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First‑principles calculations 
of high‑pressure physical properties 
anisotropy for magnesite
Zi‑Jiang Liu1,2*, Xiao‑Wei Sun1, Cai‑Rong Zhang3, Shun‑Jing Zhang4, Zheng‑Rong Zhang2 & 
Neng‑Zhi Jin5

The first‑principles calculations based on density functional theory with projector‑augmented 
wave are used to study the anisotropy of elastic modulus, mechanical hardness, minimum thermal 
conductivity, acoustic velocity and thermal expansion of magnesite  (MgCO3) under deep mantle 
pressure. The calculation results of the phase transition pressure, equation of state, elastic constants, 
elastic moduli, elastic wave velocities and thermal expansion coefficient are consistent with those 
determined experimentally. The research results show that the elastic moduli have strong anisotropy, 
the mechanical hardness gradually softens with increasing pressure, the conduction velocity of heat 
in the [100] direction is faster than that in the [001] direction, the plane wave velocity anisotropy 
first increases and then gradually decreases with increasing pressure, and the shear wave velocity 
anisotropy increases with the increase of pressure, the thermal expansion in the [100] direction is 
greater than that in the [001] direction. The research results are of great significance to people’s 
understanding of the high‑pressure physical properties of carbonates in the deep mantle.

Magnesite is a likely main host of carbonates in the mantle and plays an important role in the transport and 
storage of carbon in the Earth’s mantle. Its high-pressure physical properties are crucial for understanding the 
deep carbon  cycle1. However, the structure of its high-pressure phase and its phase transition boundary are con-
troversial. The experiment shows that the phase transition pressure ranges from magnesite (space group R 3 c) to 
magnesite-II (space group C2/m) is 75–115  GPa2–6, while the theoretical result is 75–101  GPa7–13.

The elastic properties of minerals control the stress–strain relationship under elastic loading and are related to 
understanding strength, hardness, brittle/ductile behavior, damage tolerance, and mechanical stability. The elastic 
modulus controls the propagation of elastic waves, including the seismic anisotropy of the crust and mantle, so 
it is very important for the interpretation of seismic data. As derivatives of the free energy, they are also related 
to the thermodynamic properties of minerals and are important for understanding the equation of state, phase 
stability and phase transition  mechanism14. However, it is very difficult to measure the elastic constant under high 
temperature and high pressure. Recently, the elastic constants of magnesite are measured only up to 13.7  GPa15. 
The available results of the elastic properties are mainly limited to first-principles  calculations1,9,11,16, these studies 
mainly discuss the elastic properties and the elastic wave velocity of magnesite. The thermal expansion coefficient 
of magnesite is mainly measured at low pressure, while the results under high pressure and high temperature 
are  extrapolated17–19, and the result is also obtained by theoretical  calculation1,20. So far, the thermal expansion 
anisotropy of magnesite has not been reported. In addition, its hardness and minimum thermal conductivity 
anisotropy have not been studied.

In present work, the elastic properties, hardness, thermal conductivity, elastic wave velocity and thermody-
namic properties of magnesite under high pressure are investigated using the first-principles calculations based 
on density functional theory with generalized gradient approximation (GGA) combined with the quasi-harmonic 
approximate Debye model. The calculated elastic constants, elastic wave velocity and volumetric thermal expan-
sion coefficient of magnesite are in agreement with the results with the existing experimental data. On this basis, 
we study the anisotropy of the elastic modulus, mechanical hardness, minimum thermal conductivity, elastic 
wave velocity and linear thermal expansion coefficient of magnesite.
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Results and discussion
Phase transition, structural parameters and equation of state. The crystal structures of magnesite 
with space groups R 3 c (Z = 6 formula units) and magnesite-II with space group C2/m (Z = 12 formula units) are 
shown in Fig. 1, respectively. The calculated phase transition pressure from magnesite to magnesite-II is 72 GPa 
by using gibbs2  program21. This result is consistent with the recent  experimental6 and  theoretical11 results of 75 
GPa. Therefore, the present work only studies the anisotropy of the physical properties for magnesite when the 
pressure rises to 80 GPa.

