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Comparisons between the circular 
restricted three‑body 
and bi‑circular four body problems 
for transfers between the two 
smaller primaries
Allan Kardec de Almeida Junior 1* & Antonio Fernando Bertachini de Almeida Prado 1,2

Important properties of the dynamics of a spacecraft can be obtained from the Circular Restricted 
Three Body Problem and the Bi‑Circular Bi‑planar Four Body Problem. In this work, both systems are 
compared under the perspective of the costs involved in a transfer between the smaller primaries. An 
analytical approach shows several properties of the perturbation due to the gravity of the Sun and the 
motion of the smaller primaries around it over a spacecraft in the region of interest, like its behavior 
at and around the barycenter or at any point in a circle around the Sun. The costs involved in transfers 
between the smaller primaries are numerically evaluated and analyzed using the newly developed 
Theory of Functional Connections. The results show that the influence of this perturbation over the 
costs is significant for systems like the Sun–Earth–Moon or Sun–Mars–Phobos. On the other hand, it is 
also shown that this influence may be negligible for other very different systems, like the Sun–Saturn–
Titan or Sun–Ida–Dactyl. Maps of perturbation are drawn in the region of interest, which can be used 
for mission designers. Finally, a new approach to describe the influence of the Sun over the tides of the 
smaller primaries is proposed under the Four Body Problem model.

The three-body problem is described by Newton’s equations of motion for three bodies subjected to their mutual 
gravitational attraction. The circular restricted three-body problem (CR3BP) is a particular case where one of 
the bodies has a negligible mass (e.g. a satellite) and the motion of the other bodies are circular around their 
barycenter. Although there is no analytical closed (other than series) solution to this  problem1, this model has 
been proven to be very useful in astrodynamics to find general features of orbits. This is possible due to its sim-
plification from many perturbations to the few main ones in the region under consideration.

A combination of two constrained “three-body problems” was structured  by2 to find qualitative properties 
of the motion of satellites under the gravitational influence of the Earth, Moon, and Sun. In general, the massive 
bodies in the first restricted three body problem are a planet (or an asteroid) and its moon, while the massive 
bodies in the second restricted three body problem are given by the Sun and the other two pairs combined. In 
a subsequent paper, mathematical descriptions of the very restricted four body problem was done by the same 
author  in3. In comparison with the CR3BP, this model takes into consideration the gravitational influence of the 
Sun by adding a term which is a function of the position of the Sun relative to the Earth–Moon system.

The existence of periodic motion around the classical libration points of the CR3BP was shown for this four 
body problem (4BP)  in4. Since then, the four body problem has been successfully investigated for specific masses 
and positions of the bodies in the space (under symmetrical configurations)5–8. Nevertheless, the restricted four 
body problem has attracted the interest of many researchers in astrodynamics, because it can be used to find 
properties of the motion of a satellite—its mass is much lower than the other three bodies. The restricted four 
body problem has also been investigated under specific configurations as the one in which all the primaries are 
located in a straight-line equilibrium  configuration9 or all the primaries are located in the vertices of an equi-
lateral triangle with  equal10 or different  masses11—a problem similar to the Hill’s approximation in which the 
mass of one of the primaries is much lower than the mass of the others. Furthermore, the conditions in which 
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the bi-circular four body problem admits Jacobian integral or the energy conservation law are shown  in12. The 
equilibria, stability and chaos in the bi-circular 4BP has also been recently investigated  in13. This system has 
also been studied under dissipative  forces14. A recent investigation shows a mathematical generalization of this 
problem in the case where two of the primaries orbit the  Sun15. W.S.Koon et al.16 used two coupled CR3BP to 
show that the costs for transfers between the Earth and the Moon can be lowered if the Sun is taken into account.

In fact, among those described above, the CR3BP and the specific model developed  by3—known as the bi-
circular four body problem (bi-circular 4BP)—have been largely used to evaluate the costs for transfers between 
the Earth and the Moon. The first known work of this  kind17 uses the perturbation of the Sun to make a ballistic 
capture in a transfer from the Earth to the Moon, which could not be done using the CR3BP. Costs of this transfer 
were evaluated using the  CR3BP18 and the bi-circular  4BP19 under the same conditions. When comparing the 
results of these studies for short time transfers (up to 7 days), the lowest cost for the CR3BP was 3951.57 m/s, 
while the lowest cost for the bi-circular 4BP was 3949.53 m/s. Later, these values were lowered using different 
techniques to 3946.93 m/s for the  CR3BP20 (using the Theory of Functional Connections technique) and 3944.8 
m/s for the bi-circular  4BP21 (using a direct transcription and multiple shooting method). Many other investiga-
tions in the Earth to Moon transfers have been done using the bi-circular 4BP, for instance, the ones shown  in22–25.

