collecting demographics and task-related subjec-
tive data is not only helpful for determining participant engagement, but also may aid researchers in identifying 
potential confounds for their results and provide information about the strategies that participants may have 
used to complete the task. These data are not commonly reported in the machine learning literature, but are 
helpful for the research community to understand the full picture of who the participants were who completed 
the task, and what the participants’ experiences were. One established tool for collecting task load data that may 
be of use to the machine learning researcher is the NASA-TLX33.

It is important to consider the human population of interest when designing a successful comparison study, 
particularly the desired level of relevant domain expertise and experience with the particular task. In some cases, 
it may be desirable to compare machine learning algorithms to only novices or only experts on a given task, or a 
combination of the two. Importantly, the participants included in the evaluation should not be members of the 
research team, as they carry systematic biases about how the task should be executed, which could skew their 
performance results. Collecting and reporting data about the domain experience level of research participants 
can bolster the comparison findings.

Respect for human participants. Respect for human participants is integral to ethical psychology research and 
study of human participants for purposes of comparison to algorithm performance is no exception. Researchers 
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can demonstrate their respect for human participants through payment of a fair wage for participants, regard-
less of whether the study is performed in the laboratory or online, and ensuring that the research protocol is 
approved by their Institutional Review Board (IRB)34 or corresponding regulatory body when necessary. Partici-
pants should be informed that they are participating in a research study, be provided an appropriate avenue to 
contact the research team if they have any problems, and should be informed that they may revoke their consent 
to participate at any time without penalty.

Additional considerations may be necessary depending on the task demands. Researchers should consider the 
nature of their stimuli and whether the content is appropriate for all audiences, for example. If the stimuli contain 
content that some participants may be sensitive to (e.g., violence), appropriate warnings should be provided to 
participants before they engage with such content. There are many additional ways that researchers can show 
their human participants respect; researchers may consider contacting a human subjects protection specialist 
or member of the IRB at their institution for personalized guidance.

A case study in one‑shot learning
We demonstrate our use of the guiding principles outlined in the Guiding on a one-shot learning task. This task 
was selected to illustrate the utility of our framework because it represents an open problem in machine learn-
ing and computer vision research. While is well-established that humans have the ability to learn from limited 
 exemplars35, endowing algorithms with this ability remains an open research topic. We present this case study not 
as a representation of a perfect study, but rather as a stepping stone towards standardization of these comparisons.

A schematic of the task design is shown in Fig. 1, in which the 8 screens comprising one task is shown. 
Participants first viewed five classes of objects, each with five exemplars. They were then provided one example 
of an image from a new class of objects. Finally, they were provided six degraded (blurry) example images to 
remind them of the classes they had previously seen, and asked to which class a new object most likely belonged. 
Participants had to classify six different objects in total, before a new trial began again with “Screen 1.” A template 
for Amazon Mechanical Turk of this task can be found in our GitHub repository, as can experimental and sup-
plementary data produced during this experiment.

We demonstrate our use of our framework through controlling for additional aspects of human cognition that 
were not the objects of study, matching trials between human participants and algorithms and testing a range 
of difficulty levels with our human participants, and following best practices for executing psychology research 
studies. These included obtaining approval for the study from our Institutional Review Board (IRB), recruiting a 
large participant pool, presenting human participants with a set of randomized trials, collecting supplementary 
research data, and reporting our results with a 95% confidence interval. Through using our framework, we have 
conducted a study that evaluates human performance for subsequent balanced comparison to the performance 
of machine learning model trained for the one-shot learning task.