As seen in Fig. 1, Magnesite has a hexagonal crystal system with rhombohedral symmetry and space group 
R 3 c. The structural parameters, isothermal bulk modulus and equation of state for magnesite are determined 
from a third order Birch–Murnaghan equation of  state22. Table 1 shows the present calculated structural param-
eters and isothermal bulk modulus of magnesite, along with the experimental  data19,23,24. It is found that the 
present calculated results are in good agreement with previously reported values. The equation of state provides 
important information about minerals, which helps to model the composition of the deep layers of the earth. 
From Fig. 2, the present calculated equation of state from 0 to 80 GPa agrees well with the previous experimental 
 data17,19,23–25. The agreement of present calculated structural parameters and equation of state with the experiment 
indicates the feasibility and reliability of the computational method.

Single‑crystal elastic constants. The elastic properties of the earth’s minerals are crucial to understanding 
their internal properties, especially in terms of their chemical composition and the propagation of seismic acous-
tic waves. Magnesite has six ( c11, c12, c13, c14, c33, c44 ) independent elastic constants since c66 = (c11 − c12)

/

2 . 
In order to confirm its mechanical stability, the following mechanical stability criteria are  checked26:

In this work, all the calculated elastic stiffness constants cij  satisfy the mechanical stability criteria, so it may 
be said that magnesite is mechanically stable.

The calculated elastic constants of magnesite from 0 to 80 GPa are plotted in Fig. 3 and the data at 0 GPa are 
summarized in Table 2, compared with the previous  experimental15 and  theoretical11,16 results. It can be clearly 
seen from Fig. 3 and Table 2 that the present calculated elastic constants of magnesite are in excellent agreement 
with the available experimental and theoretical results, and gradually increase with the pressure.

Anisotropy of elastic modulus. The polycrystalline elastic moduli, such as bulk modulus B , shear modu-
lus G and Young’s modulus E , can be evaluated by Voigt–Reuss–Hill  scheme27–29. For rhombohedral magnesite, 

(1)c11 > |c12|, c44 > 0, 2c213 < c33(c11 + c12), 2c
2
14 < c44(c11 − c12).

Figure 1.  Crystal structures of magnesite (a) and magnesite-II (b).

Table 1.  Calculated structural parameters of magnesite along with the experimental data.

a (Å) c (Å) V (Å3) K0 K0
′

Present work 4.649 14.906 279.23 108.27 4.58

Experimental results

Fiquet and  Reynard23 4.628 15.055 279.14 108 4.6

Ross24 4.634 15.018 279.28 111 4 (fixed)

Zhang et al.19 4.635 15.013 279.32 103 4 (fixed)
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Figure 2.  Equation of state for magnesite from 0 to 80 GPa.
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Figure 3.  Elastic constants of magnesite from 0 to 80 GPa.

Table 2.  Calculated elastic constants ( cij , in GPa) of magnesite, compared with the experimental and previous 
theoretical results at 0 GPa.

c11 c12 c13 c14 c33 c44

Present work 260.38 77.45 61.55 20.21 150.85 56.81

Experimental  results15 260.7 74.3 59.7 19.7 157.6 57.8

Other theoretical results

Li and  Stackhouse11 275 86 72 22 166 60

Stekiel et al.16 259.8 70.7 59.6 19.7 152.6 57.7
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bulk modulus B , shear modulus G can be calculated from the Voigt bounds ( BV and GV ) and Reuss bounds(BR 
and GR ) from the following expressions:

According to the bulk modulus B and shear modulus G , Young’s modulus E is defined as E = 9BG
/

(3B+ G).
Figure 4 presents the changes of bulk modulus B , shear modulus G , and Young’s modulus E of magnesite 

along with the previous  experimental15 and  theoretical11,16 results with pressure. As shown in figures, the present 
calculated elastic moduli increase smoothly and monotonically with increasing pressure, which agree well with 
the experimental and theoretical data.