The Jacobi integral and the zero velocity surfaces are important properties of the CR3BP, because they can 
show the boundaries of the motion. The perturbation due to the Sun over these zero velocity surfaces is investi-
gated  in3. For instance, it is shown that the zero velocity surface that passes through the Lagrangean point L1 does 
not meet the zero velocity surface that passes through L2 in a Sun–Earth–Moon system. Thus, it was concluded 
that the boundaries of the motion in the bi-circular 4BP are close to these boundaries in the CR3BP for this 
system. Regions of stability for the motion was investigated  in26.

In this paper, a different approach is done. Instead of analyzing the stability through the zero velocity surfaces, 
a direct comparison of the bi-circular 4BP with respect to the CR3BP is done. This comparison is possible due 
to the perturbative term added to CR3BP, which is obtained from both the gravitational influence of the Sun 
and the motion of the other bodies around it. This perturbative term, which is defined as the difference between 
the three and four body problems, was used to investigate the connection between the two independent pairs 
of CR3BP (one is the Sun–Earth system and the other is the Earth–Moon system) and the bi-circular four body 
 problem27. The transfers are evaluated there from Lyapunov orbits around the Lagrangean fixed point of the 
Sun–Earth to the Lagrangean fixed point of the Earth–Moon systems. In comparison, in this work, a detailed 
analysis is done in the region between the two smaller primaries, instead. This is a region of interest for travels 
between and around the smaller primaries. The influence of the perturbation in this region is analyzed both 
analytically and numerically. The new analytical results show that the perturbation is null at the barycenter, and 
it has specific patterns around it. For instance, it is shown that the perturbation is linearly proportional to the 
displacement from the barycenter for a specific region and its magnitude grows faster with the x and y coordi-
nates than it grows with the z coordinate in the region around the barycenter. Furthermore, the costs of short 
time transfers between the smaller primaries for the CR3BP and the bi-circular 4BP are numerically evaluated 
and compared for the Sun–Earth–Moon, Sun–Mars–Phobos, Sun–Saturn–Titan, and Sun–Ida–Dactyl systems. 
The divergence (and the convergence) of both models are revealed through some new indices related to the 
magnitude of the perturbation over the magnitude of the gravity of the moon. The influence of the parameters 
over the perturbation is also shown.

The results can be used in the choice of the system to be adopted for evaluations of the costs of transfers. 
It can be useful, for instance, in automatized process of evaluations of costs, since the indices shown here can 
reveal the regions in which the more complete model (the bi-circular 4BP) offers more fuel gain in comparison 
with the more simplified one (the CR3BP).

Both models are described in “Mathematical models” section. The numerical and analytical results are shown 
in “Results” section, before the conclusions, which are available in the last section.

Mathematical models
In this section, the mathematical tools and the two models adopted in this research are shown and compared.

The bi‑circular bi‑planar four body problem. A vector h∗ connects the center of an inertial frame of 
reference to the center of a rotating frame of reference. The Sun is located at the center of the inertial frame, and 
the barycenter of a Me-moon system is located at the center of the rotating frame of reference. The inertial frame 
of reference is denoted by a star (*), for clarity purpose. Thus, the position of a particle in the rotating frame of 
reference ( r ) with respect to the inertial one ( r∗ ) is

The acceleration can be written  as28

where ω is the angular velocity of the rotating frame. The derivatives with no star ( ddt ) are taken in the rotating 
frame, i.e. it does not take into consideration the motion of its base, while the derivatives with star ( d

∗
dt  ) are taken 

in the inertial frame. Hence, the equation of motion of a particle written in the rotating frame of reference is

(1)r = r∗ − h∗

(2)d2r

dt2
= d∗2r∗

dt2
− ω × (ω × r)− 2ω × dr

dt
− d∗ω

dt
× r − d∗2h∗

dt2

(3)d2r

dt2
+ 2ω × dr

dt
+ ω × (ω × r)+ d∗ω

dt
× r + d∗2h∗

dt2
= a
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where a is the acceleration acting over the particle.
In the bi-planar, bi-circular four-body problem, the body Me and the moon rotate in a circular orbit around 

their barycenter, which in turn rotates in a circular orbit around the Sun. Moreover, the two orbital planes coin-
cide with each other. The two frames of reference can be seen in Fig. 1.

The barycenter of the Me-moon rotates in a circular motion around the Sun, according to

where Rs is the constant distance between the Sun and the barycenter, and θ1 = (ωr t + γ − π) is the angle 
between h∗ and the positive side of the x∗ axis, where γ − π is an initial phase and ωr is the angular velocity of h∗.

