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Predicting streamflow in Peninsular 
Malaysia using support vector 
machine and deep learning 
algorithms
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Ahmed El‑Shafie5

Floods and droughts are environmental phenomena that occur in Peninsular Malaysia due to extreme 
values of streamflow (SF). Due to this, the study of SF prediction is highly significant for the purpose of 
municipal and environmental damage mitigation. In the present study, machine learning (ML) models 
based on the support vector machine (SVM), artificial neural network (ANN), and long short-term 
memory (LSTM), are tested and developed to predict SF for 11 different rivers throughout Peninsular 
Malaysia. SF data sets for the rivers were collected from the Malaysian Department of Irrigation and 
Drainage. The main objective of the present study is to propose a universal model that is most capable 
of predicting SFs for rivers within Peninsular Malaysia. Based on the findings, the ANN3 model which 
was developed using the ANN algorithm and input scenario 3 (inputs consisting of previous 3 days SF) 
is deduced as the best overall ML model for SF prediction as it outperformed all the other models in 4 
out of 11 of the tested data sets; and obtained among the highest average RMs with a score of 3.27, 
hence indicating that the model is very adaptable and reliable in accurately predicting SF based on 
different data sets and river case studies. Therefore, the ANN3 model is proposed as a universal model 
for SF prediction within Peninsular Malaysia.

Floods and droughts are natural phenomena that have impacted regions within Peninsular Malaysia throughout 
recorded history. Recently, continuous heavy rainfall in January 2021 caused high streamflow (SF) within rivers 
and consequent widespread flooding in Peninsular Malaysia, with the state of Pahang representing the worst 
affected state. Approximately 50,000 individuals were evacuated, while at least six people died. Meanwhile, the 
worst water shortage affecting Peninsular Malaysia occurred back in 1998 when a prolonged drought caused 
very low amounts of SF and the drying up of dam reservoir water resources. Given the shortage, water was 
rationed for almost 150 days in the Klang Valley, affecting 3.2 million people. Ultimately, these phenomena can 
be understood to be a result of extreme values of SF1. Too high amounts of SF cause the stream to exceed its 
confinement and submerge surrounding land, causing floods. On the other hand, droughts are a result of too low 
amounts of SF which causes diminishing water resources as rivers and dam reservoirs dry up simultaneously. 
SF is even recognized by the World Meteorological Organization (WMO) as a significant predictor of droughts 
and has been used in existing studies to forecast drought indicators namely the standardized drought index 
(SDI) and standardized SF index (SSI)2,3. As history has shown, floods and droughts make the task of water 
resource management and allocation extremely difficult, while also affecting other industries and activities such 
as hydropower generation, agriculture, and environmental protection1,4–6. Additionally, existing studies have also 
demonstrated the correlation of SF with river suspended sediment load (SSL). SF data has been used to obtain 
better predictions of SSL7–10, hence highlighting the effects of SF on SSL, with higher amounts of SF typically 
causing higher SSLs. On top of that, streamflow also has an effect on the capacity of rivers to receive pollution. 
The water quality index (WQI) is commonly used to describe the water quality of streamflow and is affected by 
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six substances namely biochemical oxygen demand, chemical oxygen demand, dissolved oxygen (DO), suspended 
solids, ammoniacal nitrogen, and potential for hydrogen11. Large streamflow are better in receiving and diluting 
away pollution discharge concentrated with these substances, while smaller streamflow are more easily polluted 
by these substances as they are not able to degrade the pollution discharge swiftly. Given the aforementioned fac-
tors, a means to predict SF is greatly significant, especially approaching or during periods of floods and droughts, 
particularly for municipal and environmental damage mitigation; water resource management; continuation of 
hydropower generation and agricultural activities; and SSL and WQI monitoring.

Machine learning (ML), a branch of artificial intelligence, has been studied and utilized for the purpose of 
SF prediction. ML algorithms are able to identify trends and patterns in a large database easily and continually 
improve in predictive ability with time, while not requiring much human intervention as they self-learn. For 
these reasons, ML is a valuable tool for modelling and predicting SF as different rivers have different SF magni-
tudes and behaviours, depending on the spatial and temporal variability as well as the water balance component 
heterogeneity of a particular river1,12. Existing studies from recent years have established and shown several ML 
algorithms capable of producing SF predictions of high accuracy while outperforming other ML algorithms, 
namely the support vector machine (SVM) and two deep learning algorithms: artificial neural network (ANN) 
and long short-term memory (LSTM). Standalone SVMs have been demonstrated to produce more accurate 
SF predictions compared to extreme learning machine (ELM), adaptive neuro-fuzzy inference system (ANFIS), 
multivariate adaptive regression splines (MARS), M5 model tree, and ANN6,13–17. Hybridization has also been 
studied to enhance the predictive ability of SVM for different case studies. Malik et al.18 hybridized SVM with 
ant lion optimization (ALO), multi-verse optimizer (MVO), spotted hyena optimizer (SHO), Harris’ hawks opti-
mization (HHO), particle swarm optimization (PSO), and Bayesian optimization (BO), to predict the daily SF 
in the watershed of Naula, India. It was found that SVM hybridized with HHO (SVM-HHO) was superior in SF 
predictive performance compared to the other hybridized algorithms. The study by Tikhamarine, Souag-Gamane, 
and Kisi1 hybridized SVM with the grey-wolf optimizer (GWO), shuffled complex evolution (SCE) algorithm, 
MVO, and PSO, to predict SF for the Ain Bedra and Fermatou stations in Algeria, in which it was found that 
SVM hybridized with GWO (SVM-GWO) outperformed the other hybridized algorithms. One of the primary 
advantages of the SVM that makes it perform well in SF prediction is that it is able to deal with overlearning 
and high dimensionality which may cause computational complexity and local extremum19. In addition, tuning 
or adjustment of only a few hyperparameters need to be performed, hence giving SVM a simple structure and 
ease of implementation20,21. However, the SVM’s predictive ability is negatively affected when the utilized data 
set is significantly noisy, as SVMs are sensitive to noise22–24. Meanwhile, standalone ANNs have been shown to 
produce superior performances in SF prediction compared to linear regression (LR), autoregressive integrated 
moving average (ARIMA), genetic expression programming (GEP), ANFIS, and SVM25–29. The studies by Zaini 
et al.30 and Sammen et al.31 on Malaysian rivers demonstrated improved ANN predictive performance when 
hybridized with the bat algorithm (BA) and sunflower optimization algorithm (SFA). ANN hybridization was 
also performed in the study by Li et al.32 using empirical mode decomposition (EMD), ensemble empirical mode 
decomposition (EEMD), and discrete wavelet transformation (DWT). It was found that ANN hybridized with 
EEMD (EEMD-ANN) was the best performing model in the respective study. In addition, the predictive per-
formance of ANN was shown to be improved through the utilization and integration of additional data mining 
techniques, as shown by Zamanisabzi et al.33 in the study on the Elephant Butte Reservoir. SF was also able to be 
predicted accurately through the modelling of the relationship between SF and rainfall, as proven in the study by 
Ali and Shahbaz34 on Pakistan rivers. The upsides that make ANN powerful in SF prediction include being able to 
easily handle large data sets; detect complex non-linear relationships between input and output parameters; and 
relate input and output parameters without the utilization of complex mathematical models or calculations35–37. 
A drawback of the ANN is that it is computationally expensive and has a high dependence on the capability of 
available hardware38–40. This means that adequate processing power is required for models to be trained with 
realistic and efficient training durations. Apart from ANN, LSTM is another deep learning algorithm that has 
produced good performances in SF prediction. Standalone LSTMs have outperformed other algorithms such as 
the nonlinear autoregressive exogenous model (NARX), Gaussian process regression (GPR), SVM, ANN, and the 
standard technique of hydrological model parameters regionalization also known as the HMREG scheme41–43. 
LSTMs have also been hybridized to improve their performances in SF prediction for different case studies. The 
study by Ghimire et al.44 on the Brisbane River and Teewah Creek in Australia hybridized LSTM with the con-
volutional neural network (CNN), resulting in SF predictive performances outperforming algorithms such as 
gradient boosting regression (GBM), extreme gradient boosting (XGB), decision tree (DT), ELM, and MARS. Liu 
et al. developed an algorithm hybridizing Encoder Decoder LSTM with EMD, which was capable of producing 
accurate SF predictions for the case study of the Yangtze River, China45. The advantages of the LSTM which are 
the strong abilities to capture long-term time dependencies between input and output parameters; and to learn 
relationships within complex and high-dimensional data sets, contributes to its good performances in the field 
of SF prediction46,47. The downside of the LSTM is that it also requires high computational power to train and 
develop models in a reasonable timeframe, given that it is a deep learning ML algorithm48,49. An LSTM model 
may also take a longer time to train and develop depending on the difficulty of the problem to be solved as well 
as the LSTM architecture chosen50. Additionally, the LSTM is also prone to overfitting effects51,52, which may be 
reduced with the help of dropout regularization and early call-back mechanisms. Apart from these established 
algorithms (SVM, ANN, LSTM), other ML algorithms with good potential that have been developed and focused 
on for the purpose of accurate SF prediction include variations of ELM, ANFIS, and random forest (RF)4,5,15,45,53,54.

