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Heterogeneous climate change 
impacts on electricity demand 
in world cities circa mid‑century
Yasmin Romitti* & Ian Sue Wing

Rising ambient temperatures due to climate change will increase urban populations’ exposures 
to extreme heat. During hot hours, a key protective adaptation is increased air conditioning and 
associated consumption of electricity for cooling. But during cold hours, milder temperatures have the 
offsetting effect of reducing consumption of electricity and other fuels for heating. We elucidate the 
net consequences of these opposing effects in 36 cities in different world regions. We couple reduced-
form statistical models of cities’ hourly responses of electric load to temperature with temporally 
downscaled projections of temperatures simulated by 21 global climate models (GCMs), projecting the 
effects of warming on the demand for electricity circa 2050. Cities’ responses, temperature exposures 
and impacts are heterogeneous, with changes in total annual consumption ranging from −2.7 to 
5.7%, and peak power demand increasing by as much as 9.5% at the multi-GCM median. The largest 
increases are concentrated in more economically developed mid-latitude cities, with less developed 
urban areas in the tropics exhibiting relatively small changes. The results highlight the important role 
of the structure of electricity demand: large temperature increases in tropical cities are offset by their 
inelastic responses, which can be attributed to lower air-conditioning penetration.

Climate change is projected to increase the frequency and intensity of populations’ exposure to extreme high 
temperatures, particularly in urban areas1. Adaptation to such impacts will differ in cities across the world. 
Higher temperatures will adversely affect the health of urban populations2, and trigger adaptations that affect 
the demand for energy. The link between ambient temperature and mortality or morbidity is well understood3,4 
and averting behavior via heating and cooling are a major driver of diurnal and seasonal variability in electricity 
demand5,6. Peak and total electricity demand are anticipated to increase worldwide as future warming increases 
demand for space cooling as an adaptation to more frequent and intense spells of high temperature7. Simultane-
ously, climate warming is projected to moderate cold-season low-temperature extremes, inducing reductions in 
the demand for electricity for space heating8. The relative magnitudes of these opposing effects will vary across 
locations and warming scenarios9. These stylized facts highlight the importance of quantifying (i) the impact on 
net energy demand of simultaneous increases in demand for cooling and decreases in demand for heating, (ii) 
the effectiveness of additional electricity use for cooling in moderating adverse heat-related health outcomes, 
and (iii) the environmental health, and welfare impacts associated with potential increases in greenhouse gases 
and other air pollutants emitted by the electric generation necessary to satisfy increased demand.

It has been estimated that climate change will stimulate a 25–58% increase global energy demand by mid-
century10, but a key caveat is that this result is derived using coarse spatial (national) and temporal (annual) scale 
measures of both energy and temperature11. By contrast, populations’ exposures to extreme heat, and their deci-
sions to consume energy as a means of shielding themselves from associated adverse health consequences, occur 
over finer time scales (hours to days) and geographic domains with a diversity of built environment contexts. 
Nationwide estimates are thus unlikely to capture the heterogeneity in demand response inherent across urban 
geographies resulting from distinct local structures of electricity demand and local climates. Global sub-national 
differences in urbanization and population growth further underpin the significance of evaluating the energy 
implications of local climate adaptation decisions that may be masked by national scale estimates12. Here we 
characterize heterogeneous local climate adaptation by leveraging fine spatial and temporal scale data to model 
the transient response of electricity to temperature. Our approach draws on substantial empirical literature on 
the effect of temperature on the demand for energy generally11,13,14, and electricity specifically9,15–20 to character-
ize the response of electric power consumption to temperature in 36 global cities on an hourly time step, and 
quantify the impact on high-frequency electricity demand of mid-century climate warming.
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We make three contributions. First, data storage limitations have precluded archiving of global climate model 
(GCM) outputs at the hourly frequencies on which electricity load data have become available. Estimates of 
future heat exposures12,21–25 have largely relied on spatially downscaled GCM simulations of daily temperatures, 
but less attention has been paid to temporal downscaling to understand the transient impacts of warming 
temperatures. We address this gap by combining hourly temperatures from reanalysis data with daily mid-
century temperature projections from the NASA Earth Exchange Global Daily Downscaled Climate Projections 
(NEX-GDDP) under two representative concentration scenarios (RCPs) of warming, 4.5 and 8.5, and applying 
a delta correction method26,27 to produce hourly current and mid-century climate temperature series. Second, 
we show that the hourly response of electricity demand to current and lagged temperatures leveraged in elec-
tricity market forecasting28 has important implications for adaptation, owing to varying thermal properties of 
the built environment16. Our statistical model incorporates a distributed lag structure similar to that employed 
in epidemiological investigations of temperature on mortality29. Our third contribution is bridging separate 
literatures that estimate climate impacts using differing techniques and scales. Econometric models of the non-
linear response of electric load to daily temperatures have been developed over broad spatial domains18,30 while 
recent estimates of high frequency cooling demand have combined high-resolution meteorological simulations 
with land use maps and simple transformations of load data for individual cities31. We improve upon these 
approaches by using  hourly temperature observations to scale climate projections, and combining the results with 
empirically-derived impact response surfaces to estimate mid-century warming effects on electricity demand. 
Specifically, we employ hourly electricity data to econometrically estimate reduced-form statistical response 
surfaces of electricity demand to temperature in 36 global cities. We next temporally downscale GCM simulated 
future temperature projections by combining the diurnal cycle of hourly temperatures from ERA532 with daily 
maximum and minimum temperatures from 21 GCMs in NEX-GDDP to construct hourly temperature series for 
current (2006-2020) and mid-century (2046–2060) climates that shed light on climatically-induced increases in 
urban extreme heat exposures and the demand for adaptation through cooling and electricity use. We combine 
these projections with our response surfaces to produce estimates of hourly impacts to electricity demand in 2050.

