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Object detectors involving 
a NAS‑gate convolutional module 
and capsule attention module
Thanaporn Viriyasaranon & Jang‑Hwan Choi*

Several state-of-the-art object detectors have demonstrated outstanding performances by optimizing 
feature representation through modification of the backbone architecture and exploitation of a 
feature pyramid. To determine the effectiveness of this approach, we explore the modification 
of object detectors’ backbone and feature pyramid by utilizing Neural Architecture Search (NAS) 
and Capsule Network. We introduce two modules, namely, NAS-gate convolutional module and 
Capsule Attention module. The NAS-gate convolutional module optimizes standard convolution in a 
backbone network based on differentiable architecture search cooperation with multiple convolution 
conditions to overcome object scale variation problems. The Capsule Attention module exploits the 
strong spatial relationship encoding ability of the capsule network to generate a spatial attention 
mask, which emphasizes important features and suppresses unnecessary features in the feature 
pyramid, in order to optimize the feature representation and localization capability of the detectors. 
Experimental results indicate that the NAS-gate convolutional module can alleviate the object scale 
variation problem and the Capsule Attention network can help to avoid inaccurate localization. Next, 
we introduce NASGC-CapANet, which incorporates the two modules, i.e., a NAS-gate convolutional 
module and capsule attention module. Results of comparisons against state-of-the-art object 
detectors on the MS COCO val-2017 dataset demonstrate that NASGC-CapANet-based Faster R-CNN 
significantly outperforms the baseline Faster R-CNN with a ResNet-50 backbone and a ResNet-101 
backbone by mAPs of 2.7% and 2.0%, respectively. Furthermore, the NASGC-CapANet-based Cascade 
R-CNN achieves a box mAP of 43.8% on the MS COCO test-dev dataset.

Object detection, a fundamental and challenging task in computer vision that has been widely adopted in real-
world applications, aims to localize and classify multiple objects in an image. Typically, deep learning-based 
object detectors can be divided into two categories based on their architecture: one-stage methods1–8 such as 
YOLO9 and SSD10, which directly utilize convolutional neural networks (CNNs) to classify and predict the 
bounding boxes of the object, and two-stage detectors11–27 such as Faster R-CNN28 that adopt a region proposal 
network (RPN) to extract the region proposal from the CNN backbone feature map to classify and predict the 
bounding boxes. Generally, object detection systems in both categories involve three components: a backbone 
for basic feature extraction, a neck for fusing multi-level features, and a detection head to realize the object clas-
sification and bounding box regression. Two-stage object detection systems have an additional component, RPN, 
to propose candidate object bounding boxes. Owing to the architectural differences between the two categories, 
the two-stage detectors have high localization and object recognition accuracy, whereas the one-stage detectors 
achieve high inference speed.

Most backbone networks for detection are generally used for classification, e.g. ResNet29 and VGG1630, with 
the last fully connected layers removed. For better detection accuracy, a deeper and densely connected backbone 
is adopted to replace its shallower and sparsely connected counterpart. However, a classification network usually 
reduces the spatial resolution of the feature maps with a large downsampling factor, which is beneficial for visual 
classification, although the low-spatial resolution impedes the accurate localization of large objects and recogni-
tion of small objects. There have been several attempts to alleviate the issues arising from scale variation and 
instances of small objects in object detection, such as proposing new backbone architectures that maintain a high 
spatial resolution in the deep layers31–33, modification of convolution by utilizing Atrous convolution26, and adop-
tion of an attention mechanism34. These approaches have achieved considerably higher detection performance. 
Nevertheless, these methods have been based on hand-crafted network design, which requires expert knowledge 

OPEN

Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, 
Ewha Womans University, Seoul 03760, Republic of Korea. *email: choij@ewha.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07898-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3916  | https://doi.org/10.1038/s41598-022-07898-7

www.nature.com/scientificreports/

and experience. To overcome this limitation, the use of neural architecture search (NAS) frameworks, which 
automatically determine the optimal network architecture for a certain task and dataset, has attracted attention, 
especially in computer vision tasks including object detection. For example, DetNAS33 and Hit-Detectors35 have 
used NAS to search for a new backbone, NAS-FPN36 and Auto-FPN37 have attempted to search the architecture 
for the neck (feature fusion network). However, the optimization of the object detector’s backbone based on NAS 
has difficulty in promptly evaluating the candidate models in the search space. Furthermore, the architecture 
of the backbone keeps changing during the search, which is computationally infeasible and time-consuming. 
To reduce the computational cost, we proposed a NAS-gate convolutional module, which optimized only the 
standard convolution on the classification network backbone by exploiting the NAS gradient search method. We 
also utilized multiple kernel sizes and dilated rates in the convolutional operation as the candidate operation on 
the NAS searching operation in order to improve object scale variation detection performance of the designed 
NAS-based backbone. In other words, adopting the NAS-gate convolution module in the classification network 
backbone can improve efficiency and overcome issues arising from object scale variation with a smaller compu-
tation load compared to previous NAS object detector backbones.