Based on the aforementioned existing studies, it can be found that majority have developed SF prediction 
models based on data from only one hydrological station or river. As SF is affected by factors namely spatial 
variability, temporal variability, and water balance component heterogeneity, the magnitude and behaviour of 
SF in different rivers often vary1,12. Due to this, the suitability of ML algorithms for SF prediction may also vary 
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based on different rivers. Certain ML models or algorithms may excel in predicting SF accurately for a particular 
river but perform poorly in predicting SF for a different river, as they may be unable to effectively capture the 
behaviour of SF for the different river. Existing studies in Peninsular Malaysia have developed ML algorithms 
namely LR, M5P tree, RF, SVM, ANFIS, ARIMA, ANN, and LSTM to predict SF in rivers such as Sungai Muda 
in Kedah; Sungai Kuantan and Sungai Kenau in Pahang; Sungai Kelantan in Kelantan; and Sungai Kurau, Sun-
gai Bernam, and Sungai Tualang in Perak26,29–31,42,53. Aside from the studies by Zaini et al.30, Sammen et al.31, 
and Pandhiani et al.53 which utilized data sets from two hydrological stations or rivers to develop SF prediction 
models, other SF prediction studies in Peninsular Malaysia have focused on data sets from only one hydrological 
station or river. This brings up a research gap in which it is unknown whether there exists a single ML model or 
algorithm that has the ability of accurately predicting SF for the many different rivers within Peninsular Malay-
sia, as there are no existing studies that have developed and tested ML models or algorithms based on data sets 
from a substantial number of rivers within the region. Therefore, the present study intends to undertake this 
research gap by developing SF prediction models based on SF time series data sets of hydrological stations located 
along 11 different rivers throughout Peninsular Malaysia. The ML algorithms utilized for SF prediction in the 
present study are the SVM, ANN, and LSTM. This is because the conducted literature review has shown them 
to produce accurate SF predictions as well as outperforming other ML algorithms in the field of SF prediction, 
hence indicating their superiority in this field. Additionally, the literature review performed has highlighted the 
algorithms’ noteworthy advantages which make them suitable to be used for SF prediction in the present study. 
Hybridization of SVM, ANN, and LSTM is not investigated in the present study, as the present study intends to 
identify the standalone ML model that is most accurate and suitable as a universal model for the case study of 
11 different river streamflow data sets in Peninsular Malaysia, which has not been performed before in existing 
studies. The findings of the present study may then open up a topic or focus for a future study on the hybridiza-
tion of the standalone universal model proposed at the end of the present study.

Real-life adoption and application of an ML model proposed from scientific literature for the purpose of 
SF prediction may be complicated due to doubt on whether the proposed ML model is able to reproduce its 
accurate performance for different river case studies, which may have different SF magnitudes and behaviours 
due to variability on a spatial and temporal scale, as well as varying heterogeneity in water balance components. 
Meanwhile, the development of individual or personalized SF predictive ML models for each river within a 
region is resource intensive as it may require a significant amount of time and cost. Rather than using up lots of 
resources to develop many tailor-made SF predictive ML models for each river within a region, it would be more 
resource-friendly to identify one ML model that is capable of predicting SF with good accuracy for many differ-
ent rivers within a region. Therefore, the present study was motivated by the idea of proposing a single universal 
ML model that has been substantially and simultaneously tested on different rivers; and is capable of accurately 
predicting SF for any river case study within Peninsular Malaysia. The main contribution of the present study 
is the testing and development of SF prediction models using 3 ML algorithms and SF data sets of hydrological 
stations from 11 different rivers throughout Peninsular Malaysia; and the proposal of the best performing ML 
model in the present study as the universal model for accurate SF prediction in the region. The best performing 
ML model is selected by considering two factors, which are the number of times a model produced the most 
accurate predictive performance for a data set, and the reliability of each model in producing relatively high-
accuracy predictions for the different data sets. The accuracy of the ML models in the present study is quantified 
through the utilization of selected performance evaluation measures, namely mean absolute error (MAE), root 
mean squared error (RMSE) coefficient of determination (R2) and ranking mean (RM). The findings from the 
present study may interest hydrological authorities or institutions that are searching for substantially tested 
ML models within Peninsular Malaysia, or even other regions. The rest of the present study is organized as fol-
lows: “Materials and methods” describes the materials and methods used to develop and test the SF prediction 
models. Section “Results and discussion” reports and discusses the performance of the SF prediction models. 
Section “Conclusion” concludes the overall study and provides suggestions for future studies.

Materials and methods
The materials and methods used in the developing and testing of SF predictions models for the 11 selected riv-
ers within Peninsular Malaysia are explained in this section. Information on the location and data of case study, 
model development process, feature selection; data pre-processing; ML algorithms; and performance measures 
are described.

Location and data of case study.  The western region of Malaysia is known as Peninsular Malaysia. It 
comprises of 13 states and 2 federal territories; and has an area of approximately 132,265 km2. Located just North 
of the equator, Peninsular Malaysia consists of 40% of Malaysian land. Malaysia’s capital is the Federal Territory 
of Kuala Lumpur, which is located about 40 km from the coast. There are approximately 1235 river basins in Pen-
insular Malaysia, of which 74 are classified as main river basins while the remaining 1161 are categorized as small 
river basins55. The longest river in Peninsular Malaysia is Sungai Pahang, measuring up to 459 km in length.

The raw daily average SF data for different rivers within 11 states in Peninsular Malaysia was obtained from 
the Water Resources Management and Hydrology Division of the Malaysian Department of Irrigation and 
Drainage. To conduct the present study, one river is selected per state based on suitability of data in terms of 
volume and time series continuity; and the significance of the river to their respective state or federal territory. 
Table 1 provides information on the selected rivers for each state, the SF station numbers as well as latitudes and 
longitudes, and the data duration provided by each SF station.
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Model development process.  The processes used to develop and test the SF prediction models in the 
present study comprises of raw data collection, feature selection, data pre-processing, model prediction, and 
performance analysis. The model development process employed in the present study is illustrated in Fig. 1.