The resulting heterogeneity in the transient response of electricity to temperature, and impact of future 
climate change on electricity demand among urban populations, differs with respect to both latitude and the 
structure of final demand for energy. Temperate cities largely exhibit “V”-shaped response functions: referring 
to the non-linear shape of the temperature-demand relationship that is well-documented in the empirical and 
engineering literatures14,17,18,30,33. Electricity demand for space cooling (heating) increases as temperatures rise 
above (fall below) the “set point” temperature, T∗ , where weather-sensitive electric load, L∗ , is minimized—typi-
cally between 10–30◦ C. Tropical cities’ response functions range from increasing to unresponsive, as can be 
seen in Fig. 1, reflecting underlying differences in built environment characteristics and social and economic 
contexts across world cities. Furthermore, cities in mid-latitude temperate climates that currently experience cold 
winters and mild summers see reduced demand for a mix of fuels for heating but more electricity for cooling, 
with peak per-capita demand increases of up to 9.5% under future warming. Conversely, cities in the tropics that 
experience warm temperatures year-round vary in their responses, exhibiting both increased consumption of 
electricity for  cooling and overall reductions in demand, resulting in median per capita annual impacts ranging 
from −2.7 to 5.7% across GCMs. Projections of impacts under both future temperature shifts and demographic 
change represent −4 to 21% of mean annual historical demand across cities with the largest effects found in both 
the tropics and mid-latitudes. Annual impacts on electricity load further indicate that peak demand for cooling 
during warm periods may not be entirely offset by cool period reductions in demand. The diversity of responses 
in our results indicates a reversal of the north-south gradient of electricity demand impacts demonstrated in 
previous research30, which suggests the need for caution extrapolating impact responses derived for the mid-
latitudes to locations in the tropics. While we are not able to observe additional attributes that may be responsible 
for intra-urban variation in energy demand (e.g., built environment heat transfer characteristics, prevalence of 
air conditioning), nor how developing cities may evolve in the future with urbanization, our results identify and 
characterize distinct patterns of temperature-responsive demand across cities, indicating these these areas are 
intriguing and merit further investigation.

Results
Heterogeneous demand response profiles.  Figure S1 summarizes the responses of hourly electric load 
to current and lagged hourly temperatures as three-dimensional response surfaces (see Supplementary Infor-
mation—SI for figure and details regarding basis for lag structure). Figure 2 illustrates the integrated response 
over contemporaneous and lagged temperatures, which falls into three broad categories: “V”-shaped, increasing, 
and unresponsive. “V”-shaped responses are characteristic of the mid-latitude temperate cities in our sample. 
For urban areas exhibiting this response, demand is generally largest for contemporaneous temperatures, is less 
responsive to temperatures experienced up to 4 hours prior, and, relative to this minimum point, is somewhat 
more responsive to temperatures further removed in time. These cities experience the widest range of seasonal 
temperatures ( −20 to +45 ◦C). By contrast, for most cities in the tropics, electricity demand increases with tem-
perature—in some cases slightly non-monotonically (e.g., Abidjan, Accra, Mindelo). These climates are warm 
with small annual temperature ranges (17–30 ◦C), which obviates the need for heating, with the result that T∗ 
coincides with the lower support of the temperature distribution. Here too, demand tends to be most responsive 
to contemporaneous temperatures, with temperatures at previous hours having impacts that are smaller in mag-
nitude but vary considerably. Finally, three tropical cities (Mbabane City, Kupang, and Nairobi) exhibit patterns 
of electricity demand that are largely unresponsive to temperature, likely because of idiosyncratic geographic 
factors. (These areas experience a wide range of seasonal temperatures (5–35 ◦ C) and Mbabane and Nairobi 
are located at high altitudes with relatively mild climates, which may obviate the need for substantial cooling, 
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whereas Kupang is located in the eastern portion of the Indonesian archipelago where electrification rates tend 
to be lowest34.)

Climate change impacts, and drivers.  Shifts in cities’ hourly temperature distributions due to climate 
change circa 2050 are constructed via the delta correction method by combining patterns of hourly temperature 
responses to diurnal extrema that we empirically estimate from reanalysis data with daily temperature extremes 
projected by 21 GCMs (see “Methods”). Figure S2 summarizes the resulting changes in mid-century cold- and 
hot-season temperature distributions for the RCP 8.5 warming scenario. (Distributions for RCP 4.5 are shown 
in Fig. S3.) Across GCMs, summer and winter hourly temperatures both increase for the majority of cities. The 
rightward movement in the upper support of the distribution of summer temperatures exceeds the shift in the 
median, indicating a lengthening of the tail of extreme high temperature exposures. Importantly, vigorous (RCP 
8.5) warming’s induced shifts are larger for cities in the mid-latitudes (6–8◦ C) compared to the tropics (5–6◦C), a 
result that contrasts with prior characterizations of climatic exposure such as the increase in the number of days 
with average temperatures above a pre-defined threshold10.

To quantify the impact of mid-century warming on hourly electricity demand in each city, we force our 
estimated demand responses with projected temperature shifts and sum the resulting changes in hourly elec-
tricity demand per capita to project changes in electricity consumption on annual and sub-annual time-scales. 
Figure 3 decomposes shifts in total annual demand into the effect of climate change on the fractional change in 
total electricity demand for hours above and below T∗ , and distinguishes the contribution of the structure of 
electricity demand (i.e., the magnitude of the average temperature semi-elasticity of demand) from the effects 
of the shift in temperature exposures (see “Methods”). In Panel a, populous mid-latitude cities such as Tokyo 
have historically large annual per capita load as well as a demand structure that is sensitive to both heating 
and cooling. Populous tropical developing-country cities such as Manila consume less electricity and exhibit 
temperature-inelastic heating electricity demand but highly elastic cooling electricity demand (see Table S1.) 
Panel b’s summary of the changes in annual hours above and below T∗ reveals a tendency toward increases in 
hot hours alongside commensurate or slightly smaller reductions in cold hours. (Exceptions tend to be tropical 
cities such as Abidjan, Dakar and Kupang where T∗ lies at the lower support of the temperature distribution in 
the current climate and remains there as the climate warms.) These influences drive the structure and exposure 
effects summarized in Panels c and d, for which the impacts of future temperature exposures dominate those 
of demand structure by an order of magnitude for many urban areas in our sample, primarily those in the mid-
latitudes. In tropical cities where the vast majority of hours are hot, the structure and exposure effects are of 
similar magnitude—a phenomenon that is the key driver of net impact, to which we now turn.

