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Droplet nuclei caustic formations 
in exhaled vortex rings
Andreas Papoutsakis1*, Ionut Danaila2, Francky Luddens2 & Manolis Gavaises1

Vortex ring (VR) structures occur in light or hoarse cough configurations. These instances consist of 
short impulses of exhaled air resulting to a self-contained structure that can travel large distances. 
The present study is the first implementation of the second order Fully Lagrangian Approach (FLA) 
for three-dimensional realistic flow-fields obtained by means of Computational Fluid Dynamics (CFD) 
and provides a method to calculate the occurrence and the intensity of caustic formations. The carrier 
phase flow field is resolved by means of second order accurate Direct Numerical Simulation (DNS) 
based on a Finite Difference approach for the momentum equations, while a spectral approach is 
followed for the Poisson equation using Fast Fourier Transform (FFT). The effect of the undulations 
of the carrier phase velocity due to large scale vortical structures and turbulence is investigated. 
The evaluation of the higher order derivatives needed by the second order FLA is achieved by pre-
fabricated least squares second order interpolations in three dimensions. This method allows for the 
simulation of the clustering of droplets and droplet nuclei exhaled in ambient air in conditions akin to 
light cough. Given the ambiguous conditions of vortex-ring formation during cough instances, three 
different exhale (injection) parameters n are assumed, i.e. under-developed ( n = 2 ), ideal ( n = 3.7 ) 
and over-developed ( n = 6 ) vortex rings. The formation of clusters results in the spatial variance of the 
airborne viral load. This un-mixing of exhumed aerosols is related to the formation of localised high 
viral load distributions that can be linked to super-spreading events.

Respiratory infections can be transmitted through droplets ( > 5 µ m) and droplet nuclei ( < 5 µm)1–3. According 
to the World Health Organization (WHO)  report2 COVID-19 in particular, is primarily transmitted through 
droplets and  contact4–6. The airborne route is a potentially important transmission pathway for viral infection 
in indoor environments since contact transmission can be limited by fast inactivation of the virus on hands. 
Furthermore, contact transmission often incorporates an initial airborne path where large inocula droplets 
deposit on surfaces through  sneezing7. The interaction of the carrier phase flow field with the exhaled droplets 
dictates the intensity of the viral load and the infection distance. Recent  research8–10 has shown that Vortex Rings 
(VRs) can be produced in coughs and can enhance the transport of fine cough droplets. Vortex ring structures 
occur in light or hoarse cough  configurations8. These instances consist of short impulses of exhaled air result to 
a self-contained structure (i.e., vortex ring) that can travel large distances. Increased concentrations of airborne 
viral loads have been related to super-spreading  events11, and have been attributed to individual behaviour of 
coughing and  sneezing12 and also to specific  activities13.

Turbulence increases the mixing of droplets and droplet  nuclei14 and the settling  velocity15,16. As the droplet 
size and Stokes number increase, the particle trajectory memory becomes pronounced; thus, un-mixing17,18 
and Random Uncorrelated Motion (RUM)19 are observed. Un-mixing results in the segregation of droplets by a 
preferential concentration, clustering  mechanism20.

Clustering is exhibited as the formation of narrow local droplet accumulation regions in the zones of low 
vorticity and high strain  rate21 and have been associated with zero-acceleration  points22. For high Stokes number 
regimes, inertia droplets sample the carrier phase velocity field as a white  noise23, forming clusters due to a multi-
plicative amplification  mechanism23–25. This multiplicative process of amplification and dilatation was  identified19 
as the deformation of the Lagrangian volume of the dispersed  phase26 transported along a particle trajectory. 
The Lagrangian volume may vanish, giving rise to instantaneous singularities in the particle concentration field 
identified as caustics or caustic formations. In addition to mixing and un-mixing (clustering), RUM was identi-
fied as a third type of characteristic response of the dispersed phase in turbulent flows, applicable to all Stokes 
 numbers19. The occurrence of RUM was linked with the occurrence of singularities due to trajectory intersections 
related to the trajectory history. Particle motion, as the overlapping of a mesoscopic smoothly varying component 
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and RUM, was identified  in27–29. RUM results in a multi–valued velocity field of the dispersed phase due to the 
folding of the dispersed continuum, playing a significant role in collision processes.

