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Uncertainty quantification 
for basin‑scale geothermal 
conduction models
Denise Degen1*, Karen Veroy2,3 & Florian Wellmann1

Geothermal energy plays an important role in the energy transition by providing a renewable 
energy source with a low CO2 footprint. For this reason, this paper uses state-of-the-art simulations 
for geothermal applications, enabling predictions for a responsible usage of this earth’s resource. 
Especially in complex simulations, it is still common practice to provide a single deterministic outcome 
although it is widely recognized that the characterization of the subsurface is associated with 
partly high uncertainties. Therefore, often a probabilistic approach would be preferable, as a way to 
quantify and communicate uncertainties, but is infeasible due to long simulation times. We present 
here a method to generate full state predictions based on a reduced basis method that significantly 
reduces simulation time, thus enabling studies that require a large number of simulations, such 
as probabilistic simulations and inverse approaches. We implemented this approach in an existing 
simulation framework and showcase the application in a geothermal study, where we generate 2D 
and 3D predictive uncertainty maps. These maps allow a detailed model insight, identifying regions 
with both high temperatures and low uncertainties. Due to the flexible implementation, the methods 
are transferable to other geophysical simulations, where both the state and the uncertainty are 
important.

Geophysical and geoscientific applications have many sources of uncertainties, arising from, for instance, unre-
solved and unaccounted physical processes, inaccurate geometrical information, and variations in the parameter 
distributions1–7. Identifying and quantifying these uncertainties is a non-trivial process. Methods that easily 
require a million forward simulations, as Markov chain Monte Carlo (MCMC), make this task not only non-
trivial but computationally prohibitive for basin-scale geological heat flow models using state-of-the-art finite 
element (FE) solvers.

A common way to address this is to replace the finite element model by a surrogate model such as Kriging8,9, 
or polynomial chaos expansions10. The issue with these surrogate models is that they are based on observations 
and do not preserve the physics. Values outside the observation space need to be determined via inter- and 
extrapolation. For geothermal studies, however, we are interested in the entire temperature distribution at a 
particular target depth and at preserving the physics to compensate for data sparsity. Therefore, we use a physics-
based learning approach, the reduced basis method (RB)11–14, as the surrogate model. In contrast to other sur-
rogate models, the RB method has the advantage that it retrieves the temperature distribution in the whole model 
and thus preserves the physics, enabling an evaluation of the uncertainties in the complete model. Furthermore, 
the RB method provides, for the here presented geothermal application, an error bound allowing an objective 
assessment of the approximation quality. This has also advantages in the area of risk assessments since in contrast 
to data-driven approaches, we are able to provide the accuracy of our model15.

The utility of model order reduction for Bayesian inversion has been investigated in previous studies. This 
includes a data-driven POD approach16 and parameter-state model reductions, with a Greedy algorithm, for 
addressing the computational challenges of uncertainty quantification17,18. Furthermore, a POD approach is avail-
able for addressing non-linear PDEs19. Also, combinations of RB models, to address the computational issues, 
and error models are discussed20. Furthermore, a sparse-grid reduced basis version for Bayesian inversion for 
both linear and non-linear PDEs exists21,22. Additionally, an example of using the RB method within a MCMC 
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scheme for a geodynamical model is available23. However, these papers focus on the methodology, and the pre-
sented case studies do not capture the typical geometrical complexity of geothermal basin-scale applications.

A work investigating the uncertainty of the thermal conductivity via Markov chain Monte Carlo in a geosci-
entific context is also at hand24. Still, in this work, the uncertainty for the temperatures are only considered for 
five realizations and only interpreted on a 2D-slice lacking the mathematical complexity of uncertainty quanti-
fication. In contrast, we present a global-sensitivity-driven stochastic model calibration for complex basin-scale 
applications to generate predictive 3D uncertainty maps enhancing the efficiency of geothermal exploration. 
Furthermore, we consider all realizations obtained by the Markov chain Monte Carlo analysis for the uncer-
tainty quantification of the temperatures. The workflow is illustrated in Fig. 1. In previous studies, we investi-
gated the construction of surrogate models for a geoscientific context using the RB method25. Furthermore, we 
demonstrated the benefits of the RB method for basin-scale global sensitivity analysis and deterministic model 
calibrations26.