The second derivative of h∗ with respect to the inertial frame, written in the rotating frame of reference is

where µs is the gravitational parameter of the Sun and ωs = ωr − ω.
The vectors that locate the spacecraft with respect to Me , the moon, and the Sun are re , rm , and rs , respec-

tively. The first two are given by re = r + dex̂ and rm = r − dmx̂ , where x̂ is an unitary vector along the x axis, 
de = Rµm/(µe + µm) and dm = Rµe/(µe + µm) are the distances between the barycenter and Me and the 
barycenter and the moon, respectively, where µe and µm are the gravitational parameters of Me and the moon, 
respectively. The last one is given by

where Rs = Rs

(

cos θ2, sin θ2, 0
)

 locates the Sun in the rotating frame, where θ2 = θ2(t) = ωst + γ.
Hence, the equation of motion (3), according to the bi-circular bi-planar four body problem, becomes

The circular restricted three body problem. In the case where the Sun is not taken into consideration 
and the center of the inertial frame of reference is located at the barycenter of the Me-moon system, the equation 
of motion becomes

The perturbation due to the gravity of the moon is

It should be noted that the motion is Keplerian when this term is null in Eq. (8).

(4)h∗ =
(

Rs cos θ1,Rs sin θ1, 0
)

(5)
d∗2h∗

dt2
= µs

R2
s

(

cos (ωst + γ ), sin (ωst + γ ), 0
)

,

(6)rs = r − Rs

(7)

d
2
r

dt2
+ 2ω × dr

dt
+ ω × (ω × r) = −µe

r3e

re −
µm

r3m

rm

− µs

r3s

rs −
µs

R2
s

(

cos θ2, sin θ2, 0

)

.

(8)
d2r

dt2
+ 2ω × dr

dt
+ ω × (ω × r) = −µe

r3e
re −

µm

r3m
rm

(9)pm = −(µm/r
3
m) rm

Figure 1.  The two frames of reference in the Sun-Me-moon system.
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Perturbation due to the gravity of the Sun. Note that, in the case where µs = 0 , Eq. (7) is reduced to 
the planar circular restricted three-body problem for the Me-moon-satellite system given by Eq. (8), which does 
not take into consideration the influence of the Sun. Thus, the perturbation of the Sun over the satellite is given 
by the last two terms of Eq. (7), which can be written as

Note that this perturbation does not represent only the acceleration due to the gravity of the Sun, it is a pseudo 
specific force instead. The second term on the right side comes from the fact that the rotating frame of reference 
(and also the pair Me-moon) is in an accelerated motion around the Sun. On the other side, it can be seen as a 
perturbation in the CR3BP due to the presence of the Sun.

Orbit transfer using a bi‑impulsive maneuver. Comparisons between both models will be shown for 
several bodies in the Solar system, with different masses and distances. This is done through an important sub-
ject of the astrodynamics, which is the costs associated to a transfer of a spacecraft from an orbit around a mas-
sive body to another orbit close to its moon.

The transfer is done in the following way: a spacecraft is initially in a circular orbit of radius r0 around the 
massive body Me , when a first impulse is applied to it at a point A of this orbit. This impulse is applied such that 
the spacecraft travels to a second point B close to the moon in a given time of flight. The distance between B and 
the moon is ρ0 . A second impulse is applied at the point B such that the spacecraft enters in a circular orbit around 
the moon. The magnitude of the differences of the velocity of the spacecraft before and after the first impulse at 
point A plus the magnitude of the difference of the velocity of the spacecraft before and after the second impulse 
at point B is the cost of the transfer.

This problem is known as the “two point boundary value problem”, i.e. the maneuver is constrained such 
that the position of the spacecraft at the initial time is A and its position at the final time is B. The difference 
between the final and initial times is the time of flight, which is assumed to be a given parameter of the transfer. 
The solution of this problem is obtained using the Theory of Functional  Connections29,30. This is a very efficient 
approach to solve both linear and and nonlinear differential  equations31,32 subjected to two constraints in the 
positions—the “two point boundary value problem”. More details in the use of the Theory of Functional Connec-
tions to solve the orbit transfer problem can be seen  in20. The numerical evaluations was done using the Python 
language combined with a TFC Python module freely available  in33. An algorithm is used to find local minima 
around the neighborhood of a point in the space of parameters, which are varied each at a time. The costs in 
this neighborhood are compared and the parameters associated to the lowest value of the cost are selected as 
the optimal local maneuver. This is done for all of the parameters, several times. The step is reduced for each 
successive iteration, until the variation of the cost after each step is no more than 10−3 m/s , which is assumed 
to be our acceptable error. In this way, the minimum cost associated to a given time of flight is found through 
the algorithm described above.

The cost associated to the time of flight is the minimum for the given transfer time, and it is found for each 
of the two models: the CR3BP and the bi-circular bi-planar 4BP. In each case, the data are fitted using Legendre’s 
polynomials with its 20 first terms. The resulting curves are the costs as function of the time of flight for the 3BP 
(named cost3BP ) and the 4BP (named cost4BP ). The cost gain is defined as the cost required by the 3BP minus the 
cost required by the 4BP, given by

Thus, the cost gain shows the gain of the 4BP with respect to the 3BP in terms of variation of velocity required 
by the maneuver. The relative cost gain is defined as the cost gain divided by the cost associated to the 3BP, 
according to

Thus, this ratio compares the cost gain with the cost of the transfer. Finally, the relative cost gain per time of flight 
is defined as the relative cost gain divided by the respective time of flight:

This is an important factor, because longer times of flight tend to accumulate the effect of the perturbation over 
the costs, and this index tends to cancel this dependency.