Feature selection.  The process of selecting input parameters to be fed to an algorithm for model training 
is known as feature selection. It is important as a means to identify input parameter combinations that would 
enable accurate model predictions. For the present study, only the daily average streamflow (SF) data was avail-
able and utilized to predict future SF, hence the present study is categorized as univariate. A statistical analysis 
on the daily average SF for each of the 11 selected rivers is shown in Table 2.

Given that the present study is univariate and two of the algorithms to be tested (SVM and ANN) are not 
traditional time-series forecasting algorithms, the SF data sets for each river are organized into sliding windows 
in order to reframe the time-series forecasting problem into a supervised learning problem. Before the data sets 
were organized into sliding windows, partial autocorrelation function (PACF) analyses were carried out on all 
the SF data sets in order to identify the lagged SF data that have significant correlation to the current-day SF 
data. Based on Fig. 2, it is found that for many of the SF data sets, the lagged SFs that are significantly correlated 
to the current-day SF [SF(t)] are the 1-day lagged SF [SF(t − 1)], 2-day lagged SF [SF(t − 2)], and 3-day lagged 
SF [SF(t − 3)].

In addition, the Pearson’s correlation coefficient is utilized to further analyse and understand the correlation 
between the current-day SF data [SF(t)] and the selected lagged SF data [SF(t − 1), SF(t − 2), SF(t − 3)]. The 
mathematical formula used to calculate Pearson’s correlation coefficient, symbolized by rxy , is represented by:

where x,y are respective data means; xi , yi are individual respective data points; and n is the sample size.
Through the calculation of Pearson’s correlation coefficient, it is found that there is indeed strong correlation 

between current-day SF data [SF(t)] and the selected lagged SFs [SF(t − 1), SF(t − 2), SF(t − 3)] in majority of the 
data sets. Table 3 shows Pearson’s correlation coefficient matrix for all 11 SF data sets used in the present study.

The PACF and Pearson’s correlation coefficient analyses show that the selected lagged SF data [SF(t − 1), 
SF(t − 2), SF(t − 3)] have strong predictive powers in predicting the current-day SF data [SF(t)], hence they are 
selected to be used as input parameters in the present study. Using these input parameters, three input parameter 
scenarios are designed and fed to the selected ML algorithms for model training. By feeding and testing different 
input parameter scenarios to the ML algorithms for model training as performed by existing studies4,6,15,18,34,43,56, 
the sensitivity of the models to different input combinations is able to be analysed and understood; and the best 
input parameter combination for accurate SF predictions can be determined. Table 4 describes the input param-
eter scenarios used in the present study. In total, 99 models were run and evaluated, given 3 input parameter 
scenarios, 3 ML algorithms, and 11 different SF data sets.

Data pre‑processing.  This section explains the pre-processing steps performed on the raw SF time-series 
data sets of the 11 selected rivers obtained from the Malaysian Department of Irrigation and Drainage. The data 
pre-processing steps comprise of the imputation of missing data, data partitioning, and feature scaling.

Missing data.  Machine learning algorithms generate errors when missing values are encountered within a data 
set. For this reason, the raw SF time-series data sets obtained from the Malaysian Department of Irrigation 
and Drainage needed to be processed as they contained missing SF values. In existing SF studies, missing data 
has been imputed by interpolation or filling in the measing values with mean or average; or by removing the 
missing data rows completely12,26,27,54. In the present study, imputation through interpolation is utilized to fill in 

(1)rxy =

∑n
i=1 (xi − x)

(
yi − y

)
√∑n

i=1 (xi − x)2
√∑n

i=1

(
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)2

Table 1.   Information on selected rivers’ data for each state.

State River SF station no. Latitude Longitude Data duration

Johor Sungai Johor 1,737,451 01°46′50″N 103°44′45″E 1978 to 1998

Kedah Sungai Muda 5,605,410 05°36′35″N 100°37′35″E 1976 to 2009

Kelantan Sungai Kelantan 5,721,442 05°45′45″N 102°09′00″E 1980 to 1997

Melaka Sungai Melaka 2,322,413 02°20′35″N 102°15′10″E 1979 to 2004

Negeri Sembilan Sungai Kepis 2,723,401 02°42′20″N 102°21′20″E 1980 to 1995

Pahang Sungai Pahang 3,527,410 03°30′45″N 102°45′30″E 1988 to 2009

Perak Sungai Perak 4,809,443 04°49′10″N 100°57′55″E 1977 to 1995

Perlis Sungai Arau 6,503,401 06°30′10″N 100°21′05″E 1986 to 1995

Selangor Sungai Selangor 3,414,421 03°24′10″N 101°26′35″E 1976 to 2001

Terengganu Sungai Dungun 4,832,441 04°50′35″N 103°12′15″E 1977 to 1996

F.T. of Kuala Lumpur Sungai Klang 3,116,430 03°08′20″N 101°41′50″E 2010
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Figure 1.   The SF prediction model development process employed.

Table 2.   Statistical analysis of SF data for the 11 selected rivers.

River data set Mean (m3/s) Median (m3/s) Mode (m3/s) Std. dev. (m3/s) Min. (m3/s) Max. (m3/s) Count

Sungai Johor, Johor 40.0 28.7 15.9 43.4 0.5 709.7 7670

Sungai Muda, Kedah 87.1 58.0 26.0 88.3 3.0 1160.0 12,419

Sungai Kelantan, Kelantan 495.7 364.2 509.3 587.1 81.7 9775.1 6575

Sungai Melaka, Melaka 5.8 3.3 1.4 7.8 0.0 119.9 9497

Sungai Kepis, Negeri 
Sembilan 0.5 0.2 0.1 1.7 0.0 65.3 5844

Sungai Pahang, Pahang 683.5 520.6 497.3 540.5 133.0 6285.3 8036

Sungai Perak, Perak 219.6 212.0 250.0 109.7 19.0 988.0 6939

Sungai Arau, Perlis 0.7 0.0 0.0 1.6 0.0 23.0 3652

Sungai Selangor, Selangor 53.9 44.0 34.7 36.7 2.3 313.9 9497

Sungai Dungun, Terengganu 124.5 78.2 50.0 185.1 9.4 3178.8 7305

Sungai Klang, F.T. of Kuala 
Lumpur 0.5 19.7 20.8 9.6 10.3 105.6 365
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the missing data. The imputation is carried out using the imputeTS R-package developed by Moritz and Bartz-
Beielstein57. Linear interpolation and spline interpolation were tested to occupy the missing data sections. It was 
found that spline interpolation filled in some missing SF data with negative values, which is not logical as the 
water in the rivers move in only one direction. Therefore, linear interpolation was selected to inhabit the missing 
data portions. As a sample, the outcome of the imputation process for missing SF values in the Johor data set is 
shown in Fig. 3.

