
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3804  | https://doi.org/10.1038/s41598-022-07733-z

www.nature.com/scientificreports

Combined person classification 
with airborne optical sectioning
Indrajit Kurmi, David C. Schedl & Oliver Bimber*

Fully autonomous drones have been demonstrated to find lost or injured persons under strongly 
occluding forest canopy. Airborne optical sectioning (AOS), a novel synthetic aperture imaging 
technique, together with deep-learning-based classification enables high detection rates under 
realistic search-and-rescue conditions. We demonstrate that false detections can be significantly 
suppressed and true detections boosted by combining classifications from multiple AOS—rather than 
single—integral images. This improves classification rates especially in the presence of occlusion. 
To make this possible, we modified the AOS imaging process to support large overlaps between 
subsequent integrals, enabling real-time and on-board scanning and processing of groundspeeds up to 
10 m/s.

Synthetic aperture (SA) sensing is a widely used technique for emulating wide aperture sensors where they 
would be physically infeasible. It acquires individual signals of multiple or a single moving small-aperture sen-
sor to computationally combine them to improve, for instance, resolution, depth of field, frame rate, contrast, 
or signal-to-noise ratio. SA sensing has been utilized with diverse sensors in a wide range of applications, such 
as  radar1–3 (obtaining weather-independent images and reconstructing geospatial depth), radio  telescopes4,5 
(observing large celestial phenomena in outer space),  microscopes6 (reconstructing a defocus-free 3D volume 
using interferometry),  sonar7–10 (generating high-resolution mappings of underwater objects and seafloors), 
 ultrasound11,12 (non-intrusive intravascular 3D imaging),  laser13,14 (earth observation utilizing shorter wave-
lengths using LiDAR), and optical  imaging15–22 (acquiring structured light fields with large camera arrays for 
various post-processing steps, such as refocusing, computation of virtual views with maximal synthetic apertures, 
and varying depth of field).

Airborne optical sectioning (AOS)23–31 is an effective wide-synthetic-aperture aerial imaging technique that 
can be deployed using camera drones. It allows virtual mimicking of a wide aperture optic of the shape and size 
of the scan area (possibly hundreds to thousands of square meters) that generates images of an extremely shallow 
depth of field above an occluding structure, such as a forest. These images are computed by integrating regular 
single pictures that are captured by the drone and allow optical slicing through dense occlusion (caused by leaves, 
branches, and bushes). In each slice, AOS can reveal targets, such as artifacts, objects, wildlife, or persons, which 
would remain occluded for regular cameras. Compared to alternative airborne scanning technologies, such 
as  LiDAR32–34 and synthetic aperture  radar1–3, AOS is cheaper, wavelength-independent, and offers real-time 
computational performance for occlusion removal. We have applied AOS within the  visible23 and the  thermal26 
spectra, and demonstrated its usefulness in  archeology23, wildlife  observation27, and search and rescue (SAR)30,31. 
By employing the randomly distributed statistical model in Ref.25, we explained AOS’ efficiency with respect to 
occlusion density, occluder sizes, number of integrated samples, and size of the synthetic aperture.

Recently, we have proven that classification of partially occluded persons in forests using aerial thermal images 
is significantly more effective when AOS is used to integrate single images before classification than when clas-
sification results of single images are  combined30. We have also demonstrated the real-time application of AOS 
in fully autonomous and classification-driven adaptive SAR  operations31. Currently, we achieve average precision 
scores of 86.0–92.2% under realistic  conditions30,31.