The intensity of caustics is important to a great variety of environmental, biological, engineering and 
 cosmological30–34 flows (e.g., environmental  pollution35, the impact of radioactive  particles36 and the potency of 
spray delivered  medication37 are dependent on the formation of such accumulation  regions38), and has become 
the focus of  experimental39 and theoretical  work40. The Fully Lagrangian Approach (FLA or Osiptsov method)41, 
treats the particulate phase as a pressureless  continuum40, by introducing the Jacobian matrix determinant |J| (i.e., 
ρ0 = |J|ρ)42. Thus, continuous fields for the particle number density and the particle velocity can be defined on 
the Lagrangian dispersed continuum. Due to the absence of pressure, the continuum can intersect itself creating 
overlapping folds. Particle collisions may occur among particles that are attached to overlapping  folds43, thus a low 
particle loading constrain needs to be incorporated in order to support the pressureless continuum assumption. 
The use of the FLA in turbulent  flows19,44 resulted in the identification of the concentration distribution and the 
identification of the mechanisms involved in the segregation  process18,19. A turbulent diffusion model was intro-
duced for the first order FLA, implemented for numerical experiments in homogeneous isotropic turbulence and 
assessed in comparison with DNS simulations using a standard Lagrangian approach for the dispersed  phases45. 
In the same paper it was also reported that the singularities of the point-wise number density inferred from the 
standard FLA pollutes spatially averaged results. A second order closure for the spatially filtered number density 
was then presented, in which the FLA number density was interpreted alongside with the spatial structure of the 
dispersed continuum, and was connected to a length  scale40.

The introduction of the FLA into the study of turbulent  flows44 resulted in the identification and analysis of 
spatial structures of the dispersed phase distribution using the moments of concentration. FLA analysis con-
cluded that particle concentration in the long term follows a log normal  law19. This is consistent with an alterna-
tive analysis using Voronoï  tessellation46. Also, FLA studies on DNS of homogeneous and isotropic turbulence 
led to identification of the mechanisms involved in the segregation  process18,19. Using the FLA in turbulent flows 
also enabled the quantification of the singularities related to trajectory intersections and the establishment of a 
relation between the frequency of their occurrence and the Stokes number.

In this paper we present the first implementation of the second order Fully Lagrangian Approach (FLA2) for 
three-dimensional realistic flow-fields obtained by means of Computational Fluid Dynamics (CFD). We provide 
a method to calculate the occurrence and the intensity of caustic formations. This is achieved by calculating 
a principal direction of the caustic front based on the tensor of the Hessian of the deformed continuum. The 
structure of the paper is as follows. The range of the conditions and the configuration of the cases studied are 
presented in the “Results” section. In the same section the FLA and the FLA2 results are presented and discussed. 
Specifically, the solution of the number density for the exhaled Lagrangian clouds is presented for low Reynolds 
axisymmetric and also high-Reynolds fully turbulent configurations, for three distinct exhale parameters. In 
the “Methods” section the implementation of the FLA2 for CFD configurations is presented and the results are 
further discussed in the “Discussion and conclusions” section. The DNS methodology and the implementation 
of the second order FLA for three-dimensional turbulent flow fields is presented in the “Supplementary Material”.

Results
In order to investigate the occurrence of caustics of droplet nuclei in coughs due to large scale vortical structures 
and due to turbulence we performed a series of DNS of cough configurations. The scope of this analysis is the 
calculation of the droplet distribution, the investigation of the occurrence of caustics and finally the calculation 
of the intensity of the droplet nuclei clustering. The exhaled droplet nuclei distribution is modelled by repre-
sentative droplet clouds, integrated in time using a standard Lagrangian approach based on the fully resolved 
carrier phase flow field. The number density of the droplet nuclei for each cloud is calculated using the Fully 
Lagrangian  Approach26,47 Although the standard FLA identifies the occurrence of caustics, the second order 
FLA is used to calculate the intensity of the caustics by providing a measure of the number density filtered at 
a given length-scale Rε as n̂Rε

d
 . The numerical implementation of the method is described in detail in the “Sup-

plementary Material” of this paper.