Consideration of the differences and similarities between human and algorithm cognition. Of 
chief importance in this task was controlling for outside experience while testing the ability to generalize from 
limited exemplars. While the classifier against which we aimed to compare human performance “knows” only 
the information that it has been trained to know, we cannot exert the same experimental control over our human 

Figure 1.  Schematic of our one-shot learning task presented to human participants. At the time of training, 
participants viewed 5 classes of objects, with 5 examples each. When they progressed to the next screen, they 
were presented one example of an object from a “new class”. At test time, they viewed 6 consecutive screens with 
examples from each of the classes, and were asked to categorize to which class they belonged.
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participants. Therefore, we could not expect to implement a one-shot learning task in human participants using 
natural images and categories that humans already have experience with, because we would not be able to truly 
test the human ability to generalize from one instance of a class. Failure to control for outside experience in our 
human participants would lead to limited internal validity for our findings. To control for this potential con-
found, we implemented the study with nonsensical, computer-generated objects, such as those in Fig. 2.

It was clear in designing the task that other factors of human cognition were different from algorithm cogni-
tion. For instance, while algorithms may be able to encode and store a perfect representation of pixel values in 
an image, humans have limits to their working  memory36. Because we were not interested in performance dif-
ferences on this task that were attributable to differences in working memory capacity, we strove to circumvent 
this limitation of human cognition by providing degraded “reminder” images to human participants at test time 
so that they would be able to focus on generalizing from experience, rather than holding information in work-
ing memory. Finally, while a computer vision algorithm may have no notion of language, humans are unable 
to separate their various cognitive capabilities, like their linguistic skills and categorization skills. As such, we 
refrained from endowing object categories with meaningful names, and instead labeled them with a letter (A, 
B, C, D, or E) or “New Class” for the purposes of class identification at test time.

Although we took steps to control differences in human and algorithm cognition that we did not want to 
confound performance, including considering the influence of past exposure, working memory constraints, 
and the impact of language, perfect control of all of these confounding factors is not possible. This is due to the 
fundamental challenge that the classifier under study was explicitly designed for a one-shot learning task, in stark 
contrast to the human mind. While attempts to mitigate differences in human and algorithm cognition contribute 
to a more fair evaluation of the two, we do not claim that attempts to mitigate these differences result in perfect 
equivalency between the subject pools. Rather, the ability to draw comparisons is improved. It is possible that 
our participants directly compared the degraded “reminder” images to the image that they were asked to classify. 
While we cannot be certain that this strategy was not used, participants were explicitly instructed to study the 

Figure 2.  Representative examples of synthetic, computer-generated images used as stimuli in our one-shot 
learning evaluation. The decision to use synthetic stimuli was made because we aimed to test the human versus 
algorithm ability to generalize from one experience; as such, we could not use stimuli found in the natural 
world that participants would have had past experience with.
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training images before moving to the testing phase and to only use the blurred reference images as reminders 
of the classes they had previously seen.

Matching trials between human participants and algorithms. The synthetic, computer-generated 
dataset utilized in this comparison allows for the generation of many more unique stimuli than could ever be 
tested by human participants via varying lighting, shape, orientation, surface texture, and other parameters. 
Limitations in time, number of participants, and funding were drivers in determining how much data could be 
collected from human participants, because our goal was to compensate participants with a livable hourly wage 
for their work and limit the number of trials presented to avoid performance deficits due to fatigue. We provided 
both the algorithm and human participants trials of two levels of difficulty. A mix of easy (45%) of trials and 
difficult trials (45%), with the remaining trials (10%) as gold standard and attention check trials were used to 
ensure that participants were adequately challenged but that they did not become discouraged throughout the 
course of the experiment. Easy trials were defined as trials that had differences between object classes that were 
more pronounced. Difficult trials were defined as trials that had differences between classes that were more 
subtle. Stimuli from an example easy trial can be found in Fig. 3. Note that the differences between the objects 
in this set of stimuli are quite pronounced, with large variability in overall shape, numbers of components, and 
surface textures. Stimuli from an example hard trial can be found in Fig. 4. In contrast to the stimuli in the easy 
trial, the objects in this trial appear to be of the same “family”: they have the same surface texture, and many 
have the same general shape.