In this article, we show how the chance of detecting persons can be increased by combining multiple classifica-
tion results from strongly overlapping AOS integral images. Combined classification has been widely studied for 
improving overall classifier performance (improving accuracy, dealing with diverse and noisy datasets, etc.)35–41. 
Combination mechanisms can be used at various levels of the  classification42–52 (e.g., at the data, feature, or deci-
sion levels). Decision-level combination is particularly popular due to its simplicity (no extensive knowledge of 
classifiers required) leading to lower complexity of the combination method. Most decision-level combination 
techniques are broadly categorized based on the output of the classifier (e.g., abstract, rank, and measure-
ment). The most informative are measurement-based (also known as score-based) combination  methods36. 
Approaches for measurement-based combination can be further categorized into  adaptive47–50 and non-adaptive 
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 methods39,51,52. Adaptive techniques are based mainly on evolution, artificial intelligence algorithms, or fuzzy set 
theories, while non-adaptive combination techniques apply simple rules for combination, such as sum, product, 
maximum, and  median39,51,52. No theoretical or empirical evidence of the general superiority of any particular 
combination scheme exists, and even simple combination schemes have been shown to improve accuracy in 
various  systems40,41.

To guarantee real-time rates on low-performance on-device mobile processors, we consider non-adaptive, 
measurement-based combination techniques. We demonstrate in “Combined classification” and “Results” sec-
tions that (compared to independent classifications in single integral images) the product of median and maxi-
mum confidence scores of combined classifications significantly suppresses false while boosting true detections. 
However, to enable a combined classification initially, the AOS imaging process must support large overlaps 
between subsequent integral images, which was not hitherto feasible. We discuss optimal AOS sampling param-
eters and how we achieve these overlaps in the “Continuous 1D synthetic aperture sampling” and “Combined 
classification” sections. We start with a brief review of the AOS principle in the “Airborne optical sectioning” 
section.

Airborne optical sectioning
As shown in Fig. 1, AOS captures thermal radiation with a drone that samples forest within the range of a syn-
thetic aperture (SA) at flying altitude. This results in multiple geotagged aerial thermal images and consequently 
in unstructured thermal light-field rays formed by image pixels and camera poses on the  SA53,54. With known 
camera intrinsics, drone poses, and a representation of the terrain (e.g., a digital elevation model or a focal plane 
 approximation28), each ray’s origin on the ground can be reconstructed. Averaging all rays with the same origin 
results in a focused and widely occlusion-free integral image of thermal sources (e.g., persons) on the ground.

There is a statistical chance that a point on the forest ground is unoccluded by vegetation from multiple 
perspectives, as explained by the probability model in Ref.25. Thus, depending on density, more or fewer rays of 
a surface point contain information of random occluders, while others carry the constant signal of the target. 
Integrating multiple rays deemphasizes the occlusion signal and emphasizes the target signal. Since the remain-
ing occlusion only lowers the contrast of the  target25, reliable classification of the target is possible—even under 
strong occlusion  conditions30.

AOS relies on the camera’s pose information while capturing images within a certain SA. In Ref.30, the SA 
was a 2D sampling area, and precise pose estimation was achieved with computer-vision-based reconstruction 
techniques. This resulted in high-quality integral images but was—for two reasons—not usable in time-critical 
applications, such as search and rescue: Sampling a 2D area led to long flying times, and precise computer-
vision-based pose estimation was not possible in real time. All computations were carried out offline and after 
recording at predefined SA waypoints. This was significantly improved in Ref.31 by sampling along short 1D SAs 
(linear flight paths) and by using instant but imprecise sensor readings from the drone (barometer altitude, non-
differential GPS location, and compass orientation) for real-time computations directly on the drone. Despite 
the imprecision caused by lower-dimensional sampling and imprecise pose estimation, person classification 
performance was similar to that of 2D SA sampling with precise pose  estimation31.

To  date30,31, person classification with AOS has only been achieved in discrete (non-overlapping) integral 
images, for which 30 single images were required at 1 m intervals before they could be integrated and classified 
after a 30 m flight distance and 30 s of flight time. Due to slow recording speed and long image transfer times 
from the camera to the drone’s processor, the ground surface covered did not overlap in multiple integral images. 
Consequently, the probability of detecting a person on the ground surface relied solely on a single classification 
chance. If under unfavorable occlusion conditions, a person was not detected in the corresponding integral 
image, they were never found.