Figure 1.   Geographical distribution of sample cities. Point color corresponds to category of demand response 
function: turquoise—“V”-shaped response, purple—increasing response, cyan—unresponsive.
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Figure 4 summarizes the consequent net impacts of climate change on the total and peak demand for electric-
ity (Fig. S8 illustrates these impacts under RCP 4.5. Relative to the current climate, the change in annual demand 
per capita at the multi-model median ranges from −2.7 to +5.7 % (Panel a), while the change in the multi-model 
median of the 95th percentile of hourly demand ranges from −3.4 to +9.5 % (Panel b). In the majority of our 
sample of cities, the amplifying effect of the semi-elasticity of demand to hot temperatures ( T > T∗ ) in conjunc-
tion with climatically-induced increases in hot hours outweighs the attenuating effect of the semi-elasticity of 

Figure 2.   Response of hourly electric load to hourly temperature in 36 cities.
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Figure 3.   (a) Average fractional response of per capital urban electricity demand to temperatures above and 
below the set point temperature, T∗ . Colors indicate type of demand response (turquoise—“V”-shaped, purple—
increasing, cyan—unresponsive. (b) Change in hours over the year with temperatures above (red) and below 
(cyan) T∗ . (c,d) Decomposition of the change in annual total electricity demand into the effects of demand 
response and shifts in the distribution of hourly temperatures.
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demand to cold temperatures ( T < T∗ ) in conjunction with decreases in cold hours. The net of these effects is 
changes in demand of 0% up to +6% in 32 cities, and reductions of up to −2.7 % in the remaining four cities. 
Within this latter group, mid-latitude cities (e.g., Tokyo, Eugene, and Tacoma) experience increases in hot hours 
that reduce electricity demand for heating by a larger amount than they increase demand for cooling, lowering 
net annual consumption. In Mbabane City, warming shifts hours from temperatures at which demand peaks to 
those where demand is actually smaller due to the decreasing monotonicity of its response.

These effects underlie changes in the 95th percentile of per capita demand (Panel b), which exceed +5 % in 
nearly half of our sample, typically mid-latitude temperate cities in North America (e.g., Detroit: 9.5%, Philadel-
phia: 8.9%, North Little Rock: 8.8%), while among tropical cities, the largest increases are substantially smaller 
(e.g., Manila: +5.9%). By contrast, one fifth of the sample experiences declines in peak demand. Over-represented 
in this group are mid-latitude cities whose peak electricity demand occurs during the cold season, and the “unre-
sponsive” tropical city of Mbabane. The surprising upshot is that the substantial increases in demand appear 
concentrated in mid-latitude cities, while demand changes experienced by urban areas in the tropics tend to be 
either increases or decreases of much smaller magnitude.

Heterogeneity in demand impacts also reflects the differing contributions of lagged versus current peak 
( > 95 th percentile) hourly temperatures in cities. Decomposing the cumulative effect of the prior 6 hours of peak 
temperature exposure on mean demand (lagged response) against the effect of current hourly peak temperatures 
(contemporaneous response) reveals that the latter is more influential in most cities in the mid-latitudes under 
both the current and 2050 climates, but generally not in the tropics, where instead the lagged response tends to 
dominate (Fig. 5, for RCP 4.5 see Fig. S9). For almost half of cities, climate change increases the effects of both 
the contemporaneous and the lagged response (upward pointing arrows). The remaining cities largely display 
simultaneous increases in the effect of the contemporaneous response and decreases in the effect of the lagged 
response (rightward pointing arrows), a divergence that arises from differences in the slopes of the demand 
response surface along the temporal dimension (Fig. S1).

Daily load profiles summarize the impact of climate change on hourly demand (Figs. S4 and S5). Mid-latitude 
cities experience up to a 20% (Philadelphia) increase in peak demand at certain hours. Load duration curves 
(LDCs) illustrate warming impacts to hourly demand and its seasonal dependence, a subset of which are shown 
in Fig. 6 (remaining city LDCs for RCP 8.5 are in Fig. S10, and for RCP 4.5 are in Fig. S11). Urban areas whose 
peak electricity consumption occurs during the hot season tend to experience amplification of peak demand (on 
the order of 0.02–0.42 kWh per capita), while those with cold- or shoulder-season peaks tend to experience peak 
demand attenuation. In locations such as Tacoma and Tokyo, the latter effect arises from the decline in winter 
peak demand with warming. In the tropics, cities such as Antigua, Honolulu and Manila experience amplifica-
tion in load demand across all hours, while the remaining cities (which mostly belong to the “unresponsive” 
group) show either partial or almost complete reductions in demand over the course of the year (e.g., Mindelo 
and Mbabane City, respectively). For half of our sample of cities, concentrated in the mid-latitudes, cold-season 
hours shift lower in the rank-ordering of hourly demand. Only in a few of these locations is there a perceptible 
reverse shift of hot-season hours higher in the ordering (e.g., N. Little Rock). While in many cities, loads that 
correspond to hours in the shoulder seasons occur at all percentiles ranks, there is a slight tendency toward hours 

Figure 4.   Percentage change in (a) total annual and (b) 95th percentile demand due to changes in hourly 
temperatures circa 2050, 21 GCM simulations of RCP 8.5 warming.
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Figure 5.   Change in demand components attributable to contemporaneous peak ( > 95th percentile) 
temperatures (horizontal axis) and the cumulative effects of peak temperature exposures 1–6 h prior (vertical 
axis). Gray circles indicate mean MWh per capita demand during the historical period, hollow squares indicate 
median multi-model mean MWh per capita demand in 2050 under RCP 8.5, arrows indicate direction of 
change.