Implementation of best‑practices for executing psychology research studies. In accordance 
with best practices in psychology studies, we aimed to recruit a large, diverse participant pool via Amazon 
Mechanical Turk. After performing data quality checks, we included 134 participants in analysis. Although an 
in-person study would have afforded a higher level of control, this proved infeasible with our current resources. 
This research was reviewed and approved by the Johns Hopkins Medicine Institutional Review Board (IRB) and 
all methods were conducted in accordance with the IRB guidelines and regulations for this style of research. 
Participants were informed in clear language prior to submitting any of their answers that their completion of 
the task served as informed consent to participate in our research study, per our IRB’s requirements for this type 
of research. Participants were 18 years of age or older as required by Mechanical Turk and were compensated at 
a rate of roughly $15 per hour, paid per Mechanical Turk Human Intelligence Task (HIT) completed. Because 
Mechanical Turk compensates participants per task completed (and not by amount of time spent on a task), the 
research team set a compensation rate per HIT according to a lower-bound estimate of how many trials a par-
ticipant could be expected to complete in one hour, as determined by the completion rates for each task by pilot 
participants. Participants were required to have never participated in one of our Laboratory’s tasks so that they 
would not have previous experience with our stimuli. 50 responses from different participants were collected 
per trial to understand how different participants may behave differently and arrive at a generalizable conclusion 
about human performance on this task.

We identified 200 trials that were representative of the entire synthetic dataset for direct comparison between 
human participants and machine learning algorithms and the results were extrapolated to the entire dataset. For 
example, we found that while algorithms show a clear performance decrease when they are tasked with identify-
ing which object belonged in the “new class” (Table 1), human participants showed no such performance decrease 
(Table 2). This pattern was extrapolated to all trials, given the robustness of the finding. In the comparison shown 
in Tables 1 and 2, the classifier used was a ResNet18 architecture pre-trained on mini-ImageNet to extract vec-
tor embeddings of the input images. For training our one-shot classifier, we embeded each of the exemplars for 
all training and online classes and saved the corresponding representations. At test time, we embeded our test 
image and performed k-nearest neighbors search on the saved representations, assigning the label that results 
from that process to the test image.

Figure 3.  Example of object classes in an easy one-shot learning trial. The differences between classes are more 
pronounced, allowing for relatively easy discrimination of the defining features of each class.

Figure 4.  Example of object classes in a hard one-shot learning trial. The differences between classes are less 
pronounced, demanding greater attention and thought about the defining features of each class.
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Finally, although our main outcome of interest was the accuracy with which participants could correctly 
identify the class from which a particular object was drawn, we collected additional supplementary data com-
mon to psychology studies that added context to our findings and, in the event of surprising performance 
trends, could have helped to identify potential confounds. Our supplementary data included questions relating 
to the demography of participants, as well as a modified version of the NASA TLX workload  questionnaire33 
to understand how difficult participants found the study and how successful they felt they were at the study, 
among other measures. The collection of these data helped us to validate that the high performance that we 
saw in participants is likely not due to the task being too easy, as evidenced by the distribution of self-reported 
degree of mental demand (Fig. 5).

Discussion
In this work, we presented 3 guiding principles for standardizing the comparison between human and algorithm 
performance on common machine learning tasks. First, care must be taken in designing the comparison to 
consider the  strengths and weaknesses of human participants and the algorithm, to ensure that the evaluation 
paradigm is as fair as possible. Second, the human and algorithm evaluation should be matched as closely as 

Table 1.  Results from a baseline deep learning algorithm: a ResNet 18 architecture pre-trained on mini-
ImageNet. Mean accuracy and 95% confidence intervals are reported across all trial types, calculated using 
a non-parametric bootstrapping approach. While accuracy on the training classes is comparable to human 
performance, there is a major drop in performance on the new class. This is due to the algorithm’s poor 
handling of training class imbalance.