In the Sections below, we present the theoretical and practical foundations of continuous 1D synthetic aper-
ture sampling (i.e., the real-time capturing, processing, and evaluation of integral images with a large ground 

Figure 1.  Synthetic aperture sampling with airborne optical sectioning: sampling parameters and current drone 
prototype with payload (right).
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surface overlap); it increases the chance of detecting a person proportionally to the amount of integral image 
overlap by combining multiple classification results of the same spot on the ground.

Continuous 1D synthetic aperture sampling
For continuous 1D synthetic aperture sampling, various sampling parameters, such as flying speed and altitude, 
imaging and processing speed, and camera field of view can be considered (cf. Figs. 1, 2).

The distance between two subsequent integral images depends on the drone’s flying speed vf  [m/s] and the 
required processing time tp [s]:

where d∫  increases with flying speed and processing time. For instance, for a computational performance (includ-
ing integral image computation and classification) of tp = 0.5 s (i.e., two processing passes per second), d∫  is 
0.5 m, 2 m, 3 m, and 5 m for vf  of 1 m/s, 4 m/s, 6 m/s, and 10 m/s, respectively.

The ground coverage of each integral image depends on the flight altitude h [m] and the camera’s field of 
view FOV  [ ◦]:

Thus, for h = 35 m above ground level (AGL) and a FOV  of 43°, for example, c∫  is 27.6 m. Note that c∫  rep-
resents one dimension/direction of the 2D area covered by each integral image on the ground.

The amount of integral image overlap (i.e., how often the same surface point is covered by subsequent integral 
images) is:

At a FOV  of 43° and an increasing d∫  of 0.5 m, 2 m, 3 m, and 5 m, for instance, o∫  decreases: 55.2, 13.8, 9.2, 
and 5.5. In principle, o∫  represents the number of times the same person can be detected while being scanned. 
Note that o∫  should not fall below 1, as this results in imaging gaps (ground portions not being covered at all).

The sampling density of integral images is the number of single images N being integrated:

where di [m] is the sampling distance of single images. It correlates with the efficiency of occlusion removal, and 
has an upper limit, as discussed in Ref.25. Note that tp also increases proportionally with N . Furthermore, the rate 
at which single images are recorded should be equal to or higher than the rate at which integrals are computed 
( d∫ ≥ di ). If d∫ < di , subsequent integral images will not change.

The integration time (i.e., the time required to capture N images that are combined into one integral image) is:

For c∫  = 27.6 m, t∫  is 27.6 s, 6.9 s, 4.63 s, and 2.8 s for flying speeds vf  of 1 m/s, 4 m/s, 6 m/s, and 10 m/s. 
Note that a large t∫  is unfavorable for the detection of fast-moving persons, as they introduce motion blur to the 
integral images that might not be classified correctly.

The sampling distances of single images that cause the same image disparity required for effective occlusion 
removal (as explained in Ref.25) at different flight altitudes (but at the same FOV  ) are linearly related (cf. Fig. 2):

Thus, to match the occlusion removal efficiency of di1 = 1 m sampling distance at h1 = 35 m, AGL requires a 
sampling distance of di2 = 28.6 m at h2 = 1000 m AGL. Both synthetic aperture size and ground region covered 
scale proportionally to h1/h2 to achieve the same D∫  at these two altitudes. Covering the same ground region at 

(1)d∫ = vf · tp

(2)c∫ = 2 · h · tan(FOV/2).

(3)o∫ = c∫ /d∫ .

(4)D∫
= N = c∫ /di ,

(5)t∫ = c∫ /vf = di · D
∫ /vf .

(6)di1/di2 = h1/h2.

Figure 2.  Sampling distances di of single images with the same image disparity and FOV at two different flight 
altitudes h1 and h2 . Note that a higher altitude does not result in more coverage on the ground, with a maximum 
D∫ .
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the same D∫  , however, requires the same scanning time for the same vf  , as an identical distance must be flown. 
Scanning at lower altitudes ( h1 < h2 ) benefits from a h2/h1 times higher spatial sampling resolution compared 
to scanning from higher altitudes ( h2 > h1 ), and from h2/h1 times more intermediate classification results for 
the same scanning distance, as h2/h1 times more single images are captured.