While a better feature extractor certainly plays an important role, considerable improvement comes from 
better design of work architectures for the feature fusion network or the neck. Feature Pyramid Network (FPN)36 
is one of the representative model architectures for the feature fusion neck that has achieved remarkable per-
formance in object detection. FPN propagates features in a top-down path, and the low-level features can be 
improved with stronger semantic information from higher-level features. Furthermore, there have been several 
works optimizing FPN architecture36–38 to improve the feature representation of FPN. However, FPN and FPN-
based methods suffer from information loss in the highest-level feature map. Although the information loss 
can be mitigated by combining the global context feature, this strategy leads to the spatial relationship between 
objects in the images getting lost. Another effective approach to mitigate information loss and improve the fea-
ture representation is utilizing an attention mechanism such as SENet39 and CBAM40. The attention mechanism 
improves the feature representation by concentrating only on relevant features and ignoring others. However, 
previous attention mechanisms have exploited the global context, which results in losing spatial relationships. 
In this work, we propose an attention mechanism, named capsule attention module, which improves feature 
representation without losing spatial relationships. Our capsule attention module is based on a capsule network, 
which can encode spatial information and account for the spatial relationships between the objects in the image. 
Using the strong spatial relation accounting ability of the capsule network, the capsule attention module can 
identify stronger relationships between the underlying object than existing attention mechanisms. Therefore, 
adopting the capsule attention at the highest level of FPN or FPN-based methods can alleviate the information 
loss problem without losing spatial relationships, improving the localization ability.

We incorporated both proposed modules, i.e., the NAS-gate convolutional module and capsule attention 
module, into state-of-the-art object detectors such as Faster R-CNN and Cascade R-CNN to create NASGC-
CapANet. Experiment results demonstrate that NASGC-CapANet substantially improves the performance of 
the baseline object detectors. NASGC-CapANet-based Faster R-CNN with FPN increases mAP by 5.8%, and 
NASGC-CapANet-based Cascade R-CNN with PAFPN increases mAP by 1.0% on MS COCO test-dev. The main 
contributions of our work are summarized as follows:

•	 We proposed the NAS-gate convolutional module, which utilized the NAS operation based on differentiable 
architecture search (DARTS) with multiple kernel sizes and dilation rates for the convolutional operation of 
the classification backbone network to decrease the computation cost of NAS-based backbones and alleviate 
the issues arising from the object scale variation.

•	 We introduced a capsule attention module, based on a capsule network, to improve the feature representation 
by mitigating the information loss problem of FPN using the strong spatial relation ability of the capsule 
network.

•	 We evaluated the performance of both the proposed modules and the incorporation of the proposed modules 
with state-of-the-art object detectors, NASGC-CapANet, on MS COCO and PASCAL VOC. The experiment 
results show that NASGC-CapANet considerably improves the detection performance compared to start-of-
the-art baseline object detectors.

Method and experiment
In this section, we describe the architecture design of the proposed NASGC-CapANet, which is a combina-
tion of the state-of-the-art object detectors and our proposed modules. In general, the NAS-gate convolutional 
module and capsule attention module can both be incorporated in one-stage as well as two-stage object detec-
tors. However, most studies in this domain focus on incorporating these modules in two-stage detectors such as 
Faster R-CNN28 and Cascade R-CNN15. In order to mitigate the problems arising from object scale variation, we 
optimized the feature extractor ability of the backbone by replacing the standard convolution of the classification 
backbone network with the proposed module, i.e., a NAS-gate convolutional module based on Neural Architec-
ture search method, to increase the detection performance on the multiscale objects in the images with smaller 
computation cost compared to the NAS-based object detectors backbones. In order to enhance the localization 
ability of the object detectors, we improve the feature representation of the feature fusion network or neck by 
alleviate the information lost at the highest feature level problem with the capsule attention module. The capsule 
attention module was designed to incorporate with the feature fusion networks, i.e., FPN and FPN-based meth-
ods such as PAFPN from PANet, which the architecture are shown in Fig. 1a, c, respectively. Capsule attention 
module is adopted at the highest level of the FPN and PAFPN as shown in Fig. 1b, d, respectively.
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NAS‑gate convolutional module.  The NAS-gate convolutional module was designed to explore the 
object detector’s backbone architecture by optimizing the standard convolution using a Neural Architecture 
Search approach. Generally, NAS automatically finds an optimal network architecture for a certain task and 
dataset. The NAS domain involves three key areas: reinforcement learning-based methods that train a recurrent 
neural network (RNN) controller to generate the cell structure and form the CNN architecture; evolutionary 
algorithm (EA)-based methods that update the architecture or network by mutating the current best architec-
tures; and gradient-based methods, which were utilized in the NAS-gate convolutional module, that define an 
architecture parameter for the continuous relaxation of the search space, thereby allowing differentiable opti-
mization in the architecture search to accelerate the search process. Specifically, the NAS-gate convolutional 
module uses the NAS gradient-based method, named Differentiable ARchiTecture Search (DARTS)41, to search 
for the optimal condition of the convolutional operation of the object detector’s backbone.