Amount of training in target class

Easy trials Hard trials

Mean Accuracy (%) 95% CI Mean accuracy (%) 95% CI

5 previous examples (training class) 92.7 [90.5, 95.1] 79.6 [76.0, 83.4]

1 previous example (new class) 54.4 [53.4, 55.4] 36.7 [35.7, 37.7]

Table 2.  Results from human participants. Mean accuracy and 95% confidence intervals are reported across 
all trial types, calculated using a non-parametric bootstrapping approach. Human performance does not differ 
with the number of training images to which the participant is exposed. As expected, accuracy on hard trials is 
lower than accuracy on easy trials.

Amount of training in target class

Easy trials Hard trials

Mean accuracy (%) 95% CI Mean accuracy (%) 95% CI

5 previous examples (training class) 94.6 [94.3, 94.8] 71.9 [71.4, 72.4]

1 previous example (new class) 95.8 [95.3, 96.3] 70.4 [69.3, 71.6]

Figure 5.  Self-reported level of mental demand required for completing our one-shot learning task (1=Low, 
7=High). The distribution of responses indicate that the task was sufficiently difficult to engage participants, but 
not so difficult that we should be concerned about confounds to human performance.
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possible, including matching the specific trials that human performers and the algorithms complete, such that a 
direct comparison of human and algorithm performance can be made. Third, the comparison must be meticu-
lously implemented, including the collection of an adequate sample of task-naíve human participants, augment-
ing experimental data with subjective data such as ratings of task difficulty, and the execution of statistically 
rigorous comparisons. Failure to consider these elements can result in an unfair comparison between machine 
learning algorithms and human capabilities and could lead researchers to artificially under- or overestimate 
algorithm performance. We showed our implementation of these principles in our comparison of human and 
machine performance on a one-shot learning task.

This framework is limited in its ability to directly prescribe solutions for every individual type of machine 
learning-to-human comparison that a researcher may want to implement. Furthermore, researchers may be 
limited in their ability to implement the recommendations set forth herein, given funding, participant, and 
laboratory constraints. With the acknowledgement that adopting a common framework will require community 
participation and group iteration, this work is presented as a first step towards a common, standardized frame-
work. This framework should be updated with input from the community to ultimately include best practices 
from a variety of laboratories, research settings, and analysis aims for the particular task setting.

A framework for measuring human performance is necessary for completing comparative evaluations of 
human and machine learning, but not sufficient alone to ensure a fair comparison study. In this work, we have 
focused on reducing bias in favor of or against human performance. It also important to consider the opposite 
potential bias: for or against machine learning algorithm performance, such as the types of biases discussed  in37. 
Furthermore, performance may not always be the right criterion to compare against. Performance refers to the 
ways in which the parties under comparison express their knowledge, which is notably different from a frame-
work to assess or compare competence: the knowledge and ability that agents have. This distinction between 
performance and competence is important for drawing comparisons between the “species” of machine learning 
and humans that go beyond strict demonstration of performance, which may be the goal of some comparison 
 studies23.

Rigorous evaluation of human performance on tasks used to evaluate machine learning algorithms will help 
researchers to understand not only how well humans perform on these tasks, but also the methods that humans 
use, the ways in which humans fail, and the ways in which they succeed. Knowledge of how humans perform 
on these tasks may provide machine learning and artificial intelligence researchers the data they need to make 
decisions on what it means to create biologically-inspired machine learning algorithms: whether the system must 
achieve human performance to be considered intelligent, and whether the machine must approach the problem in 
a similar way to the human, demonstrating similar success and error patterns. A unified framework for perform-
ing human evaluation will aid machine learning researchers in designing their studies of human performance 
and reporting their results, which may aid them in reporting accurate and replicable comparisons to human 
performance and provide practical tools for meeting the demands that major machine learning conferences are 
now instituting regarding reporting on human performance.