As explained in Ref.25, the orthographically projected occlusion density D̃ in single images depends statisti-
cally on the density and size of the occluders (i.e., density of forest and size of branches, trunks, leafs, etc.) and 
the height of the occlusion volume (i.e., the height of trees). Here, the assumption of an orthographic projection 
implies an orthographic viewing angle α = 0 with respect to the synthetic aperture (SA) plane (i.e., looking 
straight down at the forest ground). More oblique viewing angles ( α > 0 ), however, result in an increase in 
projected occlusion density due to the longer imaging distance from the SA plane through the occlusion volume 
to the forest ground (see proof in Sect. S1 of the Supplementary Material):

As illustrated in Fig. 3, large viewing angles (and consequently cameras with a large FOV = 2 · α ) are inef-
ficient for occlusion removal. In the case of forests, oblique viewing angles would additionally cause larger 
projected occluder sizes, since side views of tree trunks project to larger footprints than top-down views. Larger 
occluder sizes, however, would require even larger sampling distances for efficient occlusion  removal25.

Considering all the above sampling parameters, the following conclusions can be drawn:

1. A larger FOV  is beneficial only up to a certain degree (when occlusion removal becomes seriously inefficient 
because viewing angles are too oblique).

2. For a given flying speed, higher flight altitudes have no effect on scanning time (i.e., the time needed to cover 
a certain forest range), but lead to lower spatial sampling resolution on the ground. Flight altitudes should 
therefore be chosen to be as low as possible.

3. A higher flying speed decreases not only scanning time but also the integral image overlap (and thus the 
number of times a person can be detected correctly). A suitable trade-off between flying speed and detection 
probability must be chosen. This might depend on the amount of occlusion (i.e., slower flights for denser 
forests).

Faster imaging speeds and shorter processing times are always beneficial, as both increase integral image 
overlap and allow faster flying speeds.

Combined classification
In Ref.31, a fully autonomous and classification driven drone was developed and deployed to carry out wilder-
ness search and rescue operations without human intervention. The system utilizes  YOLO55 (a common and 
widespread object detection  model56,57 which provides real-time performance and consumes low enough  power58 
to be deployed on mobile processors) to achieve state-of-the-art results for person detection in the wilderness. 
However, the system performs classification on discrete (non-overlapping) integral images (single integral images 
over a 30 m flight distance and after 30 s of flight) and thus tenders the probability of detecting persons on a single 
classification chance. Here we demonstrate how the continuous computation of integral images and combined 
classifications within them increase the chance that a person is detected correctly by a factor of o∫  compared to 
single classifications of non-overlapping integral images, as in Refs.30,31.

Many real-time object-detection algorithms, such as  YOLO55, output classification results as axis-aligned 
bounding boxes (AABBs) together with detection confidence scores. For classification combination, we project 
all AABBs of all individual integral images to a common coordinate system that is defined by the digital eleva-
tion model (DEM) of the ground surface. Thus, for a single discrete point on the ground surface, we collect 

(7)D̃α = 1− (1− D̃)
1

cos(α) .

Figure 3.  Increase in projected occlusion density ( D̃α , D̃ for α = 0 ) with changing viewing angle α.
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a maximum of o∫  overlapping AABBs and combine their individual confidence scores to a single score. This 
results in a DEM-aligned confidence map (initially filled with zero values). To distinguish between false and true 
detections on a per-pixel basis, each entry in this confidence map can be thresholded after o∫  new image samples 
past its first appearance within the drone’s FOV. Note that, if a DEM is not available, the ground surface can be 
automatically approximated by a simple  shape28 (e.g., a plane).

Our hypothesis is that true detection often (but not always) project higher scores to the same spatial location, 
while false detections project predominantly (but not exclusively) lower scores to more randomly distributed 
locations. Thus, combining the projected scores should emphasize true and suppress false detection scores, and 
consequently separate the score ranges of these two groups more clearly than in single integral image classifica-
tions. This will in turn allow better thresholding and thus improve overall classification performance.