Cases setup. Given the ambiguous conditions of the human coughs as described in  literature8,10,48,49 we 
focus in simulations to carrier flows represented by vortex rings with Reynolds and Stokes numbers related to 
human cough conditions. Vortex rings are produced by the sudden injection of exhaled air in a surrounding 
flow that is initially at rest. Theoretical description of vortex  rings50 generally assumes that the flow injection 
producing vortex rings is generated by a piston-cylinder mechanism. Using this equivalence, we consider injec-
tion pulses with a finite duration T and average injection speed U0 , issuing from an orifice of diameter D. The 
exhale (or injection) parameter is then n = TU0/D , corresponding to the piston stroke ratio in a piston-cylinder 
mechanism. Long duration of exhumation impulses, as the ones observed in a typical cough, result to large injec-
tion parameters ( n > 40 ), which lead to the formation of jets. The exhale parameter n is related to the temporal 
injection profile U(t) (or injection program) and the average injection velocity U0 as:

Injection velocity program (1) has a trapezoidal shape, with acceleration and deceleration ramps of duration 
τ . We set in all simulations τ = 0.1T.
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A coarse estimate for the exhale parameter n of a cough can be derived from the volume V of the air exhaled. 
Following the classical slug-flow approximation, we assume that V = (πD2/4)TU0 and obtain n = 4V/πD3 . The 
typical exhaled volume from a cough has been calculated in the range of 0.25–3  l9,51. Thus, the exhale parameter 
for coughs at this exhaled volume range spans from n = 40–477, assuming a mouth opening of D = 2 cm. For 
such high exhale/injection parameters, the injected flow consists of a leading vortex ring followed by a trailing jet. 
It was  observed52 that the vortex ring carries only a fraction of the circulation produced by the injection process, 
the rest being injected in the trailing jet. The critical time at which the vortex generator produces the amount 
of circulation engulfed by the vortex ring was called formation time and the corresponding injection parameter 
(or stroke ratio) formation number F. The value of F depends on different injection parameters and ranges from 
1 to 8. For laminar injections, with trapezoidal injection profiles, as in the present study, it was experimentally 
 found52 that F ≈ 3.6–4.5. This means that for our injection program (1), if n < 4 the full injected slug will be 
absorbed by the vortex ring, while for n > 4 the vortex ring will be followed by a visible trailing jet. Higher is n, 
longer is the trailing jet. Given the evidence of vortex rings in intermittent  coughs8–10, we focus in the narrow 
region of exhalation regimes characterised by low injection/exhale parameters n. This choice is also supported 
by the observation that the entrainment of the surrounding air in the flow is mostly due to the high circulation 
of the vortex ring, which is thus expected to mainly contribute to the long-distance propagation of particles. We 
consider, however, three different injection/exhale parameters n: two values, n = 2 and n = 3.7 , lower or equal 
to the formation number F, corresponding to vortex rings without trailing jets, and the value n = 6 for a vortex 
ring with a substantial trailing jet (see Fig. 1).

The nominal exhale velocities range between U0 = 1 m/s to U0 = 10 m/s which include experimentally 
measured  coughs8,53 and breathing  scenarios3. The value of the injection Reynolds number Re = U0D/ν was 
 reported3,51 to range between Re = 1000 and Re = 16,000. A synopsis of the aerodynamic conditions of coughs as 
presented in the literature is shown in Table 1. A typical  value51 of the orifice diameter is 2 cm, while a reasonable 
choice of the air kinematic viscosity is ν = 15.6× 10

−6
m

2/s . In our simulations we selected two representative 
set of cases characterised by a low Reynolds number Re = 1000 (axisymmetric laminar simulations) and a high 
Reynolds number set of cases with Re = 10,000 (three dimensional simulations).