Figure 6.   Current and projected 2050 load duration curves (LDCs) and seasonal distribution of load for a 
subset of cities. For each city, LDCs are shown for the current climate (blue), individual GCM simulations of 
RCP 8.5 warming (yellow), and the multi-GCM median (red). Colored panels illustrates each city’s seasonal 
distribution of hourly demand in the current climate (bottom) and RCP 8.5 warming (top), blue: winter, red: 
summer, green: spring, orange: fall.
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in spring (autumn) moving lower (higher) in the demand order, consistent with warming-induced electricity 
demand reductions for heating demand and increases for cooling.

Finally, we assess the implications of the foregoing impacts for urban areas’ absolute electricity consumption 
circa mid-century. Coupling our climatically-driven shifts in annual per capita load with 2050 population projec-
tions under two shared socioeconomic pathway (SSP) scenarios—SSP3 and SSP5 (see “Methods”)35,36, allows us 
to account for the additional influence of future population expansion (Table 1, RCP 4.5 Table S2). The RCP 8.5 
multi-model median impact on annual load exceeds 500 GWh for a fifth of our sample of cities under both SSPs, 
with the largest load level increases in Manila, Singapore, Chandigarh, and Detroit—representing 7.2 (7.6)%, 
2.5 (2.7)%, 20.8 (21.4)%, and 2.2 (3)% of annual demand for SSP3 (SSP5), respectively. The patterns of change in 
cities’ levels of annual demand are broadly consistent across both SSP scenarios, but larger in magnitude under 
SSP5. Effects are concentrated in mid-latitude temperate cities and electricity-intensive cities in the tropics (e.g., 
Manila, Singapore). At the 95th percentile across GCMs, amplification of load over hot hours will require an 
additional 1000–3000 GWh in 8 cities.

Discussion
Across 36 cities, mid-century climate change will exert heterogeneous impacts on electric power consumption, 
driven by the interaction between shifts in cities’ distributions of hourly temperatures and the structure of their 
temperature-sensitive electricity demands. Increases in peak demand are concentrated in the mid-latitude, tem-
perate, mostly North American cities in our sample, resulting in up to a 9.5% amplification at the 95th percentile 
of annual demand, while tropical cities’ peaks see comparatively modest increases (0–5.9%) and even declines 
(up to 0.6%). This pattern is corroborated by mid-century shifts in load duration curves, leading to increases in 
peak-hours of as much as 0.42 kW per person in North American cities—a substantial fraction of non-weather 
sensitive demand. The largest absolute increases in urban electricity demand are projected to occur in the trop-
ics as well as the mid-latitudes, reflecting the importance of population expansion in addition to temperature-
dependent per-person demand.

Our findings constitute an important qualification to the previously-discovered north-south polarization of 
electricity demand under climate warming30. Specifically, our results for the tropics suggest that this latitudinal 
gradient of impact severity is unlikely to extend all the way to the equator. The substantial temperature increases 
experienced by tropical cities induce shifts in demand that are much smaller than the impacts of only moder-
ately larger temperature changes on mid-latitude urban areas, in contrast to prior empirically-based estimates 
of energy demand amplification under similar temperature change10,18. The difference is accounted for by prior 
studies’ coarser temporal resolution of temperature shifts and associated electricity demand (daily, annual), 
and is particularly an artifact of the thresholds used to bin daily temperatures in order to empirically establish 
their effects on temporally aggregated energy demand. Using our hourly temperatures to construct counts of 
hot ( T ≥ 27.5 ◦ C) days10, the apparent heat exposure gradient reverses to become substantially larger in the 
tropics (up to 149 additional hot days) in comparison to the mid-latitudes (a maximum of only 93 additional 
hot days) (Figs. S6 and S7). Although the magnitude of electricity demand responses to hot days for temperate 
regions has been found to exceed those for the tropics11, consistent with our results, their combination with 
binned temperatures leads to different patterns of impact across the globe10. Notwithstanding, our estimated 
increases in peak and total per capita energy demand for mid-latitude temperate cities mirror the findings of 
prior electricity-focused studies18,37–39.

We demonstrate that the character of the demand response to temperature, rather than solely the projected 
shift in the distribution of temperatures, is an important driver of heterogeneity in electricity demand amplifica-
tion due to climate change. Despite the small size of our city sample, our results raise the caution that the “V”-
shaped splines found by previous studies11,40–43 should not be considered universal, but instead tend to reflect the 
patterns of demand that prevail in richer, temperate, mid-latitude cities. The latter exhibit highly elastic responses 
to changes in temperature above and below T∗ that reflect built environment thermal properties different from 
those likely to prevail in the tropics. The corresponding 3D response surfaces (Fig. S1) consistently show high 
demand occurring at the hottest contemporaneous temperatures as well as the highest temperatures 6 hours 
prior, suggesting that buildings in these climates tend to hold heat very well. Tropical cities whose overall demand 
responses are linear and increasing exhibit a diversity of lag structures. This may be a feature of the quality of 
hourly demand data available in these cities (limited in temporal range and age of observations), though in addi-
tion, likely reflects not only climatic differences in built environment characteristics but also electrification and 
appliance availability that are correlated with economic development. Cities in countries further from the world 
technological frontier with less developed infrastructure tend to exhibit demand responses that are relatively 
temperature-inelastic at all lags, resulting in only moderate electricity consumption increases with warming, 
corroborating42. We also find moderate electricity demand impacts of future warming in most tropical cities, and 
show that they are attributable to relatively modest shifts in the temperature distribution on hourly scales. The 
tropics are home to a plethora of large cities whose income and population are projected to grow rapidly over 
the coming decades, but are under-represented in our sample. To understand how pervasive modest impacts 
might be, and establish the implications for future energy demand adaptation to climate change globally, will 
require concerted efforts to collect fine spatial and temporal scale data on energy demand in developing countries.