Confidence scores of multiple integral images can be combined by statistical or mathematical methods. We 
evaluated three different methods for combining the confidence scores of integral images (median, maximum, 
and the product of median and maximum), and present them along with confidence scores obtained in single 
integral images by using our previous  approach31 in the “Results” section.

Results
To evaluate our combination strategies, we performed 1D SA test flights at various constant speeds ( vf  = 4, 6, 
and 10 m/s) from 30 m AGL above unoccluded (open field) terrain, and 37 m above dense forests (conifer and 
broadleaf forest). Integral images were computed from D∫

= N = 30 single images recorded at a video rate of 
ti = 0.33 s (30 fps) and a FOV  of 43.10°. The processing speed achieved was around tp = 0.5 s. Details on the 
hard- and software used, the new AOS image acquisition that achieves fast flying speeds and large integral image 
overlaps, the improved integral image computation that applies deferred rendering to reduce processing time, 
and the implementation of the person classification are provided in the “Methods” section.

Figure 4 illustrates the test sites and computed single integral images along the 1D SA flight paths together 
with the ground-truth labels of persons on the ground. As predicted by (3), the same person appears in o∫  integral 
images for different vf  (14 vs. 13.8 for 4 m/s, 9–10 vs. 9.2 for 6 m/s, and 5–6 vs. 5.2 for 10 m/s). Note that slight 
variations are caused by different transition angles through the FOV  and the fact that the FOV  differs slightly for 
horizontal/vertical and diagonal image axes. Figure 5 shows and compares, for each flight, the probability maps 
of single integral images (utilizing the same YOLO model as in Ref.31, but additionally trained with unoccluded 
targets, as described in the “Methods” section) and combined classification results. For the open-field flights 
and single integral images, high confidence scores were obtained at the ground-truth positions, while low-score 
detections could easily be filtered out by a distinguished confidence threshold. This, however, was not the case for 
occlusion (especially during faster flights), where classification performance dropped significantly, and finding 
a proper confidence threshold to distinguish between false and true detections became increasingly difficult.

Figure 4.  Test sites, flight directions, and coverages (left) at constant flying speeds of vf = 4, 6, and 10 m/s over 
unoccluded (open field) terrain (top rows), over conifer forest (middle rows), and over broadleaf forest (bottom 
rows). Resulting integral images (right) reveal the appearance of the same person (bounding boxes indicate the 
manually labeled ground-truth appearances) of o∫ = 13.8 for 4 m/s, 9.2 for 6 m/s, and 5.5 for 10 m/s. Note that 
the shape of the ground-truth bounding boxes varies slightly due to misregistration in the integral images. The 
GPS coordinates of the test sites are: 48° 20′ 08.4′′ N, 14° 19′ 34.6′′ E (open field), 48° 19′ 58.1′′ N, 14° 19′ 48.1′′ E 
(conifer forest), 48° 19′ 59.8′′ N, 14° 19′ 52.2′′ E (broadleaf forest). An enlarged view is provided in Sect. S2 of the 
Supplementary Material for better readability.
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The results of maximum, median, and maximum·median combined classifications are shown in the last three 
columns of Fig. 5. While the maximum emphasized true but also aggregated false detections, and the median 
suppressed false but also reduced true detections, the maximum·median best suppressed false and emphasized 
true detections. That the score ranges between true and false detections can be separated best by a threshold with 
a maximum·median combination is also illustrated by the plot of confidence-score-ordered detections shown in 
Fig. 6. A steep gradient supports distinct confidence-score thresholds. Here, maximum·median outperformed 
a maximum and median combination as well as single integral image classification (without combination). 
Table 1 compares the maximum confidence scores of false detections with the minimum confidence scores of 
true detections. Their ratio represents the degree of separation between both groups (and how well confidence 
thresholds can be chosen). A value below 1 indicates overlapping scores for false and true detections. Threshold-
ing will consequently lead to false classifications (or missing true classifications), which was always the case for 
our forest flights and classifications in single integral images (results of our previous  approach31). All combina-
tion methods increased the separation between false detections and true detection scores (ratio > 1), while the 
maximum·median method performed best. This implies that (in contrast to single integral image classification) 
a distinct and robust threshold can be found which leads to no false but all true detections.