For the droplet size distribution used in our simulations we used eight bins of representative particles 
with diameters from 0.5 to 100 µ m in agreement to droplet nuclei sizes reported in  literature3,49,51. The lami-
nar axisymmetric simulations Re = 1000 correspond to U0 ∼ 1 m/s and a characteristic time of the flow 
t0 = D/U0 ∼ 20× 10

−3 s, the fully turbulent three-dimensional simulations Re = 10,000 to U0 ∼ 10 m/s and 
t0 ∼ 2× 10

−3 s. For the three-dimensional turbulent simulations the sinusoidal fluctuations described in the 
“Supplementary Material” were superimposed on the inlet velocity program in 1, assuming kT = 0.1 and εT = 1 . 
The details of the transitional and fully turbulent simulations are presented in Table 2.

Cases, C2DN2, C2DN4 and C2DN6 (See Table 2) consist of axisymmetric simulations of exhaled vortex rings 
that account for the resolution of long injection times and longer transport distances. Each one of these cases 
corresponds to different exhale parameters resulting to different ratios of droplet nuclei encapsulated within 
the vortex rings in relation to the particles left behind in the trailing jet. Cases C3DN2, C3DN4 and C3DN6 are 
three dimensional turbulent simulations of exhaled VRs. The domain length spans for twice the final distance 
covered by the VR (3D, 6D and 9D) and incorporates non-reflective outlet boundary  conditions54, thus ensur-
ing a minimal influence to the flow structures. In the radial direction the total domain radius corresponds to 
a confinement coefficient of 3 which has limited effect on the formation and the circulation of the  VR54. Grid 
size resolves the finest turbulent scales ( �x = 0.0039D ∼ 2η = Re−3/4D ), where η is the Kolmogorov length 
scale. The low-Reynolds number simulations of vortex rings (Re = 1000) have been carried out by means fully 
resolved 2d-axisymmetric  simulations54,55. Although coherent vortical structures emerge they do not cascade 
to fine three-dimensional turbulent fluctuations. The high Reynolds  cases56 (Re = 10000) result in turbulent 
vortex rings integrated by means of Direct Numerical  Simulations45,57. The cases simulated are of increasing 
computational cost due to the larger computational domain and long simulation time required when the exhale 
parameter n increases.

The exhaled droplet and droplet nuclei relaxation time τ0 is defined as:

where ρd is the droplet density, µair the carrier phase dynamic viscosity and d the droplet size. Droplet sizes 
simulated in our study are  provided49 in Table 3. The Stokes number of the particles St = τ0U/D , is:

where Dd = d/D is the non-dimensional droplet diameter. Droplet clustering occurs for local Stokes numbers 
greater than unity St > 1 . Based on the macroscopic timescale t0 = D/U0 a critical diameter δ0 is defined as:

The Stokes number is then presented as St = (Dd/δ0)
2 . For turbulent flows, the time scale is D/URe−1/2 and 

the Stokes number is defined as Stt = τ0U0/(DRe
−1/2) resulting in a critical diameter dt defined as:

(2)τ0 =
ρdd

2

18µair

,

(3)St =
ρd

18ρair
D2

dRe,

(4)δ20 =
18ρair

ρd
Re−1
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Figure 1.  Non-dimensional vorticity magnitude |�| iso-surfaces, normalised with U2
0
/L for the test cases 

C3DN2 at t = 4× 10
3 s (top) C3DN4 t = 8× 10

3 s (middle) and C3DN6 (bottom) at time t = 12× 10
3 s equal 

to twice the injection period T for each one of the cases simulated.

Table 1.  Flow conditions for cough in literature.

Author u (m/s) D (cm) V (l) Droplet nuclei d ( µm)

Verma et al.10 2–6 – > 0.5 5–10

Bourouiba et al.51 – 2 0.25–1.6 10

Tang et al.53 2–25 2 1–3 –

Liu et al.9 20 2.26 1 5–100



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3892  | https://doi.org/10.1038/s41598-022-07717-z

www.nature.com/scientificreports/

Droplets with diameter d > δ are expected to exhibit trajectory  crossing39. In our simulations we assume a 
range of droplet nuclei dimensions from 0.5 up to 100 µ m. Critical droplet diameters δ0 and δt for the macroscopic 
and the turbulent time scales are shown in last column of Table 3. In the same table we present the droplet nuclei 
characteristics for eight distinct representative sets of parcels (bins) issued during the cough simulation. As it 
can be inferred from Table 3, the selected diameters for the representative droplet nuclei parcels result in a wide 
range of Stokes numbers from nearly non-inertia droplets (i.e., St < 10