There are additional caveats to our findings. Perhaps the most important is our limited understanding of 
how the structure of electricity demand might change in the future. Evidence from India on the sensitivity of 
the shape of the demand response to increasing income44, reinforces the importance of this phenomenon. In 
view of the short periods over which our temperature-load relationships are estimated, we are unable to draw 
inferences about the manner in which these responses are likely to shift over time with economic development 
and technological progress11. Our projections thus indicate how temperature changes might influence electricity 
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SSP3

Annual T ≥ T
∗

T < T
∗

Median Low High Median Low High Median Low High

Abidjan 149.17 114.42 212.81 149.17 114.42 212.81

Accra 285.67 208.74 385.25 285.67 208.74 385.25

Amman 215.35 147.36 407.00 398.34 294.30 632.36 − 200.62 − 240.66 − 100.39

Antigua 18.04 13.56 26.35 18.04 13.56 26.35

Beirut 7.26 5.37 10.32 7.13 5.55 10.24 − 0.08 − 0.25 0.15

Boston 196.56 71.57 332.30 357.80 185.20 516.34 − 153.84 − 274.21 − 51.45

Chandigarh 1248.60 669.16 1860.64 1241.10 668.98 1852.70 6.46 0.60 11.52

Chattanooga 78.27 − 1.45 122.43 160.82 116.24 193.83 − 85.27 − 145.77 − 20.71

Colorado Springs 7.19 − 4.41 28.61 41.41 25.40 62.59 − 33.98 − 47.54 − 19.71

Dakar 157.37 114.48 199.17 157.37 114.48 199.17

Delhi 892.60 437.20 1344.47 865.22 417.48 1311.75 26.76 10.27 37.60

Detroit 1214.30 640.32 1526.11 1384.76 755.75 1645.97 − 133.07 − 260.83 − 67.80

El Paso 244.86 137.90 322.87 279.08 164.49 369.33 − 36.82 − 46.81 − 26.14

Eugene − 43.19 − 71.62 − 24.92 4.87 1.96 8.01 − 47.91 − 79.00 − 26.93

Honolulu 262.45 127.59 380.82 262.45 127.59 380.82

Indianapolis 121.04 32.31 205.56 291.84 168.20 421.35 − 162.77 − 296.45 − 70.78

Isla Sao Nicolau 0.63 0.44 0.91 0.58 0.35 0.88 0.06 0.01 0.09

Kansas City 38.03 17.06 66.60 55.97 33.35 96.88 − 17.23 − 30.11 − 10.14

Kupang 1.85 1.33 2.19 1.85 1.33 2.19

Los Angeles 358.34 236.67 488.30 439.35 310.68 577.98 − 80.16 − 99.46 − 47.94

Louisville 359.80 71.39 643.23 838.94 572.27 1164.78 − 498.11 − 801.49 − 176.00

Manila 3712.61 2515.98 6016.88 3712.61 2515.98 6016.88

Mbabane City − 3.17 − 3.88 − 2.51 − 3.17 − 3.88 − 2.51

Memphis 317.27 132.76 542.01 415.88 241.83 680.49 − 101.67 − 156.00 − 31.01

Mindelo 1.40 0.96 1.95 1.40 0.96 1.95

Nairobi 109.36 75.14 143.69 109.36 75.14 143.69

New York City 937.79 554.71 1240.60 1030.00 585.30 1345.79 − 105.19 − 168.62 − 23.00

North Little Rock 17.10 8.17 27.45 23.15 13.73 35.85 − 5.23 − 7.82 − 2.31

Omaha 182.35 102.09 287.89 267.05 161.20 411.02 − 87.23 − 167.42 − 50.61

Philadelphia 164.18 12.76 336.56 461.03 261.40 555.25 − 265.09 − 424.85 − 45.73

Sacramento 163.16 100.00 230.45 205.34 137.64 316.86 − 56.70 − 79.81 − 28.30

San Diego 500.05 307.01 748.94 545.38 336.90 803.31 − 45.88 − 56.02 − 30.84

Singapore 2442.06 1617.88 3618.70 2442.06 1617.88 3618.70

Springfield 27.73 − 1.41 47.16 58.66 36.27 102.88 − 36.65 − 68.23 − 18.29

Tacoma − 42.26 − 71.35 − 25.56 0.27 − 0.44 1.77 − 42.10 − 71.62 − 25.73

Tokyo − 2511.20 − 4297.67 − 1488.13 1402.82 761.27 2446.62 − 3739.96 − 6744.29 − 2625.65