Results
The results obtained from simulations using the two models described above are shown next.

Perturbation at the barycenter. In the case where the spacecraft is located at the barycenter, its position 
is given by r = 0 , where 0 is the null vector. Hence, according to Eq. (6), its position with respect to the Sun is 
rs = −Rs . Using this result, the perturbation given by Eq. (10) becomes ps = 0 . Hence, there is no perturbation 
from the Sun at the barycenter of the Earth and the Moon—both models are identical at this point.

Perturbation on a sphere around the Sun. The perturbation given by Eq. (10) can be written as

(10)ps = −µs

r3s
rs −

µs

R3
s

Rs

(11)cost gain = cost3BP − cost4BP .

(12)relative cost gain = (cost3BP − cost4BP)/cost3BP .

(13)relative cost gain per time of flight = relative cost gain/time of flight.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4148  | https://doi.org/10.1038/s41598-022-08046-x

www.nature.com/scientificreports/

In the case where the spacecraft is located in a sphere around the Sun of radius Rs , the magnitude of rs is given 
by rs = Rs . Hence, Eq. (14) becomes

In this case, the perturbation due to the Sun is directed toward the barycenter and its magnitude is proportional 
to the displacement.

Perturbation around the barycenter. The magnitude of the first term on the right side of Eq. (14) is 
much smaller than each of the last two terms. On the other side, the last two terms tend to cancel each other 
for rs close to Rs , which is the case considered now. Hence, neither term can be neglected. A series expansion of 
Eq. (10) around the position of the barycenter 

(

0, 0, 0
)

—neglecting terms of order greater than one and crossed 
terms on x, y, z—is given by

Hence, its magnitude is

For a constant z, the dominant term inside the square root is (5x2 + 5y2) . Thus, constant values of the magnitude 
of the perturbation are distorted concentric circles around the barycenter. This distortion depends on the value 
of θ2 , or the time, because θ2 is a function of time. In the space, the term 2z2 is taken into account, and constant 
values of this magnitude are distorted spherical shells around the barycenter, and it tends to increase faster with 
respect to x and y in comparison to its dependence with z.

Relative perturbation. The relative perturbation is defined as the ratio between the magnitude of the per-
turbation and the magnitude of the gravitational attraction of the moon, thus it is given by ‖p

s
‖/‖p

m
‖ . This ratio 

shows a very important relationship between these two variables, because pm is the perturbation due to the 
moon over a Keplerian orbit, and ps is the perturbation over the orbit obtained using the CR3BP. The larger this 
number, the more important is the perturbation due to the Sun in comparison with the perturbation due to the 
moon over a Keplerian orbit.

The relative perturbation is negligible around the barycenter (because �ps� = 0 at the barycenter) and close 
to the moon (because ‖p

m
‖ is much larger when the position tends to r ≈ dmx̂ ). On the other hand, this quantity 

depends on several parameters between the barycenter and the moon.

The Sun–Earth–Moon system. The results are shown below in this section for the values of the param-
eters of the Sun–Earth–Moon system shown in Table 1.

The direction of the perturbation ps is represented by the streamlines shown in Fig. 2, as function of the 
coordinates, for θ2 = 0◦ (up left), θ2 = 45◦ (up right), θ2 = 90◦ (middle left), θ2 = 135◦ (middle right), θ2 = 180◦ 
(down left), and θ2 = 270◦ (down right). The magnitude of the perturbation ps is shown by the gradient color, 
from dark purple for lower values of the magnitude of the perturbation to brighter yellow for larger values. 
Although the angle θ2 is a function of time ( θ2 = θ2(t) = ωst + γ ), the effects on the perturbation of its oscilla-
tion from 0 to 2 π can be seen by the drawn of the discrete sequence of its values shown in Fig. 2. An analogous 
drawn is done in Fig. 3 for the perturbation, as a function of x and z, for y = 0 . The direction of the Sun is per-
pendicular to the x–z plane in the case where the relative position of the Sun is θ2 = 90◦ or θ2 = 270◦ . In these 
cases, the direction of the perturbation is toward the barycenter. Note that, in the regions where the position is 
such that rs ≈ Rs , the perturbation is approximated by the same value as the one it has on a sphere around the 
Sun, shown in the subsection above, i.e. ps ≈ −µsr/R

3
s  . This behavior can be seen in Fig. 2 for the regions close 

to a straight line that crosses the barycenter and is perpendicular to the direction of the Sun. Furthermore, this 
behavior can also be seen in Fig. 3, in the case where θ2 = 90◦ or θ2 = 270◦ . Note that the sphere given by the 

(14)ps = −µs

r3s
r + µs

r3s
Rs −

µs

R3
s

Rs

(15)ps = −µs

R3
s

r

(16)ps ≈
µs

R3
s

(

(3x cos(2θ2)+ 3y sin(2θ2)+ x)

2
,
(3x sin(2θ2)− 3y cos(2θ2)+ y)

2
,−z

)

(17)�ps� ≈ µs

R3
s

1√
2

√

(

3 cos(2θ2)
(

x2 − y2
)

+ 6xy sin(2θ2)+ 5x2 + 5y2 + 2z2
)

Table 1.  Values of the parameters for the Sun–Earth–Moon34.