Data Availability
The one-shot learning task template for use on Amazon Mechanical Turk, experimental data, and supplementary 
data for the case study implemented in this manuscript can be found at our GitHub: https:// github. com/ aplbr 
ain/ human- perfo rmance- evalu ation.

Received: 25 June 2021; Accepted: 13 January 2022

References
 1. Humphreys, L. G. The construct of general intelligence. Intelligence 3, 105–120. https:// doi. org/ 10. 1016/ 0160- 2896(79) 90009-6 

(1979).
 2. Barbey, A. K. Network neuroscience theory of human intelligence. Trends Cognit. Sci. 22, 8–20. https:// doi. org/ 10. 1016/j. tics. 2017. 

10. 001 (2018).
 3. Pennachin, C. & Goertzel, B. Contemporary Approaches to Artificial General Intelligence 1–30 (Springer, 2007).
 4. Ding, D., Hill, F., Santoro, A. & Botvinick, M. Object-based attention for spatio-temporal reasoning: Outperforming neuro-symbolic 

models with flexible distributed architectures.  arXiv:  2012. 08508, (2020).
 5. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252. https:// doi. org/ 10. 1007/ 

s11263- 015- 0816-y (2015).
 6. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, 1026–1034, https:// doi. org/ 10. 
1109/ ICCV. 2015. 123 (IEEE Computer Society, 2015).

 7. Strickland, E. Ibm watson, heal thyself: How ibm overpromised and underdelivered on ai health care. IEEE Spectr. 56, 24–31. 
https:// doi. org/ 10. 1109/ MSPEC. 2019. 86785 13 (2019).

 8. Pilehvar, M. T. & Camacho-Collados, J. Wic: 10, 000 example pairs for evaluating context-sensitive representations. CoRR arXiv: 
abs/ 1808. 09121 (2018).

 9. Zhang, S. et al. Record: Bridging the gap between human and machine commonsense reading comprehension. CoRR arXiv: abs/ 
1810. 12885 (2018).

 10. Pineau, J. et al. Improving reproducibility in machine learning research. J. Mach. Learn. Res. 22, 1–20 (2021).
 11. Foundation, N. I. P. S. Neurips 2021 paper checklist guidelines.
 12. Foundation, N. I. P. S. Ethics guidelines.
 13. Zhang, D. et al. The Artificial Intelligence Index Report 2021 (Stanford Institute for Human-Centered Artificial Intelligence, 2021).
 14. He, P., Liu, X., Gao, J. & Chen, W. Deberta: Decoding-enhanced BERT with disentangled attention. CoRR arXiv:  abs/ 2006. 03654, 

(2020).
 15. Wang, A. et al. Superglue: A stickier benchmark for general-purpose language understanding systems. CoRR arXiv: abs/ 1905. 

00537, (2019).

https://github.com/aplbrain/human-performance-evaluation
https://github.com/aplbrain/human-performance-evaluation
https://doi.org/10.1016/0160-2896(79)90009-6
https://doi.org/10.1016/j.tics.2017.10.001
https://doi.org/10.1016/j.tics.2017.10.001
http://arxiv.org/abs/2012.08508
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/MSPEC.2019.8678513
http://arxiv.org/abs/abs/1808.09121
http://arxiv.org/abs/abs/1808.09121
http://arxiv.org/abs/abs/1810.12885
http://arxiv.org/abs/abs/1810.12885
http://arxiv.org/abs/abs/2006.03654
http://arxiv.org/abs/abs/1905.00537
http://arxiv.org/abs/abs/1905.00537


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5444  | https://doi.org/10.1038/s41598-022-08078-3

www.nature.com/scientificreports/

 16. Nangia, N. & Bowman, S. R. Human vs. muppet: A conservative estimate of human performance on the GLUE benchmark. CoRR 
arXiv: abs/ 1905. 10425 (2019).