SSP5

Annual T ≥ T
∗

T < hT
∗

Median Low High Median Low High Median Low High

Abidjan 126.10 96.73 179.90 126.10 96.73 179.90

Accra 267.09 195.17 360.20 267.09 195.17 360.20

Amman 211.47 144.70 399.66 391.15 288.99 620.95 − 197.00 − 236.32 − 98.58

Antigua 18.04 13.56 26.35 18.04 13.56 26.35

Beirut 6.44 4.76 9.16 6.33 4.93 9.09 − 0.07 − 0.22 0.13

Boston 267.79 97.51 452.73 487.46 252.31 703.46 − 209.59 − 373.59 − 70.09

Chandigarh 1280.43 686.22 1908.07 1272.74 686.03 1899.93 6.62 0.62 11.81

Chattanooga 110.06 − 2.03 172.17 226.15 163.47 272.58 − 119.92 − 205.00 − 29.12

Colorado Springs 10.08 − 6.17 40.08 58.00 35.58 87.68 − 47.60 − 66.60 − 27.61

Dakar 158.19 115.08 200.21 158.19 115.08 200.21

Delhi 1031.99 505.47 1554.44 1000.34 482.68 1516.61 30.94 11.87 43.47

Detroit 1676.49 884.04 2106.98 1911.82 1043.41 2272.46 − 183.72 − 360.10 − 93.60

El Paso 255.46 143.87 336.85 291.16 171.61 385.32 − 38.42 − 48.84 − 27.27

Eugene − 59.85 − 99.24 − 34.54 6.75 2.72 11.10 − 66.39 − 109.47 − 37.32

Honolulu 353.15 171.69 512.43 353.15 171.69 512.43

Continued
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demand, holding the characteristics of urban areas constant as they are today. An alternative approach could be 
to utilize the response of mid-latitude cities in developed nations as models for the future, on the assumption 
that they reflect the manner in which tropical cities might evolve on the time frames over which the climate 
is anticipated to change30. If tropical cities with relatively inelastic demand responses are endowed with the 
response function of the tropical city with the most weather-sensitive demand in our sample (Manila), future 
warming induces larger percentage (up to +5.3 %) and absolute (up to 798 GW under SSP5) changes in peak 
load (Fig. S12 and Table S3). Nevertheless, whether tropical developing urban areas at mid-century will behave 
similarly to their mid-latitude developed counterparts today is highly uncertain. Temperate cities may provide 
an indication for how the set point of the temperature-responsive components of demand may shift, however, 
this assumption does not indicate how the overall shape of cities’ demand responses might shift with economic 
and technological development. To address this gap, one potential avenue for future research is analyzing how 
the shape of the temperature-load relationship shifts with proxies for structural and technological change in 
energy systems that can be linked to scenarios of socioeconomic futures45. Given the dependence of demand in 
the least developed regions on the diffusion of electrification46, the challenge will be to develop sufficiently long 
load time series from which to infer how demand responses to temperature might be influenced by development, 
and use the results as archetypes that can be applied to electrifying locations.

A related shortcoming, shared with prior empirical work10,11,18,30, is our model’s implicit focus on adapta-
tion at the intensive margin—the temperature responsiveness of energy demand conditional on the stock of 
electricity-using durable goods, without explicit consideration of the extensive margin—temperature-induced 
technology adoption, particularly air conditioning (AC) capital47. The latter has been quantified by exploiting 
variation in stocks of energy-using durables across locations with different climates and incomes, in conjunction 
with spatially and temporally varying data on electricity demand and weather48. This approach has leveraged 
observations of multiple locations within a country, but given the large differences in the levels of economic 
development among our cities and in particular the paucity of data on appliance holdings, its relevance to the 
current analysis remains open to question. A potential way forward is characterizing the joint dependence of AC 
penetration on temperature, income and other indicators of development leveraging census data for temperate 
and tropical countries. This is an active area of our research in progress.

Despite these limitations, our contribution is to highlight new implications for climate change impacts and 
adaptation of the fine temporal and spatial scale structure of electricity demand. Our results suggest that prior 
demand responses estimated for developed, temperate areas are unlikely to reflect the temperature dependence 
of electricity consumption in developing, tropical areas. Naive extrapolation of patterns of energy demand 
adaptation to warming observed in the mid-latitudes could thus potentially over-estimate the magnitude of 
climate change impacts, both in the tropics and globally. Even so, we urge caution in drawing broad conclusions 
from the current small sample of cities. As primary data collection makes available additional hourly load series 

SSP5

Annual T ≥ T
∗

T < hT
∗

Median Low High Median Low High Median Low High

Indianapolis 166.90 44.54 283.43 402.39 231.92 580.97 − 224.44 − 408.75 − 97.60

Isla Sao Nicolau 0.35 0.24 0.50 0.32 0.19 0.48 0.03 0.00 0.05

Kansas City 52.49 23.55 91.93 77.25 46.03 133.72 − 23.78 − 41.56 − 14.00

Kupang 2.03 1.46 2.41 2.03 1.46 2.41

Los Angeles 490.70 324.10 668.67 601.63 425.44 791.48 − 109.77 − 136.20 − 65.66

Louisville 501.08 99.43 895.81 1168.37 796.98 1622.16 − 693.70 − 1116.21 − 245.12

Manila 3913.29 2651.98 6342.12 3913.29 2651.98 6342.12

Mbabane City − 3.12 − 3.82 − 2.47 − 3.12 − 3.82 − 2.47

Memphis 439.13 183.75 750.19 575.62 334.72 941.86 − 140.72 − 215.91 − 42.93

Mindelo 0.85 0.59 1.19 0.85 0.59 1.19

Nairobi 126.43 86.87 166.11 126.43 86.87 166.11

New York City 1270.88 751.74 1681.26 1395.85 793.19 1823.81 − 142.55 − 228.51 − 31.17

North Little Rock 23.73 11.34 38.08 32.12 19.06 49.74 − 7.25 − 10.85 − 3.21

Omaha 251.48 140.80 397.03 368.30 222.31 566.84 − 120.29 − 230.89 − 69.79

Philadelphia 223.92 17.40 459.03 628.78 356.51 757.29 − 361.55 − 579.45 − 62.37

Sacramento 224.58 137.64 317.21 282.64 189.45 436.14 − 78.04 − 109.86 − 38.96

San Diego 620.19 380.77 928.88 676.41 417.85 996.31 − 56.91 − 69.48 − 38.25

Singapore 2607.53 1727.51 3863.91 2607.53 1727.51 3863.91

Springfield 39.56 − 2.01 67.27 83.67 51.74 146.75 − 52.28 − 97.33 − 26.09

Tacoma − 57.86 − 97.70 − 35.00 0.37 − 0.60 2.43 − 57.64 − 98.07 − 35.23

Tokyo − 3669.57 − 6280.11 − 2174.58 2049.91 1112.43 3575.20 − 5465.14 − 9855.31 − 3836.82