In order to mitigate the computational infeasibility and time consumption of the NAS-based object detector 
backbone, we utilized the NAS method to search for the optimal convolutional operation of classification net-
work backbones such as ResNet-50 and ResNet-101, instead of searching for new backbone architectures. In the 
NAS-gate convolutional module, each 3× 3 convolutional operation was defined as the computation cell within 
which the NAS operation searched for the final backbone architecture. Each cell was regarded as a directed acyclic 
graph, which was formed by sequentially connecting N nodes. Each node y(i) was a feature representation in 
convolutional networks, and each directed edge (i, j) was associated with some operation p(i,j) that transformed 
y(i) . The output of each node was obtained by the summation of the transformed y(i) with operations p(i,j):

In order to optimize the standard convolution of object detector backbone, we define the node y(i) as the 
feature representation input of the 3× 3 convolutional operations in ResNet-50 and ResNet-101, P is the set of 
candidate operations where each operation represented function p(·) to be applied to y(i) . As the differing scales 
of objects require different kernel sizes or dilated rates in the convolutional operation to effectively extract features 
of the scale-variant object in the images, we utilized two different kernel sizes and two different dilated rates as 
following for the candidate operations in P:

•	 3× 3 dilated convolution with rate 1,

(1)ŷ(i) =
∑

i<j

p(i,j)(y(i))

Figure 1.   Architecture of feature fusion networks with and without the capsule attention module—(a) FPN; (b) 
FPN with capsule attention module; (c) PAFPN; (d) PAFPN with capsule attention module.
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•	 3× 3 dilated convolution with rate 2,
•	 5× 5 dilated convolution with rate 1,
•	 5× 5 dilated convolution with rate 2

To make the search space continuous, the categorical choice of a particular operation was defined as the softmax 
overall possible operations:

where the operation mixing weights for each node (i,j) are parameterized by a vector γ p as shown in Fig. 2. 
Then, the aim of the architecture search was to learn a set of variables γ . At the end of the DARTS search, a 
discrete architecture is obtained by replacing each mixed operation p(i,j)(y) with the most likely operation (i.e., 
p(y) = argmaxp∈Pγ

p ). However, selecting only one operation for each node can lead to a decreased efficiency 
of feature extraction because a single convolutional operation cannot extract features of scale-variant objects in 
the images as effectively as the mixing operation, which is a combination of multiple convolutional operation 
options with weight parameters γ . The mixing operation can provide the feature representation that contains 
important features for all scale object sizes via the combination process. Therefore, we did not change the final 
architecture to discrete architecture; we instead utilized the architecture with a mixing operation during training 
at the end of the search operation. Furthermore, the learning of the variables γ in DARTS was updated through 
the gradient descent and optimized using the validation loss. However, updating the parameter γ by optimiz-
ing the validation loss is time-consuming for learning until the optimal architecture is obtained. Therefore, we 
updated the parameter γ by optimizing the training loss, Ltrain(w, γ ):

where the Lcls(w, γ ) represents the loss function for object classification and the Lloc(w, γ ) indicates the loss 
function for bounding box localization. In addition, the object classification loss and bounding box localization 
loss were determined by the weights of the network w and the operation mixing weights γ . The algorithm 1 is 
the NAS-gate convolutional module searching algorithm. 

Capsule attention module.  In this subsection, we present the details of our proposed capsule attention 
module. The capsule attention module has been designed based on the structure of Capsule Network or CapNet42. 
CapNet was proposed to overcome the challenges faced by convolutional neural networks (CNNs), specifically, 
the loss of information via the pooling process, sensitivity to object orientation, and difficulty in transferring the 
understanding of the geometric relationship to new viewpoints. Therefore, the concept architecture and optimi-
zation process is different from the CNN. The capsule in a CapNet is a group of neurons that utilizes a vector to 
represent the instantiating parameters of a specific type of entity such as an object or object parts. The length of 
a capsule vector represents the probability of the objects existing in the image while the direction of the vector 
represents the corresponding pose information. Therefore, CapNet is more robust to changes in the orientation 
and size of the input. Furthermore, CapNet can encode spatial information and account for the spatial relations 
between the parts of the image. Accordingly, we exploited these abilities of CapNets to generate the attention 
mask, which was applied to improve the feature representation by emphasizing the object-related features and 
suppressing unrelated ones, in the proposed capsule attention module. In addition, we utilized the capsule atten-