In this study, we focus on the methodology of uncertainty quantification for geophysical problems. The case 
study of Berlin–Brandenburg serves as a proof of concept and should highlight the impacts of this methodology 
for geophysical applications. Although, we focus on a thermal case study, the methods can be applied to a wide 
range of applications.

The paper is structured as follows: first, we illustrate the methodology and the case study of Berlin–Branden-
burg. Afterwards, we present the results of the uncertainty quantification and the predictive uncertainty quan-
tification maps. This is followed by a discussion and concluded afterwards.

Methods
In the following section, we briefly introduce the numerical methods, the governing equations, and the geological 
model used throughout this paper.

Uncertainty quantification.  Bayes Theorem is the basis of the Markov chain Monte Carlo (MCMC) 
method27:

The prior P(u) describes our knowledge about the unknown value of a parameter without taking the data into 
account. The posterior P(u|y) is the knowledge we have about the value of u given data y. Furthermore, P(y|u) 
is the likelihood, which describes the likelihood of the parameters given the observation data. Often, we do not 
have a very accurate or detailed knowledge of our unknowns, which means that determining the priors is chal-
lenging. MCMC is a method to draw samples from the posterior probability distribution. This is based on the 
generation of a Markov chain. A Markov chain develops based only on the knowledge of the present and previous 
events and subsequently iterates to the approximate the posterior distribution. However, this approximations 
comes at a cost: it often requires thousands to millions of iterations and therefore solves of the forward model27.

(1)P(u|y) ∝ P(y|u) P(u).

Figure 1.   Schematic representation of the workflow. In the left panel, we show exemplarily the first, second, 
and last basis function of the surrogate (low dimensional) model. The top middle panel shows the results of 
the global sensitivity analysis (see also Figure  S1), and the middle base panel shows the posterior analysis (see 
also Fig. 3). The right panel contains the posterior predictive map of the standard deviations highlighting three 
distinct model areas (see also Fig. 4).
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The Berlin–Brandenburg model.  In this paper, we are using a combination of the Berlin–Brandenburg 
models presented in two previous studies28,29. The model (see Fig. 2) has a spatial extent of 250 km in the EW-
direction, 210 km in the NS-direction and extends vertically to the lithosphere-asthenosphere boundary (LAB). 
It consists of 17 geological layers and is discretized using tetrahedrons. The upper 11 layers have a horizontal 
resolution of 0.22 km2 and a vertical resolution that is interpolated from the z-evaluations of the geological 
layers. The lower six layers have the same horizontal resolution as the upper 11 layers but the vertical element 
length corresponds to the layer thickness. This results in a tetrahedron mesh with 2,141,550 degrees of freedom.

For the forward simulations, we take a geothermal conduction problem with the radiogenic heat production 
S as the source term30:

where � is the thermal conductivity, and T the temperature. In order to investigate the relative importance of the 
parameters, and for efficiency reasons, we nondimensionalize the equation, which leads to Eq. (3):

Here we chose the maximum thermal conductivity of the Brandenburg model of 3.95 W m −1 K −1 as reference 
thermal conductivity �ref . The maximum temperature of 1300 °C is the reference temperature Tref , the maximum 
radiogenic heat production (2.5 µ W m 3 ) is the reference radiogenic heat production Sref . The reference length lref  
corresponds to the maximum x-extent of all models (250,000 m). At the top of the model, we apply a Dirichlet 
boundary condition of 8 °C, corresponding to the average annual temperature, and at the base of the LAB a 
Dirichlet boundary condition of 1300 °C31. Additionally, we allow a scaling of the lower boundary condition of 
± 10 % to account for errors in the geometric description of the LAB. Note that the LAB has been constrained 
by using deep seismological studies and by 3D gravity modeling28. All thermal properties are summarized in 
Table S1 and the weak form of Eq. (3) is presented in the next section.