Table 1.   Change in total annual GWh across GCMs under RCP 8.5 at the median, 5th (low) and 95th (high) 
percentiles under SSP3 and SSP5. Median, 5th (low) and 95th (high) percentiles of change under both SSPs are 
also presented for future temperatures ≥ T

∗ and < T
∗.
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in diverse areas that have not been previously observed, our bottom-up methodology serves as a template that 
facilitates quantification of the net effects of temperature on electricity demand associated with heterogene-
ous climatically-induced rightward shifts in local temperature distributions. Over time, expanding the slate of 
observations to a more diverse array of urban areas will enhance understanding of the extent to which top-down 
estimates of the energy demand impacts of climate change might be constrained by fine-scale heterogeneity in 
climatic and socioeconomic conditions.

Methods
We empirically project the changes in electricity demand in urban areas as a consequence of mid-century climate 
change by first using hourly observations of temperature and electricity load to model urban electricity demand 
response functions. Separately, we use daily temperature series simulated by 21 GCMs and observed historical 
hourly temperature series in conjunction with a temporal downscaling algorithm to calculate the shifts in extreme 
low and high temperature exposures that will be experienced by these 36 global cities to 2050. The projected 
shifts in temperature distribution are combined with results from the demand response functions to construct 
projections of climate-change driven shifts in hourly electricity demand.

Data.  For use in our empirical model, we first combine data of hourly electricity demand with meteorological 
data and population estimates across 36 global cities. Hourly electricity consumption profiles for the majority 
of cities in this data sample were taken from Cohen et al.49 converted to Universal Coordinated Time (UTC) 
and matched with corresponding temperature values. The dataset provides hourly electric load series in mega-
watts (MW) for various years spanning the period 2003-2018 across different urban areas in North America, 
Africa, and (primarily southern) Asia (Table S4). While its geographic coverage is limited, the dataset’s fine spa-
tial (city) and temporal (hourly) resolution distinguishes it from similar datasets of hourly electric load that are 
only available for broad spatial domains (e.g., U.S. load balancing areas or European countries).

As described in42, hourly electricity demand was collected from electric utilities, system operators and regula-
tory bodies serving sample cities for the most recent years for which data were available at the time, as such these 
data may not reflect the most current state of these urban energy systems. For India’s National Capital Territory 
of Delhi, load was disaggregated into five “cities”, each served by a distinct and non-overlapping electricity dis-
tribution company (details in42, Supplementary Information). We re-aggregate these series to provide summed 
hourly profiles of electricity consumption for the entire Delhi urban area. Further information describing load 
data and quality are available in the SI.

Meterological data are obtained from the European Centre for Medium-Range Weather Forecasts’ (ECMWF) 
ERA5 dataset32. Centroids of cities’ central business districts or financial districts (where available) were taken to 
be representative of their encompassing urban area, and used to query ERA5 raster datasets. We extracted hourly 
series for 2 m air temperature, dew point temperature, wind speed, and downward shortwave radiation for years 
matching our electricity load data. To construct hourly measurements from GCM daily minimum and maximum 
temperature projections, hourly air temperatures were extracted for all cities for the 15 year period 2004–2018.

We utilize the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) to calculate the 
effects of mid-century temperature projections relative to those in the historical period50. NEX-GDDP contain 
bias-corrected and spatially downscaled daily maximum and minimum temperatures on a 0.25◦ grid over the 
2006-2100 period for RCP 4.5 and RCP 8.5 scenarios derived from 21 GCMs participating in the global Climate 
Model Intercomparison Project phase 5 (CMIP5)51. Detailed information on NASA NEX-GDDP is available 
at https://​cds.​nccs.​nasa.​gov/​nex-​gddp/ and described in both https://​esgf.​nccs.​nasa.​gov/​esgdoc/​NEX-​GDDP_​
Tech_​Note_​v0.​pdf and50.

Population data were collected from the U.S. Bureau of Economic Analysis (BEA) Personal Income, Popula-
tion, Per Capita Personal Income (CAINC1) tables for all U.S. cities in our sample by metropolitan statistical 
area (MSA)52. For cities with populations >300,000, population estimates were obtained from the United Nations 
World Urbanization Prospects 2018 revision53. Estimates for Antigua, Isla Sao Nicolau, Kupang, Mbabane City, 
and Mindelo were gathered from both national and international sources; described in Table S8. Spatially explicit 
global population projections consistent with the Shared Socioeconomic Pathways (SSPs) are available from54. 
These projections cover the period 2010–2100 in ten year time intervals on a 0.125◦ grid. We extract mid-century 
population projections for SSP3 (high challenges to mitigation and adaptation) and SSP5 (high challenges to 
mitigation, low challenges to adaptation) to scale our projections of average hourly per capita impact to electric-
ity demand. SSP3 describes a demographic trajectory characterized by high population growth rates in the high 
fertility countries and declining population in low fertility countries with slow rates of urbanization, while SSP5 
describes a scenario of accelerated demographic transition with low population growth in high fertility countries, 
high levels of growth in low fertility countries, and rapid urbanization36,54.