The elastic anisotropy in mineral is of great significance due to its implication in geoscience as well as in 
crystal physics. In order to evaluate the elastic anisotropy of magnesite, Ranganathan and Ostoja-Starzewski 
universal anisotropy  index30, Kube’s log-Euclidean anisotropy  index31, and Chung and Buessem percent elastic 
 anisotropy32 are used. The AU,AL,AB , and AG are given by the following relations:

(2)BV =
2c11 + c33 + 2c12 + 4c13

9

(3)GV =
(2c11 + c33)− (c12 + 2c13)+ 3

(

2c44 + (c11 − c12)
/

2
)

5

(4)BR =
1

(2s11 + s33)+ 2(s12 + 2s13)

(5)GR =
15

4(2s11 + s33)− 4(s12 + 2s13)+ 3(2s44 + s66)

(6)B =
BV + BR

2
, G =

GV + GR

2
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Figure 4.  Bulk modulus B , shear modulus G (a) and Young’s modulus E (b) of magnesite from 0 to 80 GPa.
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For an elastically isotropic crystal, AU = AL = AB = AG = 0 , while the larger values of AU , AL , AB and AG 
represent a more elastic anisotropy. The universal anisotropy, log-Euclidean anisotropy, and percentage of bulk 
and shear anisotropies for magnesite are plotted in Fig. 5. From Fig. 5a may be observed that AU and AL increase 
with the increase of pressure, and the change trend is basically the same. It is found in Fig. 5b that the percentage 
of shear anisotropy increases with the increase of pressure, and the percentage of bulk anisotropy decreases, and 
the increase in the percentage of shear anisotropy is much greater than the decrease in the percentage of bulk 
anisotropy, this means that the contribution of shear anisotropy in the elastic anisotropy of magnesite is greater 
than that of bulk anisotropy.

In order to furthermore elucidate this anisotropic behavior, the most straightforward method is to plot the 
three-dimensional contours of mechanical moduli. The direction dependent shear modulus ( G ) and Young’s 
modulus ( E ) for rhombohedral crystals can be defined as:

where sij are the usual elastic compliance constants and l1 , l2 , and l3 are the direction cosines in any arbitrary 
direction. The ElasticPOST  program33,34 is used to obtain the 3D spatial distribution and their projection of 
shear modulus and Young’s modulus for magnesite at various pressures, and the results are displayed in Figs. 6 
and 7, respectively. As can be seen, the 3D figures of shear modulus and Young’s modulus reveals a large degree 
of deviation in shape from the sphere. This means that magnesite has a strong anisotropy, which also confirms 
the calculation results in Fig. 5. The comparative analysis of shear modulus and Young’s modulus for different 
directions as seen from the planar projections also indicates the anisotropy level.

Anisotropy of mechanical hardness. Vickers hardness is a fundamental property that is essential to 
describe the mechanical behavior of mineral, various semi-empirical relations have been proposed to estimate 
hardness using the elastic moduli. Vickers hardness is predicted using two theoretical models of hardness:

Chen’s  model35:
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Figure 5.  Universal anisotropy AU , log-Euclidean anisotropy AL (a), and percentage of bulk ( AB ) and shear 
( AG ) anisotropies (b) for magnesite from 0 to 80 GPa.
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Tian’s  model36:

The calculated Vickers hardness of magnesite are depicted in Fig. 8 from 0 to 80 GPa. As illustrated in 
Fig. 8, the Vickers hardness decrease with increasing pressure, indicating magnesite becomes softer under 
high pressure, the Vickers hardness predicted by the Chen’s model is smaller than that Tian’s of the model 
in the entire pressure range. In order to evaluate the anisotropy of Vickers hardness of magnesite. The 
direction dependent hardness ( H ) can be obtained by fitting the direction dependent bulk modulus ( B ) 
and Young’s modulus ( E ), defined as: H = 0.130548175274347E2.2484942942017B−1.51675853808829 , where 
B = 1