Figure 2.   Partial autocorrelogram for SF for all data sets.
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Pearson correlations SF(t) SF(t − 1) SF(t − 2) SF(t − 3)

Pearson’s correlation coefficient matrix based on Sungai Johor, 
Johor data set

SF(t) 1 0.9573 0.8632 0.7593

SF(t − 1) 1 0.9573 0.8632

SF(t − 2) 1 0.9573

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Muda, 
Kedah data set

SF(t) 1 0.9263 0.8143 0.7371

SF(t − 1) 1 0.9263 0.8143

SF(t − 2) 1 0.9263

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Kelantan, 
Kelantan data set

SF(t) 1 0.9035 0.7371 0.6133

SF(t − 1) 1 0.9035 0.7371

SF(t − 2) 1 0.9035

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Melaka, 
Melaka data set

SF(t) 1 0.7939 0.6104 0.5285

SF(t − 1) 1 0.7939 0.6104

SF(t − 2) 1 0.7939

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Kepis, 
Negeri Sembilan data set

SF(t) 1 0.3871 0.2223 0.1150

SF(t − 1) 1 0.3871 0.2224

SF(t − 2) 1 0.3871

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Pahang, 
Pahang data set

SF(t) 1 0.9744 0.9193 0.8579

SF(t − 1) 1 0.9744 0.9193

SF(t − 2) 1 0.9744

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Perak, 
Perak data set

SF(t) 1 0.9474 0.9060 0.8801

SF(t − 1) 1 0.9474 0.9060

SF(t − 2) 1 0.9475

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Perlis, 
Perlis data set

SF(t) 1 0.8345 0.6837 0.6070

SF(t − 1) 1 0.8345 0.6838

SF(t − 2) 1 0.8345

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Selangor, 
Selangor data set

SF(t) 1 0.9438 0.8604 0.7930

SF(t − 1) 1 0.9438 0.8604

SF(t − 2) 1 0.9438

SF(t − 3) 1

Pearson’s correlation coefficient matrix based on Sungai Dungun, 
Terengganu data set

SF(t) 1 0.9293 0.8097 0.7007

SF(t − 1) 1 0.9293 0.8097

SF(t − 2) 1 0.9293

SF(t − 3) 1

Continued
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Data partitioning.  The SF data sets in the present study are partitioned into two subsets, which are the training 
set and the test set. The training set is to be used for developing and providing the ML models with the ability 
to make SF predictions, while the test set is used for the evaluation of the ML models’ predictive ability using 
selected performance measures. An optimum ratio for the amount of training data to testing data is found to be 
80:20, according to Kannangara et al.58. Existing SF prediction studies have also demonstrated good results using 
an 80:20 ratio for the amount of training data to testing data6,26. Therefore, 80% of each river’s SF data is used for 
training while the remaining 20% is used for testing in the present study. The training data is further split into 
a training set and a validation set. The validation set has the purpose of fine-tuning the model after each epoch, 
hence improving the model performance. The size of the validation set was selected through a trial-and-error 
process, in which it was found that using 20% of the training data as the validation set produced the best results 
for SF prediction. The duration of the training and testing set for each river after data partitioning can be seen 
in Table 5.

Pearson correlations SF(t) SF(t − 1) SF(t − 2) SF(t − 3)

Pearson’s correlation coefficient matrix based on Sungai Klang, 
F.T. of Kuala Lumpur data set

SF(t) 1 0.4886 0.2987 0.2989

SF(t − 1) 1 0.4894 0.2993

SF(t − 2) 1 0.4888

SF(t − 3) 1

Table 3.   Pearson’s correlation coefficient matrix for data sets of each selected river.

Table 4.   Input parameter scenarios designed for the present study.

Output parameter Input parameter scenario Input parameter(s) Description

SF(t)

1 SF(t − 1) When SF data of previous day is available

2 SF(t − 1) + SF(t − 2) When SF data of previous 2 days is available

3 SF(t − 1) + SF(t − 2) + SF(t − 3) When SF data of previous 3 days is available

Figure 3.   SF imputed values for Johor data set (SF values in units of m3/s, time step in units of day).
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Feature scaling.  As SVM and the deep learning algorithms (ANN and LSTM) are sensitive to data scales, fea-
ture scaling needs to be carried out on the SF data sets of each river. Feature scaling ensures that data vari-
ables are weighted accurately, so that convergence is fast and errors are minimized during training43. Depending 
on the ML algorithm to be used, two types of feature scaling methods are utilized, namely normalization and 
standardization. The present study utilizes standardization before training the SVM models, and normalization 
before training the deep learning models. Feature scaling is performed on the input data, which is determined 
through feature selection processes to be the 1-day, 2-day, and 3-day lagged SF; and the output data, which is 
the current-day SF. The outputs or raw predictions from the ML models are then inverse transformed back into 
their original scales in order to correctly proceed with evaluation and comparison through the usage of selected 
performance measures.

Machine learning algorithms.  In the present study, established ML algorithms in the field namely SVM 
and two deep learning algorithms: ANN and LSTM, were selected for development and testing of SF prediction 
models. SVM, ANN, and LSTM are regarded as established in the field of SF prediction due to the numerous 
studies demonstrating their effectiveness in recent years1,6,13–18,25–34,41–44,59. The Python programming language 
was utilized in the development and testing of the SF prediction models due to ease in commanding and compre-
hending the language, as well as its vast library support. Table 6 details the experimental setup used in develop-
ing the SF prediction models.

Support vector machine (SVM).  The SVM is a kernel-based algorithm that utilizes structural risk reduction and 
statistical learning methods in order to produce a good generalization capacity through the minimization of gen-
eralization error in contrast to training error1,13,17. SVM works by using a transfer function to non-linearly map 
input vectors into a high dimensional feature space, which helps to reduce the complexity of optimization13,17. 
The inspiration behind the SVR technique is the definition of a regression function approximation based on a 
set of support vectors originating from a training data set1. According to existing studies1,17, the SVM function 
is given by:

Table 5.   Data partitioning for each river’s data set.

River data set Total duration Training set Test set

Sungai Johor, Johor 1st January 1978 to 31st Decem-
ber 1998

1st January 1978 to 26th October 
1994

27th October 1994 to 31st 
December 1998

Sungai Muda, Kedah 1st January 1976 to 31st Decem-
ber 2009

1st January 1976 to 22nd March 
2003

23rd March 2003 to 31st Decem-
ber 2009

Sungai Kelantan, Kelantan 1st January 1980 to 31st Decem-
ber 1997

1st January 1980 to 2nd June 
1994

3rd June 1994 to 31st December 
1997

Sungai Melaka, Melaka 1st January 1979 to 31st Decem-
ber 2004

1st January 1979 to 27th October 
1999

28th October 1999 to 31st 
December 2004

Sungai Kepis, Negeri Sembilan 1st January 1980 to 31st Decem-
ber 1995

1st January 1980 to 25th October 
1992

26th October 1992 to 31st 
December 1995

Sungai Pahang, Pahang 1st January 1988 to 31st Decem-
ber 2009

1st January 1988 to 14th August 
2005

15th August 2005 to 31st Decem-
ber 2009

Sungai Perak, Perak 1st January 1977 to 31st Decem-
ber 1995

1st January 1977 to 20th March 
1992

21st March 1992 to 31st Decem-
ber 1995

Sungai Arau, Perlis 1st January 1986 to 31st Decem-
ber 1995

1st January 1986 to 7th January 
1994

8th January 1994 to 31st Decem-
ber 1995

Sungai Selangor, Selangor 1st January 1976 to 31st Decem-
ber 2001

1st January 1976 to 26th October 
1996

27th October 1996 to 31st 
December 2001

Sungai Dungun, Terengganu 1st January 1977 to 31st Decem-
ber 1996

1st January 1977 to 7th January 
1993

8th January 1993 to 31st Decem-
ber 1996

Sungai Klang, F.T. of Kuala 
Lumpur

1st January 2010 to 31st Decem-
ber 2010

1st January 2010 to 26th October 
2010

27th October 2010 to 31st 
December 2010

Table 6.   Experimental setup.

Experimental setup parameter Specification

Programming language Python 3.7.12

ML libraries Scikit-learn 1.0.1 (for SVM)
TensorFlow 2.7.0 (for ANN, LSTM)

Notebook environment Jupyter (hosted by Colaboratory)

Central processing unit (CPU) Intel® Core™ i7-6700HQ CPU @ 2.60 GHz

Random access memory (RAM) 16.0 GB

System type 64-bit operating system, × 64 based processor
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where (αi − α∗
i ) is the Lagrange multiplier, K(x, z) is the kernel function inside the multiplier, and bi is bias.