(2)p(i,j)(y) =
∑

p∈P

exp(γ p)
∑

p′∈Pb
exp(γ p′)

p(y),

(3)Ltrain(w, γ ) = Lcls(w, γ )+ Lloc(w, γ ),

Figure 2.   Mixing operation of NAS-gate convolutional module for generating the optimal convolutional 
operation of the final backbone architecture.
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tion module in FPN and FPN-based methods in order to increase the performance of the detectors by alleviat-
ing the highest-level information loss problem and enhancing the feature representation with strong semantic 
information, especially the spatial information and spatial relationships between the objects in the images.

The proposed capsule attention module consists of two layers of capsules, as illustrated in Fig. 3. The first layer 
of capsules, named primary caps, reformulates the input feature representation, which was the feature representa-
tion of the highest level of the backbone, into Nc channels of convolutional D1 capsules, Zi where Nc is defined 
as 12 and D1 was 52. Each capsule in primary caps consists of 52 convolutional units with a 3× 3 kernel and a 
stride of 1. In addition, the output of the primary caps layer has [ Nc ×H ×W ] capsule outputs (each output 
was a 52-D vector), where H and W denote the height and width of the input feature representation, respectively. 
Each capsule in primary caps is transformed to provide a vote with transformation matrix Wij . The vote is:

The second layer is the object caps (Obj caps) layer that includes only one D2 capsule with a single channel, where 
we define D2 as 52. Each capsule in this layer receives the votes from the primary caps as input, and the vector 
outputs of this layers are computed through dynamic routing42. The routing mechanism identifies a coefficient 
rij for each vote Ẑj|i , which are all determined by the iterative dynamic routing process, and takes all votes to 
calculated weighted sum over all votes as output vectors tj:

The coefficient rij between capsule i and all the capsules in the primary caps are determined by a ”routing softmax” 
to enforce the probabilistic nature of coefficient rij to be non-negative number, and their summation equals to 
one. Furthermore, the routing softmax utilized the log prior probabilities bij , which can be defined as network 
parameters, and learned at the same time as all the other weights, to determine the coefficient rij:

As the length of the output vector of the capsule represents the probability that objects are presented, the capsule 
uses a non-linear ”squashing” function to ensure that each feature related to the object is represented by a length 
slightly less than one while the background feature has a vector length of almost zero. The squashing function 
is defined as:

where vj is the vector output of capsule j.
A final attention mask is created by computing the length of the capsule vectors in the final layer, Obj Caps, 

and the attention mask is multiplied to the input feature, which is the feature representation of the highest level 
of the backbone to improve the feature representation.

(4)Ẑj|i = WijZi

(5)tj =
∑

i

rijẐj|i

(6)rij =
exp(bij)

∑

k exp(bik)

(7)vj =

∣
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Figure 3.   Architecture of the capsule attention module.
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The capsule attention module is a new concept of the attention mechanism, which is designed to strengthen 
feature representation power by exploiting global context without losing spatial relation. For object detection, 
we adopt the capsule attention module at the highest-level of FPN and FPN-based methods in order to improve 
feature representation and alleviate information loss problem, which results in improving the localization per-
formance of the object.

Dataset.  We evaluated the performance of the proposed NASGC-CapANet on two different benchmark 
datasets including PASCAL VOC43, which is the public dataset for VOC2012 challenges that is available at http://​
host.​robots.​ox.​ac.​uk/​pascal/​VOC/​voc20​12/​index.​html and MS COCO44, which is the public dataset for the MS 
COCO challenge that is available at https://​cocod​ataset.​org. Since it is nearly impossible to obtain informed 
consent for all persons present in the two Internet image datasets, the data were collected without consent. All 
methods on the data were performed in accordance with relevant guidelines and regulations. In order to remove 
privacy concerns, we cropped the head area from the image. PASCAL VOC contains 20 object classes. The union 
of VOC-2007 trainval and VOC-2012 trainval (10k images) was used for the model training, and VOC-2007 test 
(4.9k images) was used for the model evaluation. The performance on the PASCAL VOC was evaluated using 
the mAP scores with an intersection over union (IoU) of 0.5. MS COCO 2017 contains 80 object classes with 
118k and 5k images for training (train-2017) and evaluation (val-2017), respectively. In addition, 20k images in 
test-dev did not have any disclosed labels. We conducted an ablation study and reported the final result for val-
2017 and test-dev. Results for MS COCO were reported using mAP, mAP50 (mAP scores with IoU of 0.5), and 
mAP75 (mAP scores with IoU of 0.75). Here, mAPS, mAPM, and mAPL correspond to results on small, medium, 
and large scales, respectively.