 17. Khashabi, D., Chaturvedi, S., Roth, M., Upadhyay, S. & Roth, D. Looking beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 252–262, https:// doi. org/ 10. 18653/ v1/ N18- 1023 
(Association for Computational Linguistics, 2018).

 18. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 
In 2015 IEEE International Conference on Computer Vision (ICCV)https:// doi. org/ 10. 1109/ iccv. 2015. 123 (2015).

 19. Rajalingham, R. et al. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, 
and state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269, https:// doi. org/ 10. 1523/ JNEUR OSCI. 0388- 18. 2018 
(2018). https:// www. jneur osci. org/ conte nt/ 38/ 33/ 7255. full. pdf.

 20. Pinto, N., Cox, D. D. & Dicarlo, J. J. Why is real-world visual object recognition hard? PLoS Comput. Biol. 4, https:// doi. org/ 10. 
1371/ journ al. pcbi. 00400 27 (2008).

 21. Mohseni, S., Block, J. E. & Ragan, E. Quantitative evaluation of machine learning explanations: A human-grounded benchmark. 
In 26th International Conference on Intelligent User Interfaceshttps:// doi. org/ 10. 1145/ 33974 81. 34506 89 (2021).

 22. Buetti-Dinh, A. et al. Deep neural networks outperform human expert’s capacity in characterizing bioleaching bacterial biofilm 
composition. Biotechnol. Rep. 22, e00321. https:// doi. org/ 10. 1016/j. btre. 2019. e00321 (2019).

 23. Firestone, C. Performance vs. competence in human–machine comparisons. In Proceedings of the National Academy of Sciences 
117, 26562–26571, https:// doi. org/ 10. 1073/ pnas. 19053 34117 (2020). https:// www. pnas. org/ conte nt/ 117/ 43/ 26562. full. pdf.

 24. Agrawal, P. & Brahma, P. P. Single shot multitask pedestrian detection and behavior prediction. arXiv (2021). arXiv: 2101. 02232.
 25. Kristjánsson, Á. Priming of visual search facilitates attention shifts: Evidence from object-substitution masking. Perception 45, 

255–264. https:// doi. org/ 10. 1177/ 03010 06615 607121 (2016).
 26. Savage, S. W., Potter, D. D. & Tatler, B. W. The effects of cognitive distraction on behavioural, oculomotor and electrophysiological 

metrics during a driving hazard perception task. Accident Analysis & Prevention 138, 105469. https:// doi. org/ 10. 1016/j. aap. 2020. 
105469 (2020).

 27. Baddeley, A. Working memory. Science 255, 556–559. https:// doi. org/ 10. 1126/ scien ce. 17363 59 (1992).
 28. Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https:// doi. org/ 10. 3758/ s13428- 

018- 01193-y (2019).
 29. Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36, 1–16 (2007).
 30. Buhrmester, M., Kwang, T. & Gosling, S. D. Amazon’s mechanical turk: A new source of inexpensive, yet high-quality, data? Perspect. 

Psychol. Sci. 6, 3–5, https:// doi. org/ 10. 1177/ 17456 91610 393980 (2011). PMID: 26162106,
 31. Buchanan, E. M. & Scofield, J. E. Methods to detect low quality data and its implication for psychological research. Behav. Res. 

Methods 50, 2586–2596. https:// doi. org/ 10. 3758/ s13428- 018- 1035-6 (2018).
 32. Paolacci, G., Chandler, J. & Ipeirotis, P. G. Running experiments on mechanical turk. Judgm. Decis. Making 5 (2010).
 33. Hart, S. G. & Staveland, L. E. Development of nasa-tlx (task load index): Results of empirical and theoretical research. In Hancock, 

P. A. & Meshkati, N. (eds.) Human Mental Workload, vol. 52 of Advances in Psychology, 139 – 183, https:// doi. org/ 10. 1016/ S0166- 
4115(08) 62386-9 (North-Holland, 1988).