The kernel function represents the main SVR hyperparameter that requires to be selected or tuned before 
running the SVR models. The kernel functions that can be employed are the radial basis function (RBF), linear, 
polynomial, and sigmoid. Existing literature has backed RBF as the best kernel function due its optimization 
efficiency and adaptability1,13. After trial and error, it was indeed determined that RBF produced the best SF 
predictions, hence it was chosen and finalized as the SVR kernel function in the present study. All other unmen-
tioned SVR hyperparameters were remained as their default values as satisfactory SF predictions were obtained. 
Table 7 shows the hyperparameter tuning for SVR in the present study.

Artificial neural network (ANN).  The ANN is a deep learning algorithm invented based on the neural con-
nections that occur in the biological functions of the human brain33. This algorithm essentially comprises of 
three layers, which are the input layer, hidden layer, and output layer26,27,33. The ANN architecture consists of 
processing units called neurons, also referred to as nodes26. The ANN layers and nodes are connected together 
by connections referred to as weights26,27. These weights provide the ANN with a high degree of flexibility, giving 
it the ability to freely adapt to input data27. The number of ANN layers and nodes required to solve a prediction 
problem typically depends on the complexity of the problem, with more difficult problems usually requiring 
more layers or nodes. An ANN architecture is essentially characterized by the work of a training algorithm 
to represent the layers, nodes, and connections; connection weights between each neuron; and an activation 
function26. The training algorithms works to reduce errors through the adjustment of connection weights and 
biases within an ANN architecture. The adjusted connection weights are then taken and multiplied with the 
input values, which are then added with the adjusted biases. Finally, the outputs are sent to the activation func-
tion to generate the final output, which in the present study is SF prediction. As explained by Zakaria et al.26, the 
ANN mathematical model can be described by equation:

where yi is the output variable, N is the number of neurons, ωij is the weight connecting the jth neuron and the 
ith neuron, xi is the input vector, bj is the bias of the jth neuron, and f is the activation function.

As explained by Zamanisabzi et al.33, trial-and-error is needed to determine the best hyperparameter tuning 
for an ANN architecture, as different problems have different hidden relationships within the data. After per-
forming the trial-and-errors, it was determined that two hidden layers with 6 neurons in each layer was optimal 
for SF prediction in the present study as it provided good adaptability in producing SF predictions for the 11 
different river data sets. In addition, different number of epochs, training algorithms, activation functions, and 
batch numbers were tested to discover the best possible ANN architecture within the context of the present 
study. Through the testing, the best ANN architecture was found and is shown in Table 8. All other unmentioned 

(2)f (x) =

N∑

i=1

(αi − α∗

i )K(x, z)+ bi

(3)yi = f

(
N∑

i=1

ωijxi + bj

)

Table 7.   Hyperparameter tuning for SVR algorithm.

Hyperparameter tuning of SVR 
algorithm

Hyperparameter Selected Default

Kernel function RBF RBF

Table 8.   Hyperparameter tuning for ANN algorithm.

Hyperparameter tuning of ANN algorithm

Hyperparameter Selected Default

Number of hidden layers 2 No default

Number of neurons in each hidden layer 6 No default

Number of epochs 100 1

Early callback function When validation loss does not improve after 50 epochs None

Batch number 32 32

Training algorithm Adam RMSprop

Activation function ReLU None

Loss function MSE No default
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ANN hyperparameters including initializer, regularizer, and constraints, were remained as their default values 
as satisfactory SF predictions were obtained.

During each of the ANN models’ training process, the train and validation loss vs epochs graphs are produced 
to graphically verify that the losses reduce and converge, and to ensure that overfitting does not occur. As a 
sample, the losses vs epochs graph for the best performing ANN model (ANN3) for the Johor data set is shown 
in Fig. 4. It can be seen that the validation loss is lesser than the train loss. This is because of the small size of 
the validation set, which comprises of 20% of the training set. The size of the validation set can be increased to 
reduce the train loss; however, it was found that the best SF predictions were obtained with the training data to 
validation data ratio set at 80:20. Therefore, this ratio was maintained and utilized in training the ANN models.

Long short‑term memory (LSTM).  The LSTM is an advanced version of the recurrent neural network (RNN) 
that helps to overcome the issues of gradient vanishing and explosion that are present in the standalone RNN44. 
This algorithm utilizes control gates to essentially store, remove, update, and control the flow of information 
in a unique structure known as the memory cell43,44. There are three types of control gates used by the LSTM, 
which are the input gate, the output gate, and the control gate42–44. The input gate functions to control the flow 
of information to be introduced into the cell state, the output gate selects information from the cell state to be 
forwarded to a dense layer containing a single neuron where the final output value is calculated, while the forget 
gate determines the amount of information to be removed from the previous cell state43,44. The operation of the 
control gates helps in filtering relevant information as required, hence contributing towards the minimization of 
errors. As mentioned by existing studies43,44, the LSTM mathematical model can be described through function:

where ht is the output, ot is the output gate, ⊙ is the Hadamard product, and Ct is the cell status value at time t.
As is the case with ANNs, LSTMs also consist of hidden layers filled with neurons, hence a trial-and-error 

process is needed to find the optimal number of hidden layers and neurons. After performing the trial-and-errors, 
it was determined that two hidden layers with 50 neurons in each layer was optimal for SF prediction in the 
present study as it provided good adaptability in producing SF predictions for the 11 different river data sets. In 
addition, different number of epochs, step numbers, training algorithm, dropout regularization on each hidden 
layer, activation function, recurrent activation function, and batch numbers, were tested to discover the best 
possible LSTM architecture within the context of the present study. Through the testing, the best LSTM archi-
tecture was found and is shown in Table 9. All other unmentioned LSTM hyperparameters including initializer, 
regularizer, and constraints, were remained as their default values as satisfactory SF predictions were obtained.

During each of the LSTM models’ training process, the train and validation loss vs epochs graphs are pro-
duced to graphically verify that the losses reduce and converge, and to ensure that overfitting does not occur. 
As a sample, the losses vs epochs graph for the best performing LSTM model (LSTM2) for the Johor data set is 
shown in Fig. 5. It can be seen that the validation loss is lesser than the train loss, similar to Fig. 4. This is because 
of the small size of the validation set, which comprises of 20% of the training set. The size of the validation set 
can be increased to reduce the train loss; however, it was found that the best SF predictions were obtained with 
the training data to validation data ratio set at 80:20. Therefore, this ratio was maintained and utilized in train-
ing the ANN models. Additionally, the higher train loss may be due to the dropout regularization applied in 

(4)ht = ot⊙tanh(Ct)

Figure 4.   Train and validation loss vs epochs for ANN3 model training process.
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the LSTM model structure. The dropout regularization was applied to reduce validation loss, hence leading to 
better generalization outside the validation and test sets. However, the dropout regularization may sacrifice train 
accuracy to enhance validation accuracy, which may cause train loss to be higher than validation loss. On top of 
that, regularization methods are only applied during training and not during validation, which can also cause 
train loss to be higher than validation loss.

Performance measures.  Four performance measures were utilized to evaluate the SF prediction models’ 
performances, namely the mean absolute error (MAE), root mean squared error (RMSE), coefficient of determi-
nation (R2), and ranking mean (RM). MAE, RMSE, and R2 have been frequently used in existing SF prediction 
studies4,13–15,18,34,43,54,59. RM was utilized by Ahmed et al.60 as a means to rank overall model performance.

Mean absolute error (MAE).  The MAE calculates the average absolute difference between predicted and actual 
values; hence a lower MAE is desired. The MAE is measured cubic meters per second (m3/s) in the present study. 
MAE is calculated by:

where yi is the real value, ŷi is the predicted value, and n is the sample size.

(5)MAE =
1

n
·

[
n∑

i=1

∣∣yi − ŷi
∣∣
]

Table 9.   Hyperparameter tuning of LSTM algorithm.