Implementation details.  The NAS-gate convolutional module was designed such that it could be install 
on all members of the ResNet backbone family, i.e., ResNet-50, ResNet-101, ResNeXt45 ,and ResNeSt46. However, 
owing to the limited GPU memory of our hardware environment, we conducted the experiment using only two 
backbones, i.e., ResNet-50 and ResNet-101. However, if only hardware GPU memory is secured, then expand-
ing the proposed methods to a detector model (e.g., Mask R-CNN and Cascade Mask R-CNN) that requires 
expensive computational memory will not be an issue as there is no difference in module installation. In our 
implementation, we replaced all the 3× 3 convolutional operations of the ResNet-50 and ResNet-101 backbones 
with the NAS-gate convolutional module. Furthermore, the capsule attention module was adopted in the highest 
level of the FPN and PAFPN, as shown in Fig. 1b, d. We implemented our model using MMDetection47, an open-
source object detection toolbox based on PyTorch. Both of the proposed modules were implemented on two-
stage detectors such as Faster R-CNN28 and Cascade R-CNN15 as well as one-stage detectors such as RetinaNet6 
and FCOS7. In the experiments on PASCAL VOC, the models were trained for four epochs and training was 
repeated on the training dataset three times per epoch with an initial learning rate of 0.01. The learning rate 
was multiplied by 0.1 every three epochs. Furthermore, we trained the model on MS COCO for 12 epochs with 
an initial learning rate of 0.02. After eight and 11 epochs, the learning rate was multiplied by 0.1. We used the 
SGD optimizer with momentum, that equal to 0.9 to minimize the summation of the cross-entropy loss for clas-
sification prediction head and smooth L1 loss with beta=1.0 for bounding box prediction head. In addition, we 
resized the input images to the same size, i.e., 1333 × 800, and trained the model with a batch size of four images 
per GPU on an environment equipped with NVIDIA Titan Xp GPU, CUDA version 10.2, and PyTorch 1.5.

Results
In order to evaluate the effectiveness of each proposed module, we conducted experiments comparing the existing 
method with similar concepts or methods by using the same dataset for training and testing, including the same 
software and hardware environment in each experiment for a fair comparison. Moreover, in Tables 1–6 showing 
the experimental results, the best value for each metric is highlighted in bold.

NAS‑gate convolutional module.  We examined the effectiveness of the proposed NAS-gate convolu-
tional module on MS COCO test-dev. We evaluated the performance of the NAS-gate convolutional module 
incorporated in Cascade R-CNN with FPN and ResNet-101 against existing NAS backbone-based object detec-
tors including DetNAS, AmoebaNet, and Hit-Detector. Table 1 indicates that the Cascade R-CNN with FPN 
with the proposed NAS-gate convolutional module implemented on ResNet-101 outperforms the other NAS 
backbones, with a mAP of 43.5%.

Table 1.   Comparison of the performance of the NAS-gate convolutional module and other NAS backbone 
frameworks on MS COCO test-dev.

Method Backbone mAP mAP50 mAP75 mAPS mAPM mAPL

DetNAS DetNAS 37.9 60.1 41.2 22.7 41.2 48.3

AmoebaNet w FPN AmoebaNet 43.4 – – – – –

Hit-detector Hit-detector 41.4 62.4 45.9 25.2 45.0 54.1

Cascade R-CNN w FPN ResNet-101 (NAS-gate convolutional module) 43.5 62.2 47.3 24.5 47.6 57.7

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
https://cocodataset.org
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Capsule attention module.  To validate the effectiveness of the proposed capsule attention module, we 
evaluated the performance of a baseline Faster R-CNN with FPN and two different backbones (ResNet-50 and 
ResNet-101) with various exist attention mechanisms (CBAM40 and SE Module from SENet39) including the 
capsule attention module on MS COCO val-2017. Furthermore, the competing attention modules (CBAM and 
SE module) were adopted at the highest level of FPN, just like the capsule attention module in Fig. 1b. It can 
be observed from Table 2 that the capsule attention module enhanced the mAP of the baseline detectors on the 
ResNet-50 and ResNet-101 backbones while outperforming the other attention modules in terms of the mAP.

Impact of proposed modules on the quantitative performance.  To evaluate the impact of the pro-
posed NAS-gate convolutional module and capsule attention module on MS COCO val-2017, we compared the 
box mAP of the baseline detectors (Faster R-CNN with FPN using ResNet-50 and ResNet-101 as a backbone) 
with the baseline detectors incorporating the proposed modules. As presented in Table  3, adding the NAS-
gate convolutional module improved the mAP by 2.5% and 1.7% on the ResNet-50 and ResNet-101 backbone, 
respectively. Furthermore, adding the capsule attention improved the mAP by 0.6% and 0.4% on the ResNet-50 
and ResNet-101 backbone, respectively. Combining the two proposed modules improved the mAP by 2.7% and 
2.0% on the ResNet-50 and ResNet-101 backbone, respectively.