µs = 1.3237395128595653× 1020 m3/s2

µe = 3.975837768911438× 1014 m3/s2

µm = 4.890329364450684× 1012 m3/s2

R = 3.84405000× 108 m

Rs = 1.49460947424915× 1011 m

ω = 2.66186135× 10−6 1/s
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equation rs = Rs yields to y = 0 in regions close to the Earth. Hence, the perturbation is proportional to the 
negative of the position for these cases ( θ2 = 90◦ or θ2 = 270◦ ), according to Eq. (15), with a good accuracy.

The relative perturbation defined in “Relative perturbation” section is shown in Fig. 4. In the case, where 
the position of the Sun is θ2 = 0◦ or θ2 = 180◦ , the perturbation given by ps is stronger compared with other 
values for θ2 . The magnitude of the perturbation is at least 1/10th of the acceleration due to the gravitational 
attraction of the Moon over the spacecraft for any trajectory from the Earth to the Moon. It is at least 1/20th for 
other values of θ2.

Figure 2.  The magnitude of p
s
 as a function of the coordinates, in the plane z = 0 , for the following values of 

the angle θ2 : 0◦ . 45◦ , 90◦ , 135◦ , 180◦ , and 270◦ (from left to right and, then, up to down).
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The cost as a function of the time of flight (defined in “Orbit transfer using a bi-impulsive maneuver” section) 
is shown in the upper left side of Fig. 5, for an initial orbit of 167 km of altitude around the Earth to another 
circular orbit of 100 km of altitude around the Moon. Note that this is the minimum cost for the respective time 
of flight. The overall minima of these costs are 3946.92 m/s, which occurs for a time of flight of 4.58 days in 
the case of the 3BP, and 3944.83 m/s, for a time of flight of 4.6 days in the case of the 4BP. These results are in 
agreement with the ones found  in20. The red and blue curves are fit to these data using Legendre’s polynomials 
with 20 terms. The cost gain is shown in the upper right side of Fig. 5. Both models tend to show the same costs 

Figure 3.  The magnitude of p
s
 as a function of the x–z coordinates, in the plane y = 0 , for the following values 

of the angle θ2 : 0 ◦ . 45◦ , 90◦ , 135◦ , 180◦ , and 270◦ (from left to right and, then, up to down).
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for shorter time transfers, but they diverge for longer times, due to the cumulative effect of the perturbation ps . 
Note that this perturbation may increase or decrease the cost, depending on the position of the Sun. Only the 
best result (the lower one) is shown, because these costs are the minima found through the algorithm explained 
in “Orbit transfer using a bi-impulsive maneuver” section. The cost gain may vary from 1 m/s to 3.5 m/s, and 
the average is shown in the gray straight line. The relative cost gain goes from 0.03 % to 0.1%. Finally, the relative 
cost gain per time of flight is of the order of 10−4/days.

Figure 4.  The ratio ‖p
s
‖/‖p

m
‖ as a function of the x–y coordinates, in the plane z = 0 , for several values of the 

angle θ2.
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The Sun–Mars–Phobos system. In this section, the Sun–Mars–Phobos and the Mars–Phobos systems 
are analyzed and compared. The parameters for these systems are shown in Table 2. The relative perturbation in 
the plane x − y can be seen in Fig. 6. Note that, in this case, the barycenter of the pair Mars–Phobos is almost in 
the center of Mars, far from its surface. On the other hand, the magnitude of the perturbation due to the gravity 
of Phobos is very small. Hence, although the distance Mars–Phobos is small and the region around the pair is 
close to the barycenter (where ‖p

s
‖ is null), the relative perturbation is one order of magnitude higher in com-

parison with the Earth–Moon case. Thus, the motion described by the CR3BP converges with the one described 
by the bi-planar bi-circular 4BP only in a small region around Phobos. This comparison also helps to understand 
the importance of each body in the dynamics.

The minimum cost as a function of the time of flight is shown in Fig. 7 (up left part) for a transfer from an 
initial circular orbit around Mars of 167 km of altitude (above the Mars radius of 3389.5 km) to a final circular 
orbit around Phobos with 10 km in altitude (21.2667 km from its center). The cost gain is shown in the up right 

Figure 5.  The total costs and the equivalent fuel savings of the 4BP in comparison with the 3BP for the Earth–
Moon system. The horizontal gray thicker straight lines are the average values.