Hyperparameter tuning of LSTM algorithm

Hyperparameter Selected Default

Number of hidden layers 2 No default

Number of neurons in each hidden layer 50 No default

Number of epochs 100 1

Early callback function When validation loss does not improve after 50 epochs None

Step number 7 No default

Batch number 32 32

Training algorithm Adam RMSprop

Dropout regularization on each hidden layer 0.2 None

Activation function tanh tanh

Recurrent activation function sigmoid sigmoid

Loss function MSE No default

Figure 5.   Train and validation loss vs epochs for LSTM2 model training process.
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Root mean squared error (RMSE).  The RMSE is a metric that places a relatively high weight on large errors, 
hence making it a useful indicator of large errors. A lower RMSE is typically desired. In the present study, the 
RMSE is measured in units of cubic meters per second (m3/s). The following equation is used for the computa-
tion of RMSE:

where yi is the real value, ŷi is the predicted value, and n is the sample size.

Coefficient of determination (R2).  The R2 computes the correlation between real values and predicted values, 
with the range of R2 scores between − 1 and 1. An R2 closer to 1 signals a high correlation between real and pre-
dicted values. R2 scores are unitless. The following equation is used to calculate R2:

where yi is real value, ŷi is predicted value, yi  is the mean of yi , and n is sample size.

Ranking mean (RM).  To compute the RM, each model is first ranked based on the scores of the selected per-
formance measures, which are MAE, RMSE, and R2 in the present study. Each models’ RM is then calculated by 
obtaining the average of their ranks respective to their MAE, RMSE and R2 scores. A higher RM signals a better 
overall performance of a model compared to the other models. RM is defined by:

where n is the number of performance evaluation measures used, which is 3.

Results and discussion
This section presents and discusses the performances of the developed models for SSL prediction. A comparison 
and analysis is then made based on the model performances.

Performance of models based on the Sungai Johor, Johor data set.  The best overall performance 
in predicting SF for the Sungai Johor, Johor data set was produced by model ANN3, which is based on the ANN 
algorithm and input parameter scenario 3. ANN3 outperformed the other models with MAE, RMSE, and R2 
scores of 4.7235 m3/s, 10.0746 m3/s, and 0.9443 respectively, hence obtaining the highest RM with a score of 1.00. 
SVR2 was the best SVR model (RM = 4.00), while LSTM2 was the best LSTM model (RM = 7.00). The models’ 
performance scores and actual vs predicted SF of best models based on each algorithm for the Sungai Johor test 
set are shown in Table 10 and Fig. 6 respectively.

Performance of models based on the Sungai Muda, Kedah data set.  Model SVR3, based on the 
SVR algorithm and input parameter scenario 3, produced the best overall performance in predicting SF for the 
Sungai Muda, Kedah data set. SVR3 significantly outperformed the other models in terms of MAE with a score 
of 12.3853 m3/s, hence obtaining the best RM with a score of 1.67. ANN2 achieved the best RMSE and R2 with 
scores of 29.6536 m3/s and 0.8911 respectively. ANN2 was the best ANN model (RM = 2.67), while LSTM1 was 
the best LSTM model (RM = 7.00). The models’ performance scores and actual vs predicted SF of best models 
from each algorithm for the Sungai Muda test set are shown in Table 11 and Fig. 7 respectively.

(6)RMSE =

√√√√ 1

n
·

[
n∑

i=1

(
yi − ŷi

)2
]

(7)R2
= 1−

[∑n
i=1

(
yi − ŷi

)2
∑n

i=1

(
yi − yi

)2

]

(8)RM =
1

n

n∑

i=1

ranki

Table 10.   Models’ performance scores based on Sungai Johor test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 6.6855 21.3127 0.7509 6 6 6 6.00

SVR2 5.6855 20.7216 0.7645 4 4 4 4.00

SVR3 5.5750 21.1976 0.7536 3 5 5 4.33

ANN1 6.0686 14.3558 0.8870 5 3 3 3.67

ANN2 4.8265 10.9228 0.9346 2 2 2 2.00

ANN3 4.7235 10.0746 0.9443 1 1 1 1.00

LSTM1 9.3446 21.7108 0.7421 8 8 8 8.00

LSTM2 9.3061 21.6780 0.7429 7 7 7 7.00

LSTM3 9.5766 22.1443 0.7317 9 9 9 9.00
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Figure 6.   Actual vs predicted SF of best models based on each algorithm for Sungai Johor test set.

Table 11.   Models’ performance scores based on Sungai Muda test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 13.3065 30.8601 0.8821 3 6 6 5.00

SVR2 13.0296 30.2442 0.8867 2 4 4 3.33

SVR3 12.3853 29.7585 0.8903 1 2 2 1.67

ANN1 14.6595 30.3473 0.8859 5 5 5 5.00

ANN2 15.4957 29.6536 0.8911 6 1 1 2.67

ANN3 14.4053 29.7719 0.8902 4 3 3 3.33

LSTM1 20.4944 45.3718 0.7456 7 7 7 7.00

LSTM2 22.3298 45.7841 0.7409 8 8 8 8.00

LSTM3 22.8569 45.9370 0.7392 9 9 9 9.00

Figure 7.   Actual vs predicted SF of best models based on each algorithm for Sungai Muda test set.
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Performance of models based on the Sungai Kelantan, Kelantan data set.  The best overall per-
formance in predicting SF for the Sungai Kelantan, Kelantan data set was produced by model SVR3, which is 
based on the SVR algorithm and input parameter scenario 3. SVR3 outperformed the other models with MAE, 
RMSE, and R2 scores of 73.0989 m3/s, 173.7072 m3/s, and 0.8529 respectively, hence obtaining the highest RM 
with a score of 1.00. ANN3 was the best ANN model (RM = 2.67), while LSTM2 was the best LSTM model 
(RM = 7.33). The models’ performance scores and actual vs predicted SF of best models based on each algorithm 
for the Sungai Kelantan test set are shown in Table 12 and Fig. 8 respectively.

Performance of models based on the Sungai Melaka, Melaka data set.  The best overall perfor-
mance in predicting SF for the Sungai Melaka, Melaka data set was produced by model ANN1, which is based on 
the ANN algorithm and input parameter scenario 1. ANN1 outperformed the other models with MAE, RMSE, 
and R2 scores of 2.7113 m3/s, 6.0824 m3/s, and 0.6809 respectively, hence obtaining the highest RM with a score 
of 1.00. SVR1 was the best SVR model (RM = 3.67), while LSTM1 was the best LSTM model (RM = 7.67). The 
models’ performance scores and actual vs predicted SF of best models based on each algorithm for the Sungai 
Melaka test set are shown in Table 13 and Fig. 9 respectively.

Performance of models based on the Sungai Kepis, Negeri Sembilan data set.  The best overall 
performance in predicting SF for the Sungai Kepis, Negeri Sembilan data set was produced by model LSTM3, 
which is based on the LSTM algorithm and input parameter scenario 3. LSTM3 outperformed the other models 
with MAE, RMSE, and R2 scores of 0.4969 m3/s, 2.6430 m3/s, and 0.0202 respectively, hence obtaining the high-
est RM with a score of 1.00. SVR1 and SVR2 were the joint-best SVR models (RM = 4.67), while ANN2 was the 
best ANN model (RM = 7.00). The models’ performance scores and actual vs predicted SF of best models based 
on each algorithm for the Sungai Kepis test set are shown in Table 14 and Fig. 10 respectively.