Methods
We utilized an octocopter (MikroKopter OktoXL 6S12, two LiPo 4500 mAh batteries, 4.5 kg) that carried the 
following payload (cf. Fig. 1): a FLIR Vue Pro thermal camera (9 mm fixed focal length lens, 7.5 µm to 13.5 µm 
spectral band, 14-bit non-radiometric, 118 g, 1.2 W), a Flir HDMI and power module providing HDMI video 
output from the camera (640 × 480 @30 Hz; 15 g), a video capture card (Basetech, 640 × 480 @30 Hz, 22 g), a 

Figure 5.  Probability maps of single integral images (first 16 columns) and combined classification results (last 
three columns: maximum, median, and maximum·median) for all test flights. Detections are indicated with 
AABBs, and confidence scores are color coded (see the logarithmic color bar on the right). An enlarged view is 
provided in Sect. S2 of the Supplementary Material for better readability.

Figure 6.  Plotted confidence scores (y-axis) of all detections (x-axis) in low-to-high order (from left to right). 
The steepest gradient, which supports the best defined confidence-score thresholding, was always achieved with 
maximum·median combination. While the difference to other combination methods (and to no combination 
(none), that is, single integral image classification) was low without occlusion (open field), it was significant in 
the presence of occlusion (conifer and broadleaf forest).



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3804  | https://doi.org/10.1038/s41598-022-07733-z

www.nature.com/scientificreports/

single-board system-on-chip computer, SoCC (RaspberryPi 4B, 8 GB RAM, 65 g, 6.4 W), an LTE communica-
tion hat (Sixfab 3G/4G & LTE base hat and a SIM card, 35 g), and a Vision Processing Unit, VPU (Intel Neural 
Compute Stick 2, 30 g, 1.5 W). The payload (350 g in total) was mounted on a rotatable gimbal and was positioned 
to keep the camera pointing downwards during flight.

Our software was implemented in Python and runs on the SoCC, where various sub-processes, such as drone 
communication, imaging acquisition, and image processing (including integral image computation and clas-
sification), run in parallel to make use of the SoCC’s multi-core capabilities. Inter-process queues are applied for 
efficient and secure communication between sub-processes. The drone communication sub-process interacts with 
the drone, utilizing a MikroKopter-customized serial protocol to receive IMU/GPS positions and send waypoint 
instructions which include GPS location, orientation, and speed. Received GPS positions and orientations are 
time-stamped and communicated to the image-processing sub-process. Note that all experiments were carried 
out in accordance with relevant guidelines and regulations. The study protocols were approved by ethics com-
mittee of Upper Austrian government.

Image acquisition. For imaging, we grabbed digital video frames from the video capture card connected 
to the thermal camera using OpenCV’s video capturing module. The camera was set to SAR mode (mode suited 
to search-and-rescue operations in the wilderness, using 100% field of view), providing a high tonal range for 
higher temperatures and fewer gray levels for colder temperatures. The images were time-stamped to assign 
individual GPS coordinates, preprocessed using OpenCV’s pinhole camera model to remove the lens distortion, 
and cropped to a field of view of 43.10° and a resolution of 512 px × 512 px.

To match the slow and asynchronous GPS signal rate (5 Hz in our case) to the faster video rate (30 Hz in our 
case), we applied time-based linear interpolation (assuming constant flying speeds). We thus interpolated GPS 
coordinates for each video frame grabbed. This, however, led to an interpolation error that depends on flying 
speed and imaging time:

Given the drone’s constant flying speed vf   [m/s] and the camera’s imaging time ti[s], the maximum interpo-
lation error caused by an unknown delay between capturing and measuring the capturing timestamp (which 
includes the transmission time of the image from the camera to the processor) is:

and adds to the GPS error. Thus, for ti = 0.033 s (30 fps), and vf   = 1 m/s, 4 m/s, 6 m/s, and 10 m/s, EImax = 1.67 cm, 
6.67 cm, 10 cm, and 16.67 cm, for example. Note that assuming a constant drone speed results in EImax being 
independent of the speed of the GPS sensor, as GPS positions of recorded camera frames can be linearly interpo-
lated if they cannot be measured sufficiently fast. Only for non-constant speed segments (e.g., during acceleration 
and deceleration) are fast GPS samples beneficial for more precise piecewise linear or non-linear interpolations.