To examine the impact of using both of the proposed modules, we implemented the proposed modules on 
one-stage as well as two-stage detectors. Table 4 presents the performance comparison on MS COCO test-dev 
of the baseline detector and the baseline detector equipped with the proposed modules attached. We tested our 
modules against two state-of-the-art one-stage object detectors using ResNet-101 as a backbone, i.e., RetinaNet6 
and FCOS with group normalization and without multi-scale training7. The results indicated that using both 
the proposed modules could enhance the mAP by 2.0%. In the case of two-stage object detectors, we compared 
the performance of Faster R-CNN and Cascade R-CNN with and without our proposed modules (baseline). As 
indicated in Table 4, the proposed modules effectively improved the mAP by 5.5% and 1.0% when using the 
Faster R-CNN and Cascade R-CNN, respectively.

Impact of proposed modules on the qualitative performance.  For a qualitative performance analy-
sis of the proposed modules, we visualized the impact of each module, as shown in Figs. 4, 5. The result of the 
baseline Faster R-CNN is listed in the upper row in Fig. 4; the baseline model could not detect the frisbee that is 
the small object and the overlapping bounding box with the dog bounding box. In contrast, the proposed mod-
ules could successfully detect the small bottle with a high probability. In another case, as presented in the bottom 
rows in Fig. 4, the baseline Faster R-CNN could detect only one car from three small cars located in the back-
ground. In contrast, when only the NAS-gate convolutional module or capsule attention module was incorpo-
rated in the baseline detector, the model could successfully recognize more small cars located in the background 

Table 2.   Comparison performance of capsule attention module with other attention modules on MS COCO 
val-2017.

Method Backbone Attention module mAP mAP50 mAP75  mAPS mAPM mAPL

Faster R-CNN with FPN

ResNet-50 x 37.4 58.1 40.4 21.2 41.0 48.1

ResNet-50 CBAM40 32.8 53.5 34.5 19.2 35.9 41.9

ResNet-50 SE Module39 32.6 53.8 34.7 19.0 35.4 42.1

ResNet-50 Capsule Attention 38.0 59.2 41.3 22.2 41.8 49.1

Faster R-CNN with FPN

ResNet-101 x 39.4 60.1 43.1 22.4 43.7 51.1

ResNet-101 CBAM40 39.4 61.1 42.8 23.0 43.6 51.2

ResNet-101 SE Module39 38.9 60.1 42.1 22.3 43.2 51.0

ResNet-101 Capsule Attention 39.8 60.6 43.3 23.5 43.7 52.2

Table 3.   Effect of each proposed module on MS COCO val-2017.

Method Backbone
NAS-Gate 
conv

Capsule 
attention mAP mAP50 mAP75 mAPS mAPM mAPL

Faster 
R-CNN w 
FPN

ResNet-50 × × 37.4 58.1 40.4 21.2 41.0 48.1

ResNet-50 � × 39.9 (+ 2.5) 61.1 (+ 3.0) 43.2 (+ 2.8) 22.9 (+ 1.7) 43.3 (+ 2.3) 51.9 (+ 3.8)

ResNet-50 × � 38.0 (+ 0.6) 59.2 (+ 1.1) 41.3 (+ 0.9) 22.2 (+ 1.0) 41.8 (+ 1.4) 49.1 (+ 1.0)

ResNet-50 � � 40.1 (+ 2.7) 61.2 (+3.1) 43.6 (+ 3.2) 23.5 (2.3) 43.8 (+ 2.8) 52.5 (+ 4.4)

Faster 
R-CNN w 
FPN

ResNet-101 × × 39.4 60.1 43.1 22.4 43.7 51.1

ResNet-101 � × 41.1 (+ 1.7) 61.8 (+ 1.7) 44.6 (+ 1.5) 23.6 (+ 1.2) 45.0 (+ 1.3) 54.0 (+ 2.9)

ResNet-101 × � 39.8 (+ 0.4) 60.6 (+ 0.5) 43.3 (+ 0.2) 23.5 (+ 1.1) 43.7 (+ 0.0) 52.2 (+ 1.1)

ResNet-101 � � 41.4 (+ 2.0) 62.3 (+ 2.2) 45.1 (+ 2.0) 24.0 (+ 1.6) 45.5 (+ 1.8) 54.3 (+ 3.2)
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with higher confidence than the baseline detector. As presented in Fig. 4, besides improving the performance of 
detecting small objects in the images, the use of the proposed modules led to an enhanced detector localization 
performance and could predict high-quality bounding boxes that could precisely cover the objects. As listed in 
the top row in Fig. 4, the baseline Faster R-CNN erroneously recognized one dog as two different objects (dog 
and human). However, after adding only one of our proposed two different modules, the detector correctly 
detected the object as a single object. When both the modules were used in the baseline, the bounding box was 
set up correctly with higher confidence. Thus, it can be inferred that the capsule attention module and NAS-gate 
convolutional module can alleviate the scale variance problem and enhance object localization in the image.