For the validation of the models, we are using the bottom-hole temperature measurements presented in 
Noack et al.28,29 and based on Förster32. For the correction, the exact solution to the Bullard line equation has 

(2)�∇2T + S = 0,

(3)
�

�ref Sref

∇2

l2ref

(T − Tref

Tref

)

+
S

Sref Tref �ref
= 0

Figure 2.   (a) Image of the Berlin–Brandenburg model with a partial insert showing the prior temperature 
distribution. For the layer IDs refer to Table S1. (b) The error between the full and reduced model for the prior 
parameters. (c) Convergence of the maximum relative error bound for the entire parameter range.
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been calculated. Meaning that an exponential integral method has been used, which is based on the modeled 
temperature build-up during the shut-in time of the wells32. The values for the thermal conductivity and the 
radiogenic heat production are taken from Noack et al.28,29 and are originating from previous model studies 
after Bayer et al.30. Throughout this paper, we vary only the thermal conductivities, whereas the radiogenic heat 
production values are kept constant since the radiogenic heat productions have a minor effect on the temperature 
distribution at the target depth in comparison to the thermal conductivities. We further reduce the number of 
involved parameters in the reduction and inverse processes by combining layers with equal thermal conductivi-
ties into one, as presented in Table S1. This reduction is necessary to compensate for the small amount of meas-
urement data, which is insufficient to treat all parameters individually. Therefore, all analyses return combined 
effects of these layers.

Berlin–Brandenburg—reduced model.  We construct a surrogate model using the RB method based on 
the full FE model with an accuracy of 5 × 10−4 (see Fig. 2c). The RB method is a model order reduction technique 
that aims at significantly reducing the spatial and temporal degrees of freedom of, for instance, finite element 
problems. For further information regarding the method please refer to the literature11–14, and for more informa-
tion on the RB method in the context of Geosciences refer to Degen et al.25. The geothermal problem, described 
in Eq. (2), is affine decomposable, meaning separable into a parameter-independent and -dependent part.

The RB method takes advantage of this affine decomposition in an offline-online procedure. During the 
offline stage, performed only once, all expensive pre-computations for the basis construction are performed. 
The construction of the basis is achieved via a greedy algorithm12, which involves training or “learning” of the 
low-dimensional model. In contrast to machine learning approaches, we are not training based only on data but 
instead also consider the physical model.

On the other hand, the online stage uses only the reduced model. Hence, it is for the given example several 
orders of magnitude faster than the original FE model making it advantageous for “outer loop” processes, such 
as calibrations and uncertainty quantification.

We derive the weak formulation, where u(µ) ∈ X satisfies11,13,14:

Note that we use the operator representation here. This means, we present the bilinear form a (instead of 
the stiffness matrix) and the linear form f (instead of the load vector). In particular, the bilinear form a has the 
following decomposition:

where w is the trial function, v the test function, the index “q” denotes the number of the training parameters 
(for more information see Table S1), X the function space ( H1

0 (�) ⊂ X ⊂ H1(�) ), � the spatial domain in R3 , 
and D the parameter domain in Rp with p being the number of parameters. In our example p is equal to 14. The 
linear form f is decomposed in the following way:

Here, Ŵ is the boundary in R3 , s the scaling parameter for the lower boundary condition, g(x, y, z) the lifting 
function, Ttop the temperature at the top of the model, h(x, y, z) the location in the model, zbottom(x, y) the depth 
of the bottom surface, and d(x, y) the distance between the bottom and top surface.

Results
For the uncertainty quantification of the Berlin–Brandenburg model, we perform a Markov chain Monte Carlo 
analysis27 with a Metropolis sampling using the Python library PyMC33. A previously performed Sobol sensitiv-
ity analysis with the Saltelli sampler and 300,000 forward solves showed that the model is insensitive to eight 
of the 14 parameters (Fig. S1)34. We thus reduce the parameter dimension from 14 parameters to six. For more 
information regarding global sensitivity analyses, refer to Sobo35, and Degen et al.26.