Table 2.  Values of the parameters for the Sun–Mars–Phobos  system34–36.

µs = 1.3237395128595653× 1020 m3/s2

µe = 4.28309084016× 1013 m3/s2

µm = 7.20811872× 105 m3/s2

R = 9.376× 106 m

Rs = 1.523679AU

ω =
√

µe/R3
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side, the relative cost gain is shown in the down left side, and the relative cost gain per time of flight is shown in 
the down right side of the same figure. Although the cost gain is of the same order of magnitude in comparison 
to the Earth–Moon system, the relative cost gain per time of flight is one order higher. This result is in agreement 
with the comparison of the relative perturbation, which is also one order of magnitude greater than the one in 
the Earth–Moon system (see Figs. 6 and 4).

Figure 6.  The Mars–Phobos system. The ratio ‖p
s
‖/‖p

m
‖ as a function of the x–y coordinates, in the plane 

z = 0 , for several values of the angle θ2.
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The Sun–Saturn–Titan system. In this subsection, the relative perturbation is shown in Fig. 8 for the 
Sun–Saturn–Titan system, whose parameters can be seen in Table 3. The relative perturbation is also presented 
for several values of the relative position of the Sun given by θ2 . Note that it is about one order of magnitude 
lower than the value for the case of the Earth–Moon system and almost two orders of magnitude lower than the 
Mars–Phobos case.

The cost as a function of the time of flight is shown in Fig. 9—up left side—from a circular orbit with semi-
major axis of 100× 106 m to another circular orbit around Titan with 100 km of altitude (semi-major axis equals 
to 2.657473× 106 m ). The cost gain, the relative cost gain, and the relative cost gain per time of flight are also shown 
in this figure. Note that the distance Saturn–Titan is much larger than the distance Earth–Moon. Thus, the region 
of interest (which is the region where the transfer is realized) between these two main bodies is further from the 
barycenter, where the magnitude of the perturbation ( ‖p

s
‖ ) is null. On the other side, Titan has more mass than 

our Moon, which makes its cost contribution to the transfer more significant. Thus, the relative perturbation 
for this case is lower than in the Earth–Moon system, in the respective regions of interest. The lower order of 
magnitude of the average relative index cost gain per time of flight can explain the lower relative perturbation of 
the Saturn–Titan in comparison with the Earth–Moon system (compare Fig. 4 with 8 and Fig. 5 with 9).

The Sun–Ida–Dactyl system. The relative perturbation is shown in Fig. 10 for the Sun–Ida–Dactyl sys-
tem, whose values of the parameters are shown in Table 4. The relative perturbation is two orders of magnitude 
lower than the similar values in the Earth–Moon system in the region of interest around the bodies, where the 
path of a short-time transfer is located. Note that the distance Ida–Dactyl is only 90.5 km, according to Table 2. 
The magnitude of the perturbation ( ‖p

s
‖ ) is very low for this system, due to the proximity of this region to its 

barycenter (close to the center of Ida), which can explain the very low relative perturbation in the region around 
the bodies, about two orders of magnitude lower than those for the Earth–Moon system evaluated in the respec-
tive regions.

Figure 7.  The total costs and the equivalent fuel savings of the 4BP in comparison with the 3BP for the Sun–
Mars–Phobos system. The horizontal ticker gray line is the average value.
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The cost, cost gain, relative cost gain, and also the relative cost gain per time of flight are shown in Fig. 11, for a 
transfer from a circular orbit around Ida whose radius is 60 km, to another circular orbit around Dactyl whose 
radius is 2 km. Clearly, all indices show that both the 3BP and the 4BP coincide for the Ida–Dactyl system. As 
explained before, the closer the region is to the barycenter, the more the results for the 3BP coincide with the 
ones obtained from the 4BP. The average value of the relative cost gain per time of flight is only 0.001% per day, 
which is the lowest one among the cases shown in this section. Note that the numerical proceedings was done 
with higher precision for this case, in order to evaluate the very small differences (the average relative cost gain is 

Figure 8.  The Saturn–Titan system. The ratio ‖p
s
‖/‖p

m
‖ as a function of the x–y coordinates, in the plane 

z = 0 , for several values of the angle θ2.
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only 0.0005%). Possibly, a more refined numerical evaluation could give an even smaller difference between the 
3BP and the 4BP, at the cost of an increased computational cost. On the other side, the smallest relative cost gain 
per time of flight is in agreement with the smallest relative perturbation among the cases studied in this section.