Empirical approach.  We estimate the nonlinear response of cities’ electricity load to temperature using a 
generalized additive model (GAM)55. Letting h index hours of the year, electric load ( Lh ) for each of 36 cities 
is modeled as a crossbasis function of matched hourly current and lagged local temperatures ( Th ) from ERA5 
using the regression

where �[·] denotes a smooth tensor product parameterized by a vector of estimated coefficients, θ , and uh is a 
random disturbance term. We set the maximum lag length, ℓ , to six hours to capture the effects of unobserved 
heat fluxes in the built environment and the thermal properties of buildings and structures56. (See SI: Methods 
and Data for a detailed explanation of the theoretical basis for lag structures in building energy use.) Statistical 

(1)ln Lh = �[Th,Th−1, . . . ,Th−ℓ; θ ] + controls+ uh

https://cds.nccs.nasa.gov/nex-gddp/
https://esgf.nccs.nasa.gov/esgdoc/NEX-GDDP_Tech_Note_v0.pdf
https://esgf.nccs.nasa.gov/esgdoc/NEX-GDDP_Tech_Note_v0.pdf
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controls include meteorological predictors of built environment heat transport and thermal performance (ERA5 
hourly downward solar radiation, dew point temperature, and wind speed), as well as parsimonious proxies for 
unobserved non-meteorological determinants of demand (including a smooth function for time and a categorical 
year dummy that captures the energy consumption impacts of households’ and firms’ routines on various time 
scales). The fitted response, �̂ = �[·; θ̂] , exhibits its lowest point at the “set point” temperature, T∗ , at which 
weather-sensitive electricity consumption is minimized, L∗ . Following from results in30,42, we offset �̂ by the 
amount min(ln L(T)) for 10 ◦C ≤ T ≤ 30 ◦ C. This allows us to interpret �̂ as the fractional increase in electricity 
demand above L∗ per ◦ C ambient temperature above or below T∗ . For most cities, � is approximately linear on 
either side of T∗ (Fig. 2)18, which allows us to represent the average slopes of the responses as the parameters βC 
and βH for T < T∗ and/or T > T∗ , respectively.

Hourly temperature projections.  Projections of current and future electric load utilize daily maximum 
and minimum temperatures simulated by 21 GCMs from the NASA NEX-GDDP for RCPs 4.5 and 8.5 scenarios. 
We use ERA5 observed temperatures to estimate the hourly pattern corresponding to diurnal extrema, TMax

d  and 
TMin
d  , where d indexes the day of year. We assume a stable relationship between hourly temperatures and daily 

extremes, representing Th as the convex combination of the maximum and minimum:

in which the hour-specific weight, ωh , is to be determined. Our empirical implementation of this approach is 
the linear regression

where v is a Gaussian error term. Equation (3) is estimated separately for each hour of the day for individual 
months, to fully account for interannual variation in climate. The fitted values of the weights, ω̂h , are then used to 
temporally downscale NEX-GDDP daily temperature extremes ( TMin,k

d  and TMax,k
d  , where k ∈ {Current, Future} 

is an index of current (2006–2020) and future (2045–2059) periods). The result is the synthetic hourly tempera-
ture series:

We then apply the delta correction technique57: taking the difference in the period-means of synthetic tempera-
ture at each hour of the year (T̃k

h,d) , and adding the result to the mean of the temperature at each hour of the 
year in the current period from ERA5 (Th),yields our estimate of average hourly temperature under warming:

Climate change impacts.  Our primary metric of the impact of climate change on hourly electricity 
demand is

the results of which are summarized in Figs. 4 and 5. We sum the average hourly per capita impact over all 
hours and scale the result by future population in the SSP3 and SSP5 scenarios to project impacts on annual 
total electricity demand (Table 1).

Transforming our hourly temperature series into the distribution, H(T), which denotes the count of hours 
over the year in each 1 ◦ C bin of temperature, the total annual demand for electricity over cold and hot hours 
can be expressed as:

Our second impact metric decomposes the effect of climate change on the fractional change in total electricity 
demand for hours above and below T∗:

The first right-hand side term captures the effect of the structure of electricity demand—the percentage increase 
in demand from an additional hour, dependent on the magnitude of the slope of the response. The second term 
captures the effect of the change in exposure due to the shift in the temperature distribution—the demand-
weighted average percentage change in hours. These two effects are summarized in Fig. 3, Panels c and d.

(2)Th,d = ωhT
Max
d + (1− ωh)T

Min
d

(3)Th,d − TMin
d = ωh(T

Max
d − TMin

d )+ vd

(4)Tk
h,d = ω̂hT

Max,k
d + (1− ω̂h)T

Min,k
d

(5)T̃h,d = (T
Future

h,d − T
Current

h,d )+ Th

(6)Ih,d = L∗ × (exp �̂[T̃h,d] − exp [�̂[Th,d])

Q|T<T∗ ≈
∑

T

L∗ exp{βC(T
∗ − T)H(T)} and Q|T>T∗ ≈

∑

T

L∗ exp{βH (T − T∗)H(T)}.

(7)
1

Q|T<T∗

∂Q|T<T∗

∂T
≈ βC +

∑

T

[
L∗ exp{βC(T

∗ − T)}∑
T L∗ exp{βC(T∗ − T)H(T)}

]
·

[
1

H(T)

∂H(T)

∂T

]

(8)
1

Q|T>T∗

∂Q|T>T∗

∂T
≈ βH +

∑

T

[
L∗ exp{βH (T − T∗)}∑

T L∗ exp{βH (T − T∗)H(T)}

]
·

[
1

H(T)

∂H(T)

∂T

]
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Data availability
The data generated during our analyses and supporting the findings of this paper are available from the corre-
sponding author upon reasonable request. The input data used in this analysis are publicly available at the follow-
ing: urban energy demand data: https://​github.​com/​Ecohe​n4/​Energy, other sources listed in Table S7. ECMWF 
ERA5 reanalysis data: https://​www.​ecmwf.​int/​en/​forec​asts/​datas​ets/​reana​lysis-​datas​ets/​era5. NASA-NEX climate 
data: https://​cds.​nccs.​nasa.​gov/​nex-​gddp/. Population data: listed in Table S8. Spatial population projections for 
the SSPs: https://​www.​cgd.​ucar.​edu/​iam/​model​ing/​spati​al-​popul​ation-​scena​rios.​html.
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