−3 ) to droplets well within the ballistic 
regime (i.e., St > 10)58. The particulate Reynolds number Red = U0d/ν can be expressed as a function of the 
macroscopic Reynolds number as Red = Re× d/L , for the regimes simulated (Re = 1000–10,000 and d = 0.5

–100 µ m it spans from as low as 0.025–50. Although FLA can be applied for non-Stokesian drag law  expressions45, 
the specific computational setups for both droplets and droplet nuclei are within the applicability regime of the 
Stokes law, which is used in this study.

Every s = 10 computational timesteps, N droplet clouds for each size bin are injected at random positions 
on the orifice cross-section. The number N of injected clouds per s timesteps is:

where c is the number density of the exhumed plume, A = πD2/4 is the orifice cross-sectional area, and nc is the 
number of droplets represented by each cloud which is constant. The particulate velocity is considered equal to 
the inlet velocity of the carrier phase, and the initial conditions for the Jacobian and Hessian entries are defined 
as dictated by the FLA (see “Supplementary Material”). Although the number density distribution of droplets 
and droplet nuclei is well documented in  literature49,51 in the order of 1–10× 10

6/m3 , in our analysis we focus 
in the relative compression of the dispersed phase.

Droplet nuclei distribution. Iso-surface of vorticity for the three-dimensional cases C3DN2, C3DN4 and 
C3DN6 are shown in the Fig. 1 at times 2T after the end of the injection. For the cases with n <= 3.7 the flow 
field vorticity has been almost completely absorbed by the VR. The corresponding distributions of droplets with 
d = 2 µ m at the same instances are shown in Fig. 2. As it can be inferred form Fig. 2 the vortex rings with n = 2 
and n = 3.7 present a thin trail of droplets along the trail of the vortex rings. The colour of the scatter points 
corresponds to the number density inferred from the FLA. For n = 6 the trailing droplet nuclei are significant 
and lag the evolution of the VR. This results to the dilation of the trailing droplets as they lag behind, as it can 
be inferred from the low number densities shown in blue. For all three cases high number densities occur at the 
re-circulation regions and at the front of the vortex ring.

In Figs. 3 and 4 we present the FLA results for the number density and the FLA2 result for various filtering 
widths Rε ; for droplets with diameters 2 µm and 5 µm , respectively. The filtering widths correspond to different 
orders of magnitude from Rε = 10

−4D to Rε = 10
−2D which correspond to filter sizes from 2 µ m to 0.2 mm. It 

can be observed that qualitatively, the solution converges to the FLA solution as Rε tends to zero. For the larger 
filtering lengths the areas in the vicinity of caustic regions are affected, resulting in variations between FLA and 
FLA2 inside larger areas as the filtering width increases.

(5)δ2t =
18ρair

ρd
Re−3/2

.

(6)N = (cAurs�t)/nc ,

Table 2.  Cases simulated.

Name Domain Size nθ × nr × nz T (ms) n Re

C2DN2 2D × 4D 1× 512× 4096 4 2 1000

C2DN4 2D × 8D 1× 512× 4096 8 3.7 1000

C2DN6 2D × 12D 1× 512× 4096 12 6 1000

C3DN2 1.5D × 3D 513× 256× 512 4 2 10,000

C3DN4 1.5D × 6D 513× 256× 1024 8 3.7 10,000

C3DN6 1.5D × 9D 513× 256× 1536 12 6 10,000

Table 3.  Droplet sizes and Stokes numbers used in the simulations.