Comparisons of the results obtained for the Solar system. In this section, the results obtained in 
the previous sections for several pairs in the Solar system will be analyzed, based in the data obtained from the 
previous subsections shown in Table 5, where the averages of the indices defined in “Orbit transfer using a bi-
impulsive maneuver” section are shown. The values of the relative cost gain per time of flight may be separated 
into two groups, whose values are of the same order of magnitude. The first one is given by the Sun–Earth–Moon 
and the Sun–Mars–Phobos systems and the second group is given by the Sun–Saturn–Titan and Sun–Ida–Dac-
tyl systems. Although the gravitational parameters of Phobos is much smaller than the gravitational parameter 

Table 3.  Values of the parameters for the Sun–Saturn–Titan  system35.

µs = 1.3237395128595653× 1020 m3/s2

µe = 3.793947517× 1016 m3/s2

µm = 8.977972416× 1012 m3/s2

R = 1.221870000× 109 m

Rs = 9.5820172AU

ω =
√

µe/R3

Figure 9.  The total costs and the equivalent fuel savings of the 4BP in comparison with the 3BP for the Sun–
Saturn–Titan system. The thicker gray horizontal line is the average value.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4148  | https://doi.org/10.1038/s41598-022-08046-x

www.nature.com/scientificreports/

of the Moon (by seven orders of magnitude), the distances involved in the travel (the parameter R) are also much 
smaller in the case of a travel between Mars and Phobos than the distances between the Earth and the Moon. 
This means that the spacecraft is much closer to the barycenter of the smaller primaries in a Mars to Phobos 
transfer than it is in the case of an Earth to Moon transfer. The final result is that the savings are similar for trans-
fers in both systems. The comparison between the Sun–Saturn–Titan and the Sun–Ida–Dactyl can also be done 
using a similar analysis. On one side, the gravitational paramater of Titan is ten orders of magnitude greater than 
the gravitational parameter of Dactyl, and, on the other side, the parameter R is five orders of magnitude lower 

Figure 10.  The Ida–Dactyl system. The ratio ‖p
s
‖/‖p

m
‖ as a function of the x–y coordinates, in the plane z = 0 , 

for several values of the angle θ2.
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for the Sun–Ida–Dactyl in comparison with the Sun–Saturn–Titan system. This means that travels in the Ida–
Dactyl system are made much closer to the barycenter compared to travels between Saturn and Titan. The final 
effect is that, for both systems, the influence of the perturbation due to the Sun over the fuel savings is negligible.

Variation of the parameters for the Solar system. In this section, the behavior of the relative per-
turbation ‖p

s
‖/‖p

m
‖ is analyzed as a function of the parameters involved in the problem. Note that the relative 

perturbation is a function of x, y, z, and θ2 . In order to simplify the analysis, two averages are performed. The 
first average is taken for the relative perturbation over a straight line from the position of µe (−de , 0, 0) to the 
position of µm (dm, 0, 0) , according to

Table 4.  Values of the parameters for the Sun–Ida–Dactyl  system34,36–38.

µs = 1.3237395128595653× 1020 m3/s2

µe = 3× 106 m3/s2

µm = 9× 10−5 µe

R = 90.5 km

Rs = 2.863914916076813AU

ω =
√

µe/R3

Figure 11.  The total costs and the equivalent fuel savings of the 4BP in comparison with the 3BP for the pair 
Ida–Dactyl. The horizontal gray thicker straight lines are the average values.
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A second average is taken for the position of the Sun θ2 from 0 to 2π , according to

Once these averages are taken, the dependency of the relative perturbation on the position on the space (x, y, z) 
and on the direction of the Sun (θ2) are removed. The average on the position provides a good estimation of 
the order of magnitude of the relative perturbation. It was seen that the magnitude of the perturbation ‖p

s
‖ is a 

distorted sphere around the barycenter, thus, the average on the direction of the Sun θ2 can also provide a good 
estimation of its order of magnitude. Furthermore, the major interest here is to investigate the general behavior 
of the relative perturbation, not its local variation.

Assuming that µs is the gravitational parameter of the Sun, the averages are functions of four parameters: 
µe , µm , Rs , and R.

The first case to be analyzed is the dependency of the averages on the parameter µe . Note that the parameter 
R is, in general, lower than the sphere of influence of µe . Hence, for this case, the value of the parameter R is 
R = RSOI/2 , where the sphere of influence is RSOI = Rs

(

µe
µs

)
2
5 , according  to39. In this case, the gravitational 

parameter of the moon is µm = µe × 10−5 . Finally, the distance from the Sun is Rs = 1 AU . In this case, the 
averages as functions of µe are shown in Fig. 12.

The second case to be analized here is the dependency of the averages on the parameter µm . The other param-
eters are such that Rs = 1 AU , R = RSOI/2 , and µe is the gravitational parameter of the Earth, whose value is 
shown in Table 1. In this case, the averages as functions of µm are shown in Fig. 13.

The variations of the averages with the parameter Rs are also analyzed. In this case, the other parameters are 
such that R = RSOI/2 , µe is the gravitational parameter of the Earth, shown in Table 1, and µm = µe × 10−3 . In 
this case, the evaluations showed that they have averages

( �ps�
�pm�

)

= 1.42144 for every value of Rs in the range 
109 m < Rs < 1013 m.