/(

(s11 + s12 + s13)− (s11 + s12 − s13 − s33)l
2
3

)

 . The 3D spatial distribution and its projection of Vick-
ers hardness for magnesite at various pressures are presented in Fig. 9. The Vickers hardness exhibit strong 
direction-dependent changes, resulting in large anisotropy, The 2D representations planar projection in different 
directions also show this result.
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= 0.92

(
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Figure 6.  3D spatial distribution and its projection of shear modulus for magnesite at various pressures.
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Figure 7.  3D spatial distribution and its projection of Young’s modulus for magnesite at various pressures.
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Anisotropy of acoustic velocity. The velocities of plane and shear wave velocities of minerals can be 
calculated from the single crystal elastic constants. The plane wave velocity ( vP ) and shear wave velocity ( vS ) are 
calculated  using37:

The elastic wave velocities of magnesite are shown in Fig. 10 from 0 to 80 GPa. Figure 10 show that the cal-
culated elastic wave velocity is in good agreement with the previous experimental  results15 within the studied 
pressure range, the plane wave velocity vP propagate more speedily than the shear wave velocity vS . The consist-
ency between the calculated elastic wave velocity and the experimental results provides reliability for further 
research on elastic wave velocities anisotropy.

Directional elastic wave velocities are computed by solving Christoffel’s equation det
∣

∣Cijklnjnl − ρv2δik
∣

∣ = 0 
38, where Cijkl are the elastic stiffnesses, the nj are unit vectors of the wave propagation direction, v is the acoustic 
velocity, and δik is the Kronecker δ . Using AWESoMe  program39,40 with quadruple precision, the plane wave 
velocities and shear wave velocity and the shear wave splitting of magnesite in different propagation directions 
under various pressures are obtained, 3D representation of the elastic wave velocity and the shear wave splitting 
of magnesite are plotted in Fig. 11. It is observed from Fig. 11(left) that the plane wave velocities have minimum 
values along the z direction, firstly decreasing with the increase of pressure, and then gradually increasing. For 
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Figure 8.  Vickers hardness of magnesite from 0 to 80 GPa.
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the two shear wave velocity (fast and slow), the minimum values of the two wave velocities are shifted from the z 
direction yet they are still allocated around the z direction, but the magnitude of the shift gradually increases with 
the increase of pressure, especially the fast shear wave velocity, the results of shear wave splitting in Fig. 11(right) 
also further verify this result.

Anisotropy of plane and shear wave velocity can be defined as AP =
(

vP,max − vP,min

)/

vP × 100% and 
AS =

(

vS,max − vS,min

)/

vS × 100% , respectively. The calculated elastic wave velocities anisotropy of magnesite 
is presented in Fig. 12 and the data at 0 GPa are listed in Table 3, along with the previous  experimental15,41,42 and 
 theoretical1,11 results. It can be found from Table 3 that the maximum error between the calculated plane wave 
velocity anisotropy and the  experimental15 value at 0 GPa is about 2.5%, and the maximum error between the 
shear wave velocity anisotropy and the experimental  value42 is about 2.75%, indicating that the calculated data are 
in agreement with available experimental data. At low pressure, the plane wave velocity anisotropy increases with 
the increase in pressure, but gradually decreases at high pressure. However, the experimental result of Yang et al15 
is that the plane wave velocity anisotropy increases with increasing pressure. The shear wave velocity anisotropy 
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Figure 10.  Elastic wave velocities of magnesite from 0 to 80 GPa.
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wave splitting and polarization vectors of the S-modes (right) for magnesite in different propagation directions 
at various pressures.
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increases with increasing pressure, this result is consistent with the  experimental15 and  theoretical1 results. Espe-
cially at 75 GPa, the present calculated results are consistent with the theoretical results of Li and  Stackhouse11.