Deferred integral imaging computation. In principle, the preprocessed and GPS-assigned single ther-
mal images are projected onto and averaged at a digital elevation model (DEM) using their individual poses and 
the camera’s fixed intrinsic parameters. The DEM is a triangular mesh compatible with most standard graphics 

(8)EImax = (vf · ti)/2,

Table 1.  Minimum confidence scores of true detections/maximum confidence scores of false detections 
(average overall detections and all integral images) and the ratio of those scores. Values below 1 (bold) indicate 
false classifications. The maximum·median combination performed best. In the case of occlusion (conifer and 
broadleaf forest), it separated false from true confidence scores by a factor of 4–93 (italic).

Single Max Median Max·median

Open field

4 m/s
0.274/0.119 0.617/0.119 0.380/0.015 0.235/0.001

2.302 5.184 25.333 235.0

6 m/s
0.249/0.099 0.471/0.099 0.365/0.015 0.172/0.0002

2.515 4.757 24.333 860.0

10 m/s
0.241/0.033 0.565/0.033 0.313/0.033 0.177/0.001

7.303 17.121 9.484 177.0

Conifer forest

4 m/s
0.122/0.147 0.305/0.147 0.221/0.092 0.067/0.008

0.829 2.074 2.402 8.375

6 m/s
0.084/0.157 0.235/0.157 0.144/0.027 0.033/0.002

0.535 1.496 5.333 16.5

10 m/s
0.107/0.140 0.276/0.140 0.204/0.041 0.056/0.006

0.764 1.971 4.975 9.333

Broadleaf forest

4 m/s
0.002/0.049 0.406/0.049 0.007/0.004 0.003/0.0001

0.041 8.285 1.75 30.0

6 m/s
0.037/0.098 0.397/0.098 0.188/0.017 0.075/0.0008

0.377 4.051 11.058 93.75

10 m/s
0.008/0.224 0.302/0.224 0.054/0.054 0.016/0.004

0.035 1.348 1.0 4.0
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pipelines, as explained in Ref.31. For an integral image, the DEM with all projections is finally rendered from the 
center perspective of all integrated poses.

In Ref.31, the above process was implemented with classical rendering, for which the entire DEM had to be 
processed for each projection. This did not achieve practical computation times for large numbers of projections 
and/or large DEMs (cf. Figure 7). To decouple image projection from the processing of the DEM’s geometry, 
we now utilize a rendering technique known as deferred rendering (DR). This requires the DEM’s geometry to 
be processed only once for each integral image and consequently speeds up computation time. With DR, the 
processed DEM geometry is preserved in the graphics memory and can be reused for all projections as long as 
the rendering perspective does not change. As shown in Fig. 7, compared to classical rendering, this leads to a 
significant decrease in computation time for large DEMs and large numbers of projections. Storing the DEM’s 
processed geometry requires hardware support for floating-point precision buffers, which is supported by our 
SoCC.

Integral image computation was implemented using C, C ++, and OpenGL, and integrated into the main 
Python program using Cython. Preprocessing and integration of 30 thermal images require around 99 ms and 
115 ms, respectively, for DEMs with 34k–2.6m vertices.

Classification. Person detection in the integral images was performed with the YOLOv4-tiny network 
 architecture59 on the VPU. More details on (pre-)training, parameters, and the selection of the best training 
weights can be found in Ref.31. Classifications are achieved in 84 ms and are optionally transmitted to a remote 
mobile device using the LTE communication hat connected to the SoCC.