For all thermal conductivities in the sensitivity analysis and the MCMC algorithm, we allow a variation of 
± 50%. The number of function evaluations for the MCMC run is set to 1,000,000 with a thinning of 1000 and 
10,000 burn-in-simulations. For the priors, we use normally distributed parameters. The mean of each param-
eter corresponds to the fitted thermal conductivity values of Noack et al.28,29. Both the standard deviation and 
proposal standard deviation are set to:

•	 one for the Tertiary-pre-Rupelian-clay/Upper Cretaceous and Lower Cretaceous/Jurassic layer
•	 two for the Keuper layer
•	 four for the Zechstein layer and the Lithospheric Mantle
•	 0.002 for the scaling parameter of the lower boundary condition

(4)a(u(µ), v;µ) = f (v;µ), ∀v ∈ X.

(5)a(w, v; �) =

n
∑

q=0

�q

∫

�

∇w ∇v d�, ∀v,w ∈ X, ∀� ∈ D,

(6)

f (v; �, s) =

n
∑

q=0

�q s

∫

Ŵ

∇v g(x, y, z) dŴ+ s

∫

Ŵ

∇v S dŴ, ∀v ∈ X, ∀� ∈ D,

with g(x, y, z) = Ttop
h(x, y, z)− zbottom(x, y)

d(x, y)
.
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and are afterwards divided by their respective mean values. The standard deviations have been determined 
such that the values do not exceed a range of ± 50% of their mean values to ensure physical plausibility. For 
the stochastic model calibration, we use the temperature data presented in Noack et al.28,29. The bottom-hole 
temperatures of this database have been measured during the drilling process and are based on Förster32. This 
correction might not fully capture the perturbation of the temperature field. Therefore, we apply a standard 
deviation of 2% for the observation data.

Thermal conductivities.  Now, we discuss the posterior distribution of the thermal conductivities obtained 
by the MCMC analysis (Table S1). Through a Quantile–Quantile analysis (Fig. S2), we determined that the nor-
mal distributions describe our parameter quite well. Hence, we discuss in the following only the posterior mean 
and standard deviations of the thermal conductivities.

We obtain for the Tertiary Rupelian-clay/Upper Cretaceous layer (Fig. S4), a slight increase in the posterior 
mean thermal conductivity of 0.05 W m −1 K −1 in contrast to the prior thermal conductivity. The parameter 
follows a normal distribution with a standard deviation of 0.47 W m −1 K −1 . We observe a posterior thermal 
conductivity of:

•	 2.11 W m −1 K −1 ± 0.45 W m −1 K −1 for the Lower Cretaceous/Jurassic/Buntsandstein layer (Fig. S5),
•	 2.35 W m −1 K −1 ± 0.58 W m −1 K −1 for the Keuper layer (Fig. S6),
•	 and 3.56 W m −1 K −1 ± 0.81 W m −1 K −1 for the Zechstein layer (Fig. S7).

Hence, all three cases show an increase in the posterior thermal conductivity in comparison to the prior thermal 
conductivity, and they are also normally distributed, as visually determined from the quantile-quantile plots in 
the Supplementary Material. The Lithospheric Mantle shows a decrease in the posterior mean thermal conductiv-
ity of 0.11 W m −1 K −1 in comparison to the prior thermal conductivity and has a posterior standard deviation of 
0.86 W m −1 K −1 (Fig. 3). The scaling parameter (Fig. S8) has a posterior mean value of 1.00, which is identical 
to the prior value, and a posterior standard deviation of 0.04. All parameters follow a normal distribution and 

Figure 3.   Posterior analysis of the lithospheric mantle (LM) as an example. The remaining posterior analyses 
figures are found in the Supplementary Material. Shown are the (a) Geweke Plot (b) autocorrelation, (c) 
posterior parameter distributions, and (d) the trace.
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an autocorrelation around zero. The z-scores (Fig. 3a, Figs. S4a– S8a) indicated converges for all chains. The 
z-scores measure the mean and the variance of the entire chain.