Bin 1 2 3 4 5 6 7 8

δd ( µm) 0.5 1 2 5 10 20 50 100

St (Re = 103) 2.89e− 05 1.16e− 04 4.62e− 04 2.89e− 03 1.16e− 02 4.62e− 02 0.289 1.16 δ0 = 93.0 µm

Stt (Re = 103) 9.13e− 04 3.65e− 03 1.46e− 02 9.13e− 02 0.37 1.46 9.13 36.5 δτ = 16.5 µm

St (Re = 104) 2.89e− 04 1.16e− 03 4.62e− 03 2.89e− 02 0.116 0.462 2.89 11.6 δ0 = 29.4 µm

Stt (Re = 104) 2.89e− 02 0.116 0.462 2.89 11.6 46.2 289.0 1155.0 δτ = 2.94 µm
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Caustics occurrence. Due to their pressureless  nature45 dispersed flows can compress to the point that par-
ticulate trajectories cross and the dispersed continua overlap. Fully Lagrangian approaches infer the particulate 
density by the deformation of the continuum from its initial distribution. It is expected that the transformation 
from the Eulerian to the Lagrangian coordinate will present a point-wise singularity at the loci of the intersec-
tions or folds. The Jacobian, being zero, cannot serve as a measure of the compression. A single surface on the 
Eulerian space with zero Jacobian does not not necessarily mean that particle with a finite initial separation have 
collapsed to a single point furnishing infinite number density. In such instances the curvature of the dispersed 
continuum dictates the separation between neighbouring particles. The second order FLA assumes a finite fil-
tering length scale Rε on which the dispersed continuum is  reconstructed40. This approach provides a number 
density on the caustic, i.e. the intensity of the caustic at a given length scale. The quantitative comparison of the 
FLA2 results with the point-wise number density provided by FLA is shown in Figs. 5, 6 and 7 for the three-
dimensional DNS simulations and in Fig. 8 for the case C2DN6 at times t = 2T . In the same figures we present 
the Kernel Density Estimation (KDE) of the scatter. As the Jacobian magnitude for a cloud crosses zero resulting 
in singular number density values, the numerically calculated nd overshoots to spurious values. For these cases 
FLA2 provides finite number densities that are volume averaged at an Eulerian length scale Rε . These number 
densities correspond to the intensity of the caustic formations. As seen from Figs. 5, 6 and 7 although the 1/J 
axis provides unbounded values, the n̂Rε

d
 axis is bounded. Numerically, this singularity is expressed by very large 

Figure 2.  FLA number density for d = 2.0 µ m droplet nuclei, for the test cases C3DN2 at t = 4× 10
3 s (top) 

C3DN4 t = 8× 10
3 s (middle) and C3DN6 (bottom) at time t = 12× 10

3 s equal to twice the injection period 
T for each one of the cases simulated.
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Figure 3.  Number density for d = 2.0 µ m droplet nuclei. Case C2DN2. T = 4 ms (a) FLA (b) FLA2 Rε = 0.01 
(c) FLA2 Rε = 0.001 (d) FLA2 Rε = 0.0001.

Figure 4.  Number density for d = 5.0 µ m droplet nuclei. Case C2DN2. T = 4 ms (a) FLA (b) FLA2 Rε = 0.01 
(c) FLA2 Rε = 0.001 (d) FLA2 Rε = 0.0001.
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Figure 5.  Scatter plot of the filtered FLA2 number density versus 1/J. Colours correspond to the filtering 
length. Dashed iso-lines correspond to the kernel density estimation at levels 10% 50% and 90%. Case C3DN2. 
T = 4 ms.(a–h) Dd = 0.5–100 µ m. (d–h) are presented in logarithmic scale.
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Figure 6.  Scatter plot of the filtered FLA2 number density versus 1/J. Colours correspond to the filtering 
length. Dashed iso-lines correspond to the kernel density estimation at levels 10% 50% and 90%. Case C3DN4. 
T = 8 ms. (a–h) Dd = 0.5–100 µ m. (d–h) are presented in logarithmic scale.
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Figure 7.  Scatter plot of the filtered FLA2 number density versus 1/J. Colours correspond to the filtering 
length. Dashed iso-lines correspond to the kernel density estimation at levels 10% 50% and 90%. Case C3DN6. 
T = 8 ms. (a–h) Dd = 0.5–100 µ m. (d–h) are presented in logarithmic scale.
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Figure 8.  Scatter plot of the filtered FLA2 number density versus 1/J. Colours correspond to the filtering 
length. Dashed iso-lines correspond to the kernel density estimation at levels 10% 50% and 90%. Case C2DN6. 
T = 12 ms. (a–h) Dd = 0.5–100 µ m. (d–h) are presented in logarithmic scale.
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spurious values whose magnitude is related to the temporal resolution of the initial value problem solver. In 
the Figs. 5, 6 and 7 the 1/J axis is cropped to a maximum value of 104 . As the filtering length-scale increases the 
limiting intensity of the caustics decreases too, as the number density is averaged on a bigger volume. The drop-
let nuclei with low inertia Stt < 1.0 (see Table 3) show number densities below 10n0