Table 12.   Models’ performance scores based on Sungai Kelantan test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 75.2411 175.7898 0.8493 4 4 4 4.00

SVR2 73.9793 176.0282 0.8489 3 5 5 4.33

SVR3 73.0989 173.7072 0.8529 1 1 1 1.00

ANN1 76.3966 174.9986 0.8507 6 2 2 3.33

ANN2 75.8246 180.5615 0.8410 5 6 6 5.67

ANN3 73.7096 175.1687 0.8504 2 3 3 2.67

LSTM1 133.7528 265.5139 0.6580 7 9 9 8.33

LSTM2 134.1845 264.5478 0.6605 8 7 7 7.33

LSTM3 134.3691 264.5587 0.6605 9 8 8 8.33

Figure 8.   Actual vs predicted SF of best models based on each algorithm for Sungai Kelantan test set.
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Performance of models based on the Sungai Pahang, Pahang data set.  The best overall perfor-
mance in predicting SF for the Sungai Pahang, Pahang data set was produced by model ANN3, which is based on 
the ANN algorithm and input parameter scenario 3. ANN3 outperformed the other models with MAE, RMSE, 
and R2 scores of 59.0621 m3/s, 100.9960 m3/s, and 0.9700 respectively, hence obtaining the highest RM with a 
score of 1.00. SVR2 was the best SVR model (RM = 3.33), while LSTM2 was the best LSTM model (RM = 7.33). 
The models’ performance scores and actual vs predicted SF of best models based on each algorithm for the Sun-
gai Pahang test set are shown in Table 15 and Fig. 11 respectively.

Table 13.   Models’ performance scores based on Sungai Melaka test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 2.7688 6.7611 0.6057 3 4 4 3.67

SVR2 2.9154 7.3515 0.5339 5 5 5 5.00

SVR3 2.9217 7.5694 0.5058 6 6 6 6.00

ANN1 2.7113 6.0824 0.6809 1 1 1 1.00

ANN2 2.8758 6.5140 0.6340 4 3 3 3.33

ANN3 2.7218 6.1571 0.6730 2 2 2 2.00

LSTM1 4.1403 8.1246 0.4327 9 7 7 7.67

LSTM2 4.0984 8.1950 0.4228 7 9 9 8.33

LSTM3 4.1347 8.1269 0.4324 8 8 8 8.00

Figure 9.   Actual vs predicted SF of best models based on each algorithm for Sungai Melaka test set.

Table 14.   Models’ performance scores based on Sungai Kepis test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 8.8078 183.6942 0.0001 5 6 6 5.67

SVR2 8.8279 183.6641 0.0004 6 4 4 4.67

SVR3 8.7211 183.6811 0.0002 4 5 5 4.67

ANN1 10.5674 183.8572 − 0.0017 8 8 8 8.00

ANN2 10.5064 183.7476 − 0.0005 7 7 7 7.00

ANN3 10.8344 183.9346 − 0.0025 9 9 9 9.00

LSTM1 0.5061 2.6564 0.0102 3 2 2 2.33

LSTM2 0.5028 2.6654 0.0035 2 3 3 2.67

LSTM3 0.4969 2.6430 0.0202 1 1 1 1.00
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Figure 10.   Actual vs predicted SF of best models based on each algorithm for Sungai Kepis test set.

Figure 11.   Actual vs predicted SF of best models based on each algorithm for Sungai Pahang test set.

Table 15.   Models’ performance scores based on Sungai Pahang test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 85.0020 143.9947 0.9389 6 6 6 6.00

SVR2 68.8680 118.2528 0.9588 4 3 3 3.33

SVR3 65.5277 120.8079 0.9570 3 4 4 3.67

ANN1 81.6888 137.3886 0.9444 5 5 5 5.00

ANN2 62.7678 105.4579 0.9672 2 2 2 2.00

ANN3 59.0621 100.9960 0.9700 1 1 1 1.00

LSTM1 130.0995 215.9988 0.8625 9 9 9 9.00

LSTM2 128.5396 213.9796 0.8651 8 7 7 7.33

LSTM3 127.6468 214.9783 0.8638 7 8 8 7.67
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Performance of models based on the Sungai Perak, Perak data set.  The best overall performance 
in predicting SF for the Sungai Perak, Perak data set was produced by model ANN2, which is based on the 
ANN algorithm and input parameter scenario 2. ANN2 outperformed the other models with MAE, RMSE, and 
R2 scores of 18.1337 m3/s, 29.3009 m3/s, and 0.8286 respectively, hence obtaining the highest RM with a score 
of 1.00. SVR2 was the best SVR model (RM = 4.33), while LSTM3 was the best LSTM model (RM = 7.00). The 
models’ performance scores and actual vs predicted SF of best models based on each algorithm for the Sungai 
Perak test set are shown in Table 16 and Fig. 12 respectively.

Performance of models based on the Sungai Arau, Perlis data set.  The best overall performance 
in predicting SF for the Sungai Arau, Perlis data set was produced by model ANN3, which is based on the ANN 
algorithm and input parameter scenario 3. ANN3 outperformed the other models with MAE, RMSE, and R2 
scores of 0.5441 m3/s, 1.4007 m3/s, and 0.6857 respectively, hence obtaining the highest RM with a score of 1.00. 
SVR1 was the best SVR model (RM = 4.00), while LSTM2 was the best LSTM model (RM = 7.00). The models’ 
performance scores and actual vs predicted SF of best models based on each algorithm for the Sungai Arau test 
set are shown in Table 17 and Fig. 13 respectively.

Performance of models based on the Sungai Selangor, Selangor data set.  The best overall per-
formance in predicting SF for the Sungai Selangor, Selangor data set was produced by model ANN3, which is 
based on the ANN algorithm and input parameter scenario 3. ANN3 outperformed the other models with MAE, 
RMSE, and R2 scores of 7.2175 m3/s, 13.9196 m3/s, and 0.8851 respectively, hence obtaining the highest RM with 
a score of 1.00. SVR1 was the best SVR model (RM = 4.67), while LSTM3 was the best LSTM model (RM = 7.00). 
The models’ performance scores and actual vs predicted SF of best models based on each algorithm for the Sun-
gai Selangor test set are shown in Table 18 and Fig. 14 respectively.

Table 16.   Models’ performance scores based on Sungai Perak test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 19.8748 36.5196 0.7338 6 4 4 4.67

SVR2 19.6637 37.3820 0.7211 3 5 5 4.33

SVR3 19.7318 39.0645 0.6954 4 6 6 5.33

ANN1 19.7860 30.5695 0.8135 5 3 3 3.67

ANN2 18.1337 29.3009 0.8286 1 1 1 1.00

ANN3 18.2248 29.7523 0.8233 2 2 2 2.00

LSTM1 25.4832 40.5151 0.6736 9 8 8 8.33

LSTM2 25.4778 40.6169 0.6719 8 9 9 8.67

LSTM3 25.0893 40.4116 0.6752 7 7 7 7.00

Figure 12.   Actual vs predicted SF of best models based on each algorithm for Sungai Perak test set.
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Performance of models based on the Sungai Dungun, Terengganu data set.  The best overall 
performance in predicting SF for the Sungai Dungun, Terengganu data set was produced by model ANN1, 
which is based on the ANN algorithm and input parameter scenario 1. ANN1 outperformed the other models 
with MAE, RMSE, and R2 scores of 18.8022 m3/s, 51.8025 m3/s, and 0.8631 respectively, hence obtaining the 
highest RM with a score of 1.00. SVR1 was the best SVR model (RM = 4.00), while LSTM1 was the best LSTM 
model (RM = 7.00). The models’ performance scores and actual vs predicted SF of best models based on each 
algorithm for the Sungai Dungun test set are shown in Table 19 and Fig. 15 respectively.