Uncertainty quantification maps.  First, we use the parameter distributions of the MCMC analysis to 
generate 2D and 3D uncertainty quantification maps. We make here also use of the RB method, which allows 
us to compute model realizations for samples from the posterior distribution to obtain temperature state values 
everywhere in space.

For the generation of uncertainty quantification maps, we have to choose a suitable representation. A Quan-
tile–Quantile analysis (Fig. S3) for nine points at a depth of 5 km shows that the temperature is normally dis-
tributed. Hence, we plot the posterior mean temperatures and their standard deviations to achieve a suitable 
representation of the temperature uncertainties in the following.

First, we present the posterior distributions in the entire Berlin–Brandenburg model. The posterior standard 
deviations have their highest value within the sedimentary basin at a depth of about 30–35 km (see Fig. 4a). 
Consequently, the highest uncertainties also occur there. Overall, we observe uncertainties ranging from 0 to 
53 °C. We observe that the uncertainty decreases towards the upper and lower model boundaries and increases 
towards the center part of the model. For a detailed discussion of this aspect please refer to the “Discussion” 
section. The gradient of the posterior mean temperature distribution is steep in the upper part of the model and 
has a significantly less steep gradient in the lower part of the model. The temperatures range from 8 to 1300 °C 
(see Fig. 2).

Now, we focus on the posterior distributions at a typical target depth for geothermal systems of 5 km. The 
posterior mean temperature ranges from 141 to 197 °C, and the posterior standard deviation from 8 to 18 °C. 
The highest uncertainty, in a depth of 5 km, is north of the interface of the Tertiary-post-Rupelian and the 
Rupelian clay and south to the Zechstein—Sedimentary Rotliegend interface. The area is marked with an A in 
Fig. 4c. It has its highest peak southeast to the region, where salt structures majorly influence the posterior mean 
temperatures. Generally, from the interface (marked with a B), the uncertainties increase towards the north and 
decrease towards the south of the model.

The highest posterior mean temperatures of over 190 °C are north of the interface of the Tertiary-post-
Rupelian and the Rupelian clay (marked with a C). In contrast, the lowest posterior mean temperature values 
around 140 °C are south of this interface (see B in Fig. 4b). In general, the posterior mean temperature north 
of the interface decrease to the northern border of the model. Furthermore, in the north-west part of Ber-
lin–Brandenburg, a region of lower posterior mean temperatures is located (area A in Fig. 4b). We explain the 
reasons for this decreased posterior mean temperature in the “Discussion” section.

Computational cost.  The reduction requires 273 basis functions for reaching the pre-defined relative error 
tolerance of 5 × 10−4 for the nondimensional model (see Fig. 2c). Note that the most accurate measurements 
have an accuracy of 10−1 . Consequently, the chosen error tolerance ensures that we do not introduce approxima-
tion errors above the measurement error. The reduced basis method leads to a speed-up of 1.0 × 105 . This yields 
an execution time of the MCMC algorithm of about 4.5 h, for the one million forward solves.

The RB method requires 5.4 h for the offline stage, using two Intel Xeon Platinum 8160 CPUs (24 cores, 2.1 
GHz, 192 GB of RAM) and 4.5 h for the MCMC method. Note that with the finite element method itself, the 
same analysis would require over 16 core-a.

Discussion
A benefit of the methodology presented here is the generation of predictive uncertainty quantification maps, 
enabled by using the RB method as a surrogate model. Therefore, we are able to reveal important insights into 
the spatial distribution of the uncertainties. Most other surrogate models would not allow the generation of 
predictive physics-preserving uncertainty maps for the entirety of the model since they generally do not preserve 
the physics.