Comparisons with state‑of‑the‑art detectors.  The main results of NASGC-CapANet are summarized 
in Tables 5 and 6. We compared the performance of the proposed module with that of state-of-the-art detectors 
on MS COCO test-dev and PASCAL VOC - VOC-2007. The performances of state-of-the-art detectors were 
obtained from the original research experiment results of each method. To compare the performance on the 
PASCAL VOC dataset, we implemented the proposed modules on state-of-the-art detectors, namely, Faster 
R-CNN with FPN and Faster R-CNN with PAFPN. Similarly, to evaluate the performance on MS COCO, we 
used Faster R-CNN with FPN, Faster R-CNN with PAFPN, and Cascade R-CNN with PAFPN. All the models 
utilized either ResNet-50 or ResNet-101 as a backbone. The presented results are divided into four categories, 
i.e., one-stage detectors; two-stage detectors; NAS-based backbone detectors, which are similar to the proposed 
backbone; and the proposed approach, NASGC-CapANet. As summarized in Tables  5 and 6, the proposed 
NASGC-CapANet achieves an mAP50 of 82.70% and 43.8% on PASCAL VOC -VOC-2007 and MS COCO test-
dev, respectively.

Table 4.   Comparison of the results obtained using the proposed module for MS COCO test-dev with different 
detectors.

Method Backbone mAP mAP50 mAP75 mAPS mAPM mAPL

One-stage detectors

RetinaNet6 ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet ResNet-101 [NAS-gate convolutional module] + 
FPN[CapAtt module] 41.1(+ 2.0) 60.8 (+ 1.7) 44.1 (+ 1.8) 23.0 (+ 1.2) 44.1 (+ 1.4) 52.7 (+ 2.5)

FCOS7 w GN and w/o MS training ResNet-101-FPN 39.3 59.1 42.1 22.2 42.3 49.4

FCOS w GN and w/o MS training ResNet-101 [NAS-gate convolutional module] + 
FPN[CapAtt module] 41.3 (+ 2.0) 60.8 (+ 1.7) 44.4 (+ 2.3) 23.3 (+ 1.1) 44.3 (+ 2.0) 52.6 (+ 3.2)

Two stage detectors

Faster R-CNN with FPN17 ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN with FPN ResNet-101 [NAS-gate convolutional module] + 
FPN [CapAtt module] 42.0 (+ 5.8) 62.7 ((+ 3.6) 45.8(+6.8) 23.8 (+ 5.6) 45.0 (+ 6.0) 53.3 (+ 5.1)

Cascade R-CNN15 ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Cascade R-CNN ResNet-101 [NAS-gate convolutional module] + 
PAFPN [CapAtt module] 43.8 (+ 1.0) 62.8 (+ 0.7) 47.7 (+ 1.4) 24.7 (+ 1.0) 46.6 (+ 1.0) 56.5 (+ 1.3)

Table 5.   State-of-the-art comparison on PASCAL VOC - VOC-2007 test for bounding box object detection.

Method Backbone mAP50

One-stage detectors

SSD512 VGG16 76.8

RetinaNet ResNet-50 77.3

FCOS ResNet-101 74.9

Two-stage detectors

Faster R-CNN w FPN ResNet-50 80.05

Faster R-CNN wFPN ResNet-101 81.83

Cascade R-CNN w FPN ResNet-101 81.83

NAS-based backbone detectors

DetNAS DetNAS 81.5

Auto-FPN ResNet-50 81.8

Proposed method

NASGC-CapANet [Faster R-CNN w FPN] ResNet-50 81.96

NASGC-CapANet [Faster R-CNN w FPN] ResNet-101 82.64

NASGC-CapANet [Faster R-CNN w PAFPN] ResNet-50 82.36

NASGC-CapANet [Faster R-CNN w PAFPN] ResNet-101 82.70
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Discussion
In this study, we proposed a new object detector, NASGC-CapANet, which combines the state-of-the-art object 
detector with two newly proposed modules: a NAS-gate convolutional module and capsule attention module. 
The NAS-gate convolutional module replaces the standard convolutional operation of the classification network 
backbones and is designed to enhance the feature extraction ability of the backbone network using the NAS 
gradient method. It utilizes various conditions of convolutional operations such as different kernel sizes and 
dilated rates of convolution in order to improve the performance of the detector in recognizing objects of var-
ied scales in the images. Furthermore, the NAS-gate convolutional module can optimize the object detector’s 
backbone architecture with lower computation cost compared to existing NAS-based object detectors. We also 
introduced a new concept for the attention mechanism, called capsule attention module. The capsule attention 
module utilizes the global context to improve feature representation by concentrating on object-relevant features 
without losing spatial relationships. We adopt the capsule attention module in FPN and FPN-based methods in 
order to mitigate the information loss at the highest level of the FPN and FPN-based methods as well as enhance 
the localization of the detectors.