For classifier training (using the Darknet software), we used 17 previously recorded  flights30 (F0–F11 and 
O1–O6; excluding F7). The data contains 7 flights over forests with persons on the ground (F0–F6), 4 flights over 
forests without persons (F8–F11), and 6 flights over a meadow with persons but without occlusions (O1–O6). 
From these flights F1, F8, and O6 were used for validation, while the remaining 14 flights were used for training. 
For our experiments, the recordings were resampled from 2D synthetic apertures to 1D synthetic aperture lines, 
pose data was computed from GPS readings, and persons were labeled, as explained in Ref.31.

Note that manual compass correction was applied to each flight. To compute the integral images of the train-
ing and validation datasets, we applied the following augmentations: We varied the synthetic aperture size N in 
7 steps: 1 (pinhole), 5, 10, 15, 20, 25, and 30. Note that, due to resampling, some 1D apertures had fewer single 
images (e.g., the longest lines were only in the range 20 < N ≤ 25 for some scenes). Additionally, we applied 10 
random image rotations by varying the up vector of the integral’s virtual camera. The digital elevation model was 
translated up and down by 3 m in steps of 1 m to simulate defocus. Furthermore, we computed an additional 
integral image with a random compass error (rotation around each single-image camera’s forward axis by ± 15 
degrees). This led to a total of 980 variations for each of the 179 resampled 1D apertures.

The trained network achieved an average precision score of 88.7% (without combined classification) on test 
data presented in Table 2 of Ref. 31 (previously 86.2% in Ref.31) and was also able to detect unoccluded persons 
in open terrain (e.g., meadows, fields), since it was additionally trained with the unoccluded person data from 
Refs.30,60. Note, that for combined classification, a precision score cannot be determined as pixel-precise ground 
truth labels are not available.

Ethics declarations. The ethics committee of the Upper Austrian government approved the study, and 
participants provided written informed consent.

Figure 7.  Integration times [ms] for various N (number of images integrated) and a range of DEM sizes (vertex 
counts in millions). The new deferred rendering (solid lines) is compared with the old classical rendering 
(dashed lines). Classical and deferred renderings have similar computation times for small numbers of vertices. 
However, unlike for deferred rendering, rendering times drastically increase with vertex count for classical 
rendering. The plotted curves are averaged over 100 integral computations.
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Discussion
We have shown that false detections can be significantly suppressed and true detections significantly boosted by 
classifying based on multiple combined AOS—rather than single—integral images. This improves classification 
rates especially in the presence of occlusion. To make this possible, we modified the AOS imaging process to 
support large overlaps between subsequent integrals, thus enabling real-time and on-board scanning and pro-
cessing (processing speed of 0.5 s at 9.1 W) for groundspeeds of up to 10 m/s (while previously the maximum 
was 1 m/s30,31). One of the major limitations of utilizing a deep learning-based classifier is its non-deterministic 
nature which (in contrast to the derivable dependency between target visibility in integral images and occlusion 
 density25,28) prevents us from establishing a distinct mathematical relationship between person detection rate and 
occlusion. Empirical  evidence31 only suggest a strong correlation between classifier performance and visibility 
while the relation between visibility and occlusion density has already been described for randomly distributed 
occluder  models25. Furthermore, any simulation-based correlation investigation between occlusion density and 
classifier performance will be heavily dependent on the classifier configuration and the training data.

Due to the slow sampling rate of standard GPS, only constant-speed segments are currently supported. For 
acceleration and deceleration segments, faster and more precise Real-Time Kinematic (RTK) devices are benefi-
cial. Non-linear interpolation and prediction models will be investigated in the future to enable better mapping 
of faster imaging rates to slower pose sampling. In future, we will also investigate additional improvements, such 
as adaptive combination techniques, online adaptive thresholding, and options for extending flight endurance 
to enable fully autonomous beyond-visual-line-of-sight (BVLOS) search-and-rescue missions.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Combined Person 
Classification with AOS data repository on Zenodo: https:// doi. org/ 10. 5281/ zenodo. 50136 39.
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