Thermal conductivities.  To discuss the uncertainties related to the thermal conductivities, we first focus 
on the posterior mean thermal conductivities. The posterior mean thermal conductivities of all layers show 
only a slight deviation from the prior thermal conductivities. This is not surprising since they are derived from 
previous model studies and are therefore already well adapted to the model. However, if we compare them to the 
measured thermal conductivities presented in Noack et al.28, we observe an apparent deviation since this paper 
present the input parameters prior to the “trial-and-error” model calibration.

Even though the posterior mean thermal conductivities are in a good agreement with the prior thermal con-
ductivities, the need for uncertainty quantification becomes apparent through the posterior standard deviation. 
For all layers, we observe large posterior standard deviations for the thermal conductivity, meaning that we have 
high uncertainties for all layers. The uncertainty in the parameters is mainly influenced by the uncertainty of the 
observation data and by the upper boundary condition. In our study, we place a lot of trust in the data. Still, we 
allow variations from that data set since we are operating with partially corrected bottom-hole temperatures. 
We assume that the correction factor is not able to fully compensate for the perturbation of the temperature field 
during the drilling process, resulting in slightly uncertain observation data. The posterior standard deviation 
decreases by placing more trust in the observation data. Therefore, temperature observations that are performed 
when the temperature field is in equilibrium would significantly improve the certainty of the different thermal 
conductivities.

Except for the Lithospheric Mantle, all posterior mean thermal conductivities show an increase in compari-
son to the prior thermal conductivity. Since the layers above the salt show an increase in the posterior thermal 
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Figure 4.   (a) Distribution of the posterior mean temperature and the posterior standard deviation of the entire 
Berlin–Brandenburg model. (b) Map of the posterior mean temperature and (c) posterior standard deviation at 
the target depth of 5 km. The light green lines in (b,c) indicate the boundaries of the geological layers. The maps 
in (b,c) have been generated using ParaView36 and the Python library BaseMap37.
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conductivity and the layer below shows a decrease, that might be an indication that some salt structures were not 
resolved. The stochastic calibration demonstrates that a geothermal conduction problem adequately describes 
the sedimentary basin of Berlin–Brandenburg. Furthermore, the small posterior standard deviation of the scal-
ing parameter for the lower boundary condition shows that the boundary is placed far enough from the area of 
interest to avoid any interference.

Uncertainty quantification maps.  We first focus on the uncertainties associated with the temperatures 
in the entire Brandenburg model. The distribution of these uncertainties seems to be contradictory to our expec-
tations. Usually, one expects an increasing uncertainty with depth. We observe a decreasing uncertainty towards 
the boundaries and an increasing uncertainty towards the center part of the model instead. Both for the top and 
the bottom boundary condition, we apply Dirichlet boundary conditions, where the upper boundary condition 
has a value of 8 °C throughout all simulations. The lower boundary condition varies by a factor of ± 10%. We 
allow this variation to account for geometrical parameterization errors of the LAB. This is the reason why we 
observe decreasing uncertainties towards these boundary conditions because the values of the boundaries are 
relatively fixed within all simulations.

The highest uncertainties are between 30 and 35 km depth, where no interactions of the boundary conditions 
are observable. For a detailed investigation of the influence of boundary conditions on a geothermal conduction 
model, we refer to Degen et al.34.

We can also use the distribution of the uncertainties to investigate the influence of the respective boundary 
conditions. Although the LAB is at a depth varying from approximately 100 to 140 km, the boundary significantly 
influences the model up to a depth of 80–100 km. For our investigations, this is uncritical since our target depth 
is at 5 km depth. Nonetheless, this demonstrates that it is essential to have a vertical extent that is significantly 
larger than the target depth. The upper boundary condition is influencing the model to a depth of 10 km, meaning 
that the upper boundary condition significantly affects our target depth. This is not avoidable since the surface 
naturally defines the upper boundary. However, this is less critical than the influence of the lower boundary con-
dition because we can determine the upper boundary with a much higher certainty than the lower. Nonetheless, 
it shows that it is crucial to characterize the upper boundary condition with great detail. This means that we need 
to think about changing the type of boundary condition that we use. Therefore, we could, for instance, employ 
a Robin boundary condition to allow an interaction between the subsurface and the atmosphere. A previous 
study38 has shown that a variation of the value of the boundary condition does not majorly impact the sensitivi-
ties of the model response as long as we consider a Dirichlet boundary condition. This is the reason because the 
value of the boundary condition is the same in every realization.