d
 and no caustic formations 

are observed since the volume filtered number density n̂d does not deviate from the point-wise number density 
nd = 1/J (see Figs. 5, 6 and 7a–c). This behaviour presents a global character for all exhale parameters simulated, 
as shown in all three Figs. 5, 6 and 7. For the droplets above the critical diameter 2.94 µ m the turbulent Stokes 
number Stt becomes larger than unity (see Table 3) and this arises as a significant deviation of the FLA2 filtered 
number density from the FLA result (see Figs. 5, 6 and 7d–h). The same behaviour is observed in the droplet 
nuclei conveyed by the laminar flow field in the low-Re case C2N2 shown in Fig. 8. For the laminar flow field 
case, the limiting values for the number densities appear in the Fig. 8f–h which correspond to droplets with 
diameter larger than the critical diameter shown in Table 3.

Caustics intensity. From Figs. 5f, 6 and 7f it can be observed that at a length scale Rε = 10
−5 a maximum 

limit for the number density appears at 20n0
d
 , at a larger length scale ( Rε = 0.0001 ) this limit reduces to 10n0

d
 and 

for Rε = 0.001 , number densities higher than 3n0
d
 are filtered out. For Rε = 0.01 we obtain the highest limiting 

value of n0
d
 . This limiting value at different length scales describes the intensity of the caustics and provides a 

direct measure of the compression of the dispersed phase due to the large vortical structures of the flow. It also 
accounts for the effect of the turbulent scales on the compression and dilation of droplet nuclei. The VR seems 
to convey the droplet nuclei at large distances, retaining the high initial number density of the exhaled plume 
n0
d
 at large distances from the orifice. This is surprising since n0

d
 would have been expected to reduce due to the 

expansion of the cough jet.
Higher Stokes number nuclei present a ballistic  behaviour58, which is characterised by high inertia particles 

moving on almost undisturbed trajectories. When crossing, these trajectories provide genuine Morse points with 
low J and low H. Thus, both the FLA2 and the standard FLA converge to very high number densities as shown 
in Figs. 5h, 6h and 7h where the scatter points and the 90% KDE probability cluster along the 1/J line.

In Fig. 8a–h we present the filtered number density scatter plot against the point-wise number density for 
the two dimensional simulations for n = 6 exhale parameter (i.e., case C2DN6 in Table 2). As shown in Table 3, 
the critical droplet nuclei diameter for the formation of caustics is 16.5 µ m, which is in agreement with the 
appearance of a limiting maximum value for the filtered number densities shown in the Fig. 8f–h. For lami-
nar cases, the predicted loading for the caustics approaches n̂d = 100 for the smallest length scale shown (i.e. 
Rε = 0.00001 ). As expected, the point-wise number density result (x-axis) is polluted by singularities resulting 
to spurious point-wise number densities with nd > 10

4 . The observed even higher intensity of the caustics for 
the laminar case can be attributed to the lack of small scale fluctuations that are expected to smooth the caustic 
fronts and damp their intensity.

Discussion and conclusions
In this work we investigated the compression and dilation of droplet nuclei in vortex ring structures occurring 
in human cough configurations. These instances consist of short impulses of exhaled air and are character-
ised by finite exhale or injection parameters n dictated by the cough exhaled volume and the orifice diameter 
n ∼ 4V/(πD3).

The resulting self-contained structure, can travel large distances. Numerical simulations for turbulent and 
laminar configurations have been carried out. The carrier phase flow field is resolved by means of second order 
accurate Direct Numerical Simulation (DNS) based on finite difference approach for the momentum equations 
and a spectral approach for the Poisson equation using FFT.