 34. Graber, M. A. & Graber, A. Internet-based crowdsourcing and research ethics: the case for irb review. J. Med. Ethics 39, 115–118, 
https:// doi. org/ 10. 1136/ medet hics- 2012- 100798 (2013). https:// jme. bmj. com/ conte nt/ 39/2/ 115. full. pdf.

 35. Weaver, J. How one-shot learning unfolds in the brain. PLoS Biol. 13, e1002138–e1002138. https:// doi. org/ 10. 1371/ journ al. pbio. 
10021 38 (2015).

 36. Cowan, N. Working Memory Capacity: Classic Edition. (Taylor & Francis, 2016).
 37. Buckner, C. J. Black boxes, or unflattering mirrors? Comparative bias in the science of machine behavior. Br. J. Philos. Sci.https:// 

doi. org/ 10. 1086/ 714960 (2021).

Acknowledgements
The authors thank and acknowledge the MICrONS program research team for their support of this work. Addi-
tional thanks is extended to CIRCUIT interns Jada Campbell and Kowsar Ahmed for their contributions to 
our one-shot learning paradigm. This work was supported by the Office of the Director of National Intelligence 
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA Contract No. 2017-17032700004-
005 under the MICrONS program. The views and conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or 
implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstanding any copyright annotation therein.

Author contributions
H.P.C. led the development of the manuscript and guiding principles and supported experimental design and 
analyses as illustrated in the one-shot learning case study. M.N. and K.G.R. aided in experimental design for 
one-shot learning case study. R.R. contributed to the manuscript text and guiding principles. N.D. and E.C.J. 
contributed to the manuscript text, development of algorithm evaluation, and experimental analyses. T.M.S. 
and F.C. provided the synthetic stimuli and early conceptualization of our one-shot learning human evaluation 
paradigm. B.W. and W.G.R. supervised this work and provided technical feedback to experimental results and 
analysis. All authors reviewed and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.P.C. or W.G.-R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/abs/1905.10425
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.1109/iccv.2015.123
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
https://www.jneurosci.org/content/38/33/7255.full.pdf
https://doi.org/10.1371/journal.pcbi.0040027
https://doi.org/10.1371/journal.pcbi.0040027
https://doi.org/10.1145/3397481.3450689
https://doi.org/10.1016/j.btre.2019.e00321
https://doi.org/10.1073/pnas.1905334117
https://www.pnas.org/content/117/43/26562.full.pdf
http://arxiv.org/abs/2101.02232
https://doi.org/10.1177/0301006615607121
https://doi.org/10.1016/j.aap.2020.105469
https://doi.org/10.1016/j.aap.2020.105469
https://doi.org/10.1126/science.1736359
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1177/1745691610393980
https://doi.org/10.3758/s13428-018-1035-6
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1136/medethics-2012-100798
https://jme.bmj.com/content/39/2/115.full.pdf
https://doi.org/10.1371/journal.pbio.1002138
https://doi.org/10.1371/journal.pbio.1002138
https://doi.org/10.1086/714960
https://doi.org/10.1086/714960
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5444  | https://doi.org/10.1038/s41598-022-08078-3

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2022, corrected publication 2022

http://creativecommons.org/licenses/by/4.0/

	A framework for rigorous evaluation of human performance in human and machine learning comparison studies
	Guiding principles for successful human evaluation
	Design with the differences (and similarities) between human and algorithm cognition in mind. 
	Match trial type and anticipated difficulty between algorithm and human participants. 
	Employ best practices for executing psychology research studies. 
	Considerations for crowd-sourcing. 
	Collection of demographics and task-related subjective data. 
	Respect for human participants. 


	A case study in one-shot learning
	Consideration of the differences and similarities between human and algorithm cognition. 
	Matching trials between human participants and algorithms. 
	Implementation of best-practices for executing psychology research studies. 

	Discussion
	References
	Acknowledgements