Anisotropy of minimum thermal conductivity. The thermal conductivity is a measure of material’s 
heat conduction ability. Generally, the thermal conductivity decreases to a limit value considered as the mini-
mum thermal conductivity with increasing temperature. Therefore, it is of great significance to study the mini-
mum thermal conductivity of magnesite. The minimum thermal conductivity of magnesite is calculated on the 
basis of Clark’s  model43 and Cahill’s  model44. In the Clarke model, the minimum thermal conductivity can be 
thought of as the limit the average phonon mean free path → the interatomic spacing. The Cahill model instead 
use a wavelength dependentmean free path to incorporate wave mechanics in the description of the average pho-
non mean free path. These models work well for many materials and give an intuitive description of the phonon 
limit of thermal conductivity.

Clark’s Model:

Cahill’s Model:

where Ma is the average mass per atom, E is Young’s modulus, ρ is the density, M is the molar mass, n is the atomic 
number density per unit volume, kB is Boltzmann’s constant, NA is Avogadro’s number, respectively. Based on the 
two theoretical model, the calculated minimum thermal conductivity of magnesite from 0 to 80 GPa is shown in 
Fig. 13. It is seen that the minimum thermal conductivity of magnesite increases with the increase of the external 
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Figure 12.  Anisotropy of plane (a) and shear (b) wave velocity of magnesite from 0 to 80 GPa.

Table 3.  Plane wave velocity anisotropy AP and shear wave velocity anisotropy AS of magnesite at 0 GPa.

AP AS

Present work 0.287 0.3715

Experimental results

Yang et al.15 0.260 0.362

Sanchez‐Valle et al.41 0.27 0.36

Chen et al.42 0.278 0.344

Other theoretical results

Yao et al.1 0.298 0.387
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pressure, the calculated results using the Cahill’s model is greater than that computed by the Clark’s model. This 
is due to the atom number density is considered in Cahill’s model, whereas the Clark’s model does not. Thus, 
the Clark’s model underestimates the thermal conductivity. That is, the data obtained by Cahill’s model should 
be closer to the real values than Clarke’s model.

To investigate the anisotropy of thermal conductivity, which can be summed from the plane wave velocities 
( vP ) and two shear wave velocity ( vS1 and vS2 ). Therefore, the expression of Cahill’s model can be changed in 
form as follows:

The calculated minimum thermal conductivities of magnesite in principal directions are also presented in 
Fig. 13, indicating the anisotropic characteristic of the minimum thermal conductivities. It can be observed 
that the kmin[100] values are always higher than the kmin[001] values within the pressure range of the study. It 
indicates that the conduction velocity of heat in the [100] direction is faster than that in the [001] direction. As 
can be seen from the crystallographic structures of rhombohedral magnesite, Mg, C and O atoms mainly align 
along the [100] direction.

Anisotropy of thermal expansion. The thermal expansion coefficients and their temperature–pressure 
dependence are of importance in estimating the thermal properties of minerals. In present work, The Debye 
quasi-harmonic approximation (QHA) is used to calculate the thermal expansion coefficients of  magnesite45. 
The volumetric thermal expansion coefficient ( αV ) can be obtained by the following expressions:

where γ , CV , BT , V  and θD represent the thermal Grüneisen parameter, the heat capacities, the isothermal bulk 
modulus, the volume and the Debye temperature, respectively. The volume thermal expansion coefficient of mag-
nesite at 300 K and 0 GPa is 3.376 ×  10–5/K, in good agreement with the present calculated value of 3.688 ×  10–5/K. 
Having obtained the volumetric thermal expansion at different temperatures and pressures, the thermal expan-
sion along different directions can be calculated from the linear compressibility. For rhombohedral crystal, the 
expressions are as  follows46:

where K[100] and K[001] are the linear elastic compressibility in the [100] and [001] directions, respectively. it is 
obtained  by47:

The anisotropic linear thermal expansion coefficients of magnesite at various pressures are calculated and 
are depicted in Fig. 14. As can be seen, the thermal expansion in the [100] direction is the largest relative to the 
[001] directions in magnesite, and it decrease with increasing pressure. Unfortunately, there is no experimental 
data or theoretical calculation results to compare with the linear thermal expansion coefficient of magnesite. 
Thus, the present work is beneficial for future research on the thermal properties of minerals.
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Conclusions
The anisotropy of elastic modulus, mechanical hardness, minimum thermal conductivity, acoustic velocity and 
thermal expansion of magnesite under high pressure are investigated using the first-principles calculations within 
the density functional theory. The calculated phase transition pressure, equation of state, elastic constants, elastic 
moduli, elastic wave velocities and thermal expansion coefficient of magnesite are in excellent agreement with 
the previous experimental and theoretical results. It provides reliability for further research on the anisotropy 
of elastic modulus, mechanical hardness, minimum thermal conductivity, acoustic velocity and thermal expan-
sion. The results of shear modulus and Young’s modulus show that magnesite has strong anisotropy. The Vickers 
hardness changes strongly in different directions, leading to large anisotropy and softening under high pressure. 
Due to the higher probability of phonon collision in the [100] direction, the minimum thermal conductivity 
in the [100] direction is higher than that in the [001] direction and increases with the increase of pressure. The 
propagation of the plane wave along the z direction has a minimum value, which decreases first and then gradu-
ally increases as the pressure increases. The minimum value of the two shear wave velocities shifts from the z 
direction, and the magnitude of the shift gradually increases with the increase of pressure, especially in the fast 
S-mode. The plane wave velocity anisotropy first increases and then gradually decreases with increasing pres-
sure, and the shear wave velocity anisotropy increases with the increase of pressure. As discussed in  literature1, 
the elastic anisotropy of magnesite is much greater than that of the main minerals in the mantle, and its local 
enrichment provides a new explanation for the large local anisotropy in the transition zone. Finally, the anisot-
ropy of thermal expansion is studied using the Debye quasi-harmonic approximation and elastic constants. It 
is found that the anisotropic linear thermal expansion coefficients in the [100] direction is the largest relative 
to the [001] directions and decrease with increasing pressure. The present work helps people to further under-
stand the high-pressure physical properties of magnesite under deep mantle conditions, and also has important 
geophysical significance.

Methods
First-principles calculations based on density functional  theory48,49 are performed by using a Vienna Ab Initio 
Simulation Package (VASP)50,51 with the projector-augmented wave method (PAW)52. The Perdew-Burke-Ernz-
erhof revised for solids(PBEsol) in GGA 53 is used to expound the exchange-correction function and calculate 
the self-consistent electronic density. The valence electron configurations are chosen 2p63s2 for Mg, 2s22p2 for 
C, and 2s22p4 for O. Based on the results of plane-wave cutoff energy and k-mesh convergence tests, the cutoff 
energy for plane wave extension of the R 3 c and C2/m structures for  MgCO3 are set to 850 eV and 880 eV, and 
the Brillouin zone of Monkhorst–Pack grid  sampling54 is 9 × 9 × 2 and 4 × 5 × 5, respectively. The convergence 
threshold for electronic self-consistent field and forces acting on the atoms are 1.0 ×  10−8 eV and 0.02 eV/Å, 
respectively. The elastic constant is obtained using the stress–strain  method55,56. The thermodynamic properties 
are calculated by the quasi-harmonic approximation (QHA) Debye  approach45.
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Figure 14.  Linear thermal expansion coefficients αa (a) and αc (b) along the [100] = [010] and [001] directions 
of magnesite at various pressures.
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