To obtain such predictions we developed a second order Fully Lagrangian Approach for Eulerian configura-
tions in the Computational Fluid Dynamics framework. The evaluation of high order derivatives needed by the 
second order FLA is achieved by pre-fabricated least squares second order interpolations in three dimensions. 
The primary direction of the caustics was calculated by means of Singular Value Decomposition.

The effect of undulations of the carrier phase velocity due to large scale vortical and small scale turbulent 
structures on the concentration of exhaled nuclei and the corresponding viral load was investigated.

It was observed that the coherent vortical structure of the vortex ring as well as the turbulent fluctuations of 
the flow field, induce significant caustic formations in agreement to the droplet nuclei Stokes number based on 
the smallest time scales of the flow. Furthermore, the intensity of the caustics was observed reaching up to 20 
times the initial concentration for the turbulent cases and 100 times the initial number density for the laminar 
configurations. This occurs at significant length scales ranging from 40 to 400 µ m, highlighting the smoothing 
effect of turbulent fluctuations to the intensity of the caustic fronts.

Eulerian CFD  simulations59 and Eulerian/Lagrangian  approaches3,9 for coughing/breathing configurations 
in a variety of setups suggest the reduction of the number density of the exhaled droplet clouds. In our work we 
observed instances of significant localised caustic  formations39 that result in high number densities sustaining 
or exceeding the initial number density of the droplet nuclei clouds when exhaled.

Eulerian  approaches24,60 can describe large-scale structures and integral parameters of dispersed flows when 
uniqueness of all parameters of the particulate continuum is assumed. Classes of two-particle models that allow 
for singularities in the phase space and intersecting  trajectories25,61–66 have been widely  applied67,68. Eulerian 
models for the particulate continuum inferred either from the kinetic equations for particles or from the equa-
tions for the probability density functions (PDF) of particles are also applicable for the modelling of inertia 
 droplets29,69. Eulerian approaches, however, are bounded by the grid resolution. Dispersed phase presents fine 
length scales that are not correlated to the carrier phase length scales. Caustics for example occur on very thin 
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surfaces even in fully resolved laminar flows. Standard Eulerian-Lagrangian  approaches38,70, on the other hand, 
demand a prohibitive number of representative  particles71,72. The Osiptsov  method26, can successfully identify 
 caustics73 by a small number of representative clouds. The standard FLA, however, cannot provide a prediction 
of the number density on the caustics. Also, the spurious values in the vicinity of the caustic singularity pollute 
statistical  analyses44. For this the second order FLA was used in this work, to evaluate the intensity of droplet 
nuclei caustics.

The following observations conclude our findings. 

(1) The exhale parameter n was not observed to affect the concentrations of the droplet nuclei by no other 
means than resulting in plumes with pronounced trailing jet.

(2) The trailing jet of the vortex ring conveys droplet nuclei resulting in the reduction of their number density.
(3) The methodology identifies the theoretical limit (St > 1) for the formation of caustics for both laminar and 

turbulent simulations.
(4) Both turbulent fluctuations and macroscopic VR vortical structures generate high number densities sus-

taining or exceeding the initial number density of the droplet nuclei clouds when exhaled.
(5) Increased intensity of the caustic fronts conveyed by the large coherent vortical structures of laminar VRs 

was observed when compared with turbulent VRs.

Methods
The carrier phase flow field is resolved by means of second order accurate Direct Numerical Simulation (DNS). 
Droplet clouds are injected with the carrier phase velocity and the Jacobian and Hessian matrices are initialised 
according to the initial conditions of the initial value problem of the  method40 described in the “Supplementary 
Material”. Droplet clouds are distributed uniformly along the radial and the azimuthal directions of the orifice. 
The instantaneous dispersed phase droplet number flow rate is integrated in time. The closest integer number 
of droplets is then emitted, while they are subtracted from the total influx integral.

The droplets are decomposed following the domain decomposition of the carrier phase computational 
domain. When crossing domains, the droplet clouds are deleted from the current partition and re-injected 
into the new partition. In order to avoid the re-allocation of memory addresses and retain the computational 
efficiency of memory arrays, erased particles are flagged as empty objects which are re-used by newly injected 
droplet clouds.
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