At the target depth, the highest uncertainties are in the northwest (denoted by “A” in Fig. 4). Hence, they 
are north of the Tertiary-post-Rupelian and the Rupelian clay interface (denoted by “B” in Fig. 4), and south of 
the Sedimentary Rotliegend and Zechstein interface. The reason is that the variations of the contrast in thermal 
conductivity are high at these interfaces. Note that the Rupelian clay has a posterior mean thermal conductivity 
of 1.93 W m −1 K −1 with a posterior standard deviation of 0.53 W m −1 K −1 and the Zechstein layer a posterior 
thermal conductivity of 3.60 ± 0.96 W m −1 K −1 . Furthermore, the highest uncertainties are adjacent to the region 
of the salt structures, further emphasizing the influence of the Zechstein layer on the uncertainties. At the target 
depth, we consider only the Rupelian clay and the Zechstein layer as uncertain and do not include other layers 
in the uncertainty quantification. The sensitivity analysis shows that the model is insensitive to these parameters. 
Consequently, the observed uncertainty is arising from the contrast in thermal conductivity between the Rupelian 
clay- Zechstein layer and the remaining layers.

The posterior mean temperatures at a depth of 5 km are higher north from the Tertiary-post-Rupelian and 
the Rupelian clay interface (marked with the letter B in Fig. 3b) because the Tertiary-post-Rupelian has a lower 
thermal conductivity than the Rupelian clay. The colder posterior mean temperature values in the north-western 
part of the model (area A in Fig. 3b) are coming from the high thermal conductivity of the Zechstein layer. It is 
further emphasized by the round dome structures in the temperature distribution that are typical for salt. The 
posterior mean temperature after the stochastic model calibration only slightly deviates from the prior tempera-
ture distribution since the changes in the posterior mean thermal conductivity are also minor.

Reduced order model.  The results show that the usage of a physics-based learning approach has consid-
erable advantages for geothermal investigations and similar advantages can be expected for many other geo-
physical applications. This is caused by the sparsity of the observation data. The data sparsity makes purely data-
driven approaches in many geophysical applications prohibitive. Instead of using data for the training phase, we 
use only the physical model in the construction of the surrogate model and are therefore able to mitigate the 
problem with the data sparsity at this stage. The data is introduced only during the inversion itself.

Conclusion and outlook
We presented an uncertainty quantification at the basin-scale with the generation of uncertainty quantification 
maps. This is computationally possible since we replace the finite element forward simulation by the reduced 
basis forward simulation. This results in a reduction of computation time from a couple of hundred seconds to 
a few milliseconds per simulation, and hence in a speed-up of five orders of magnitude. Therefore, we are able 
to efficiently perform both global sensitivity and MCMC analyses which both require thousands to millions of 
forward evaluations. Because we consider not only the deterministic but the stochastic temperature distribution, 
we are able to predict the temperatures with uncertainty, everywhere in space. For future work, it would be inter-
esting to incorporate these temperature uncertainties into the economic evaluation of potential geothermal wells. 
It would be also interesting to investigate the effects of different observation data qualities on the uncertainty 
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of the model temperature distributions. Another interesting aspect is, to also include structural uncertainties. 
The methodology as presented here has been already applied to consider geometrical parameters13,39–41. The 
bottleneck of considering structural uncertainties is the mesh generation step, which is very time-consuming. 
The presented methodology addresses this problem by mapping the difference of every new configuration to a 
reference mesh. Hence, it deforms the original mesh and avoids a re-meshing step.
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