(18)average1

( �ps�
�pm�

)

= 1

R

(
∫ d2

−d1

�ps�(x, 0, 0, θ2)
�pm�(x, 0, 0)

dx

)

(19)averages

( �ps�
�pm�

)

= 1

2π

(
∫ 2π

0
average1

( �ps�
�pm�

(θ2)

)

dθ2

)

Table 5.  Values of the parameters and the indices for several systems, where AV1 is the average cost gain, AV2 
is the average relative cost gain, and AV3 is the average relative cost gain per time of flight.

Parameters and indices

System

Sun–Earth–Moon Sun–Mars–Phobos Sun–Saturn–Titan Sun–Ida–Dactyl

µe (m
3/s2) 4.0× 1014 4.3× 1013 3.8× 1016 3× 106

µm (m3/s2) 4.9× 1012 7.2× 105 9.0× 1012 2.7× 102

R (m) 3.8× 108 9.4× 106 1.2× 109 9.1× 104

Rs (AU) 1.0 1.5 9.6 2.9

AV1 (m/s) 2.17 0.57 1.29 0.00006

AV2 (%) 0.055 0.031 0.013 0.0005

AV3 (%/days) 0.0118 0.013 0.003 0.001

Figure 12.  The averages as functions of the gravitation paramater µe.
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The averages as functions of R are shown in Fig. 14. The other parameters are given by Rs = 1 AU , µe is the 
gravitational parameter of the Earth, shown in Table 1, and µm = µe × 10−3.

Conclusion
The present paper developed a new method to accurately measure the differences between the CR3BP and the 
bi-circular bi-planar 4BP dynamical models, which is particularly important in the regions of transfers around 
the smaller primaries. This method can be used to choose the model to be used in real mission design, evaluations 
of trajectories, optimization of computational time and fuel consumption, with high accuracy.

To develop this method, a term provided by the bi-circular bi-planar four body problem due to the influence 
of the Sun is added. It is seen as a perturbation, which explicit shows the differences between the bi-circular 
bi-planar four body problem and the CR3BP. The lower this term, the closer the bi-circular bi-planar four body 
problem is to the CR3BP.

Firstly, it was analytically shown (for any mass of each one of the three bodies) that the perturbation of the 
Sun is null at the barycenter of the system composed by Me and its moon. After that, it was also shown that the 
perturbation is linearly proportional to the position of the satellite with respect to the barycenter of the Me-moon 
system, when the satellite is at a fixed distance Rs from the Sun, which can be seen as a straight line transversal to 
the direction of the Sun, for a satellite close to the Earth. Finally, the numerical results confirmed the concentric 
oval curves for the same values of the magnitude of the perturbation, although it also shows that the direction 
of the perturbation have different symmetries.

In general, the results show that the closer the spacecraft is to the Earth–Moon barycenter, the lower the 
magnitude of the perturbation. It happens due to the inclusion of the Sun in the equations of motion, and, hence, 
the closer the bi-circular bi-planar four body problem is to the circular restricted three body problem.

Investigations were performed by evaluating orbit transfers in several pairs of bodies in the Solar system, 
like Earth–Moon, Mars–Phobos, Saturn–Titan, and the Ida–Dactyl systems. The results showed that the lowest 
perturbation of the Sun is for the Ida–Dactyl pair, which means that the CRTBP and the bi-planar bi-circular 

Figure 13.  The averages as functions of the gravitation paramater µm.

Figure 14.  The averages as functions of the distance between the two smaller main bodies R.
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4BP gives very similar results for this system. The system Saturn–Titan showed to have the second lowest dif-
ferences between the two models. The third lowest differences were found for the Earth–Moon system. Finally, 
the larger differences were found for the Mars–Phobos system. It means that the CR3BP is not a good model to 
study this system. The influences of these costs are strictly linked to the fuel savings when using the bi-circular 
4BP in comparison with the CR3BP, depending on the position of the Sun relative to the smaller primaries. These 
savings are evaluated and shown in this paper considering short time transfers.

Although the coincidence of the CR3BP and the bi-planar bi-circular 4BP depends on the combinations of 
the masses of the pair Me and its moon, its internal distance, and their distances from the Sun, it was found that 
the differences between the models increase with the masses of the pair and with their internal distance from 
the common barycenter.

This research also has the potential for a new approach to help to explain the tidal effects on the Earth due to 
the Sun, since the level of perturbation can also be measured in the surface of the Earth. Note that, since the Earth 
is displaced from its barycenter with the Moon (see Fig. 2), the perturbation of the Sun is not symmetric over 
the surface of the Earth. The magnitude of the perturbation is lower for the instantaneous side that is closer to 
its barycenter with the Moon and much larger in the opposite side, which generates the tidal effects on the Earth.
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