We conducted an experiment to evaluate the performance of both proposed modules and NASGC-CapANet 
on some public object detection datasets, i.e., PASCAL VOC and MS COCO. The experimental results show that 
replacing the convolutional operation of the ResNet-50 and ResNet-101 backbone outperforms the NAS-based 
object detectors’ backbone. In addition, adopting capsule attention module at the highest level of FPN improves 
upon the performance of the existing attention mechanism. Furthermore, NASGC-CapANet, which combines 
both proposed modules with state-of-the-art object detectors, can significantly outperform baseline detectors. 

Table 6.   State-of-the-art comparison on MS COCO test-dev for bounding box object detection.

Method Backbone mAP mAP50 mAP75  mAPS mAPM mAPL

One-stage detectors

SSD51210 VGG16 28.8 48.5 30.3 10.9 31.8 43.5

YOLOv34 DarkNet-53 33.0 57.9 34.4 18.3 25.4 41.9

RetinaNet6 ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet6 ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2

RefineDet51248 ResNet-101 36.4 57.4 39.5 16.6 39.9 51.4

CornerNet2 Hourglass-104 42.2 57.8 45.2 20.7 44.8 56.6

ExtremeNet49 Hourglass-104 43.7 60.5 47.0 24.1 46.9 57.6

FCOS7 ResNet-101-FPN 41.5 60.7 45 24.4 44.8 51.6

FCOS w GN and w/o MS training7 ResNet-101 - FPN 39.3 59.1 42.1 22.2 42.3 49.4

Two-stage detectors

Faster R-CNN28 ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN with FPN17 ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN with FPN13 ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

Cascade R-CNN15 ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Cascade mask R-CNN15 ResNet-101 43.3 61.7 47.2 24.2 46.3 58.2

Libra R-CNN50 ResNet-101 40.3 61.3 43.9 22.9 43.1 51.0

HRNet (Faster R-CNN)31 HRNetV2p-W32 41.1 62.3 44.9 24.0 43.1 51.4

HRNet (Cascade R-CNN)31 HRNetV2p-W32 43.7 62.0 47.4 25.5 46.0 55.3

DetNet33 DetNet-59 37.9 60.1 41.2 22.7 41.2 48.3

FishNet32 FishNet-150 40.6 – – 23.3 43.9 53.7

NAS based backbone detectors

DetNAS51 DetNAS 37.9 60.1 41.2 22.7 41.2 48.3

AmoebaNet w FPN52 AmoebaNet 43.4 – – – – –

Auto-FPN37 ResNet-50 40.5 61.5 43.8 25.6 44.9 51.0

Hit-Detector35 Hit-Dedector 41.4 62.4 45.9 25.2 45.0 54.1

Proposed method

NASGC-CapANet [RetinaNet] ResNet-101 41.1 60.8 44.1 23.0 44.1 52.7

NASGC-CapANet [FCOS w GN and w/o MS training] ResNet-101 41.3 60.8 44.4 23.3 44.3 52.6

NASGC-CapANet [Faster R-CNN w FPN] ResNet-50 40.3 61.5 43.9 23.1 43.0 50.6

NASGC-CapANet [Faster R-CNN w FPN] ResNet-101 41.7 62.6 45.4 23.6 44.6 53.0

NASGC-CapANet [Faster R-CNN w PAFPN] ResNet-101 42.0 62.7 45.8 23.8 45.0 53.3

NASGC-CapANet [Cascade R-CNN w PAFPN] ResNet-101 43.8 62.8 47.7 24.7 46.6 56.5
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NASGC-CapANet-based Faster-RCNN has a 5.8% higher mAP than the baseline Faster-RCNN on MS COCO 
test-dev. We also analyzed the qualitative performance of NASGC-CapANet with the baseline object detector. The 
results demonstrate that the detection performance of NASGC-CapANet is more accurate in terms of multiscale 
object recognition and localization.

Figure 4.   Visualization of the impact of the proposed NAS-gate convolutional module and capsule attention 
module to detect small object in the image.
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Code availability
The source code for our model located at https://​github.​com/​Ewha-​AI/​Object-​Detec​tion_​COCO.​git.
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