Table 17.   Models’ performance scores based on Sungai Arau test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 0.6810 1.8868 0.4296 4 4 4 4.00

SVR2 0.7022 2.0166 0.3485 5 5 5 5.00

SVR3 0.7143 2.0696 0.3138 6 6 6 6.00

ANN1 0.5626 1.5062 0.6365 2 2 2 2.00

ANN2 0.5674 1.5568 0.6117 3 3 3 3.00

ANN3 0.5441 1.4007 0.6857 1 1 1 1.00

LSTM1 0.8803 2.2061 0.2264 9 9 9 9.00

LSTM2 0.8595 2.0975 0.3007 7 7 7 7.00

LSTM3 0.8610 2.1073 0.2941 8 8 8 8.00

Figure 13.   Actual vs predicted SF of best models based on each algorithm for Sungai Arau test set.

Table 18.   Models’ performance scores based on Sungai Selangor test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 8.6747 15.7719 0.8525 6 4 4 4.67

SVR2 8.6363 16.2904 0.8426 5 5 5 5.00

SVR3 8.4787 16.4230 0.8400 4 6 6 5.33

ANN1 7.8569 14.1281 0.8816 3 3 3 3.00

ANN2 7.3758 13.9850 0.8840 2 2 2 2.00

ANN3 7.2175 13.9196 0.8851 1 1 1 1.00

LSTM1 11.2372 20.2553 0.7551 8 9 9 8.67

LSTM2 11.2378 20.2182 0.7560 9 8 8 8.33

LSTM3 11.1610 20.1812 0.7569 7 7 7 7.00
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Figure 14.   Actual vs predicted SF of best models based on each algorithm for Sungai Selangor test set.

Table 19.   Models’ performance scores based on Sungai Dungun test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 22.0572 53.9440 0.8516 6 3 3 4.00

SVR2 21.1469 54.2140 0.8501 5 4 4 4.33

SVR3 20.7256 54.6478 0.8477 4 5 5 4.67

ANN1 18.8022 51.8025 0.8631 1 1 1 1.00

ANN2 18.9638 52.5147 0.8593 2 2 2 2.00

ANN3 20.3061 55.4433 0.8432 3 6 6 5.00

LSTM1 29.1170 76.3889 0.7024 7 7 7 7.00

LSTM2 29.8838 76.7408 0.6997 8 9 9 8.67

LSTM3 30.0394 76.4696 0.7018 9 8 8 8.33

Figure 15.   Actual vs predicted SF of best models based on each algorithm for Sungai Dungun test set.
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Performance of models based on the Sungai Klang, Kuala Lumpur data set.  Model SVR3, based 
on the SVR algorithm and input parameter scenario 3, produced the best overall performance in predicting SF 
for the Sungai Klang, Kuala Lumpur data set. SVR3 outperformed the other models in terms of RMSE and R2 
with scores of 6.6737 m3/s and − 0.0570 respectively, hence obtaining the best RM with a score of 1.33. SVR1 
achieved the best MAE with a score of 3.8143 m3/s. ANN2 was the best ANN model (RM = 4.67), while LSTM3 
was the best LSTM model (RM = 5.67). The models’ performance scores and actual vs predicted SF of best mod-
els based on each algorithm for the Sungai Klang test set are shown in Table 20 and Fig. 16 respectively.

Overall comparison and discussion of model performances.  Two evaluations are considered in 
comparing and analysing the models’ performances. The first evaluation is the number of times a model pro-
duced the best predictive performance for a data set, and the second evaluation is the reliability of each model 
in producing SF predictions of relatively high accuracy. In the present study, ANN3 produced the best predictive 
performance for 4 out of the 11 tested data sets (Sungai Johor, Sungai, Sungai Pahang, Sungai Arau, Sungai Sel-
angor). Meanwhile, SVR3 was the most accurate model in 3 out of the 11 tested data sets (Sungai Muda, Sungai 
Kelantan, Sungai Klang); and ANN1 was the most accurate model in 2 out of the 11 tested data sets (Sungai Mel-
aka, Sungai Dungun). Lastly, ANN2 and LSTM3 achieved the best SF predictions for one data set each, namely 
Sungai Perak and Sungai Kepis respectively. Overall, it is understood that ANN3 produced the most accurate SF 
predictive performances for more data sets in comparison to the other tested models. Additional analysis reveals 
that the algorithm and input scenario that produced the best SF predictive performance for the most data sets are 
the ANN and input scenario 3 respectively, as they produced the best SF predictions for 7 out of 11 data sets and 
8 out of 11 data sets respectively. A matrix of most accurate algorithm and input scenario for each data set and 
the parameters with highest number of best prediction results can be observed in Tables 21 and 22 respectively.

Next, the reliability of each model in producing relatively high-accuracy SF predictions based on different 
data sets is evaluated by calculating and comparing the average of the RM scores obtained by each model for all 
11 tested data sets. This evaluation is significant to identify the predictive models that are most robust and most 
capable of adapting to different data sets which may vary in SF magnitude and behaviour, depending on spatial 

Table 20.   Models’ performance scores based on Sungai Klang test set. Significant values are in bold.

Model MAE RMSE R2 Rank (MAE) Rank (RMSE) Rank (R2) RM

SVR1 3.8143 6.7184 − 0.0712 1 2 2 1.67

SVR2 3.9975 6.8580 − 0.1162 3 3 3 3.00

SVR3 3.8568 6.6737 − 0.0570 2 1 1 1.33

ANN1 5.2573 7.5966 − 0.3696 5 5 8 6.00

ANN2 5.0754 7.4943 − 0.3329 4 4 6 4.67

ANN3 6.0143 8.1951 − 0.5939 6 9 9 8.00

LSTM1 6.7049 7.8051 − 0.3499 9 8 7 8.00

LSTM2 6.4877 7.6416 − 0.2939 8 7 5 6.67

LSTM3 6.4529 7.6092 − 0.2830 7 6 4 5.67

Figure 16.   Actual vs predicted SF of best models based on each algorithm for Sungai Klang test set.
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Table 21.   Matrix of most accurate algorithm and input scenario for each data set.

Algorithm Input scenario 1 Input scenario 2 Input scenario 3

SVR Sungai Muda, Sungai Kelantan, Sungai Klang

ANN Sungai Melaka, Sungai Dungun Sungai Perak Sungai Johor, Sungai Pahang, Sungai Arau, Sungai Selangor

LSTM Sungai Kepis

Table 22.   Parameters with highest number of best prediction results.

Parameter Description

Algorithm ANN (produced best prediction results in 7/11 data sets)

Input scenario Input scenario 3 (produced best prediction results in 8/11 data sets)

Model ANN3 (produced best prediction results in 4/11 data sets)

Table 23.   Average RM of each model based on all data sets. Significant values are in bold.

Data set

RM

SVR1 SVR2 SVR3 ANN1 ANN2 ANN3 LSTM1 LSTM2 LSTM3

Sungai Johor 6.00 4.00 4.33 3.67 2.00 1.00 8.00 7.00 9.00

Sungai Muda 5.00 3.33 1.67 5.00 2.67 3.33 7.00 8.00 9.00

Sungai Kelantan 4.00 4.33 1.00 3.33 5.67 2.67 8.33 7.33 8.33

Sungai Melaka 3.67 5.00 6.00 1.00 3.33 2.00 7.67 8.33 8.00

Sungai Kepis 5.67 4.67 4.67 8.00 7.00 9.00 2.33 2.67 1.00

Sungai Pahang 6.00 3.33 3.67 5.00 2.00 1.00 9.00 7.33 7.67

Sungai Perak 4.67 4.33 5.33 3.67 1.00 2.00 8.33 8.67 7.00

Sungai Arau 4.00 5.00 6.00 2.00 3.00 1.00 9.00 7.00 8.00

Sungai Selangor 4.67 5.00 5.33 3.00 2.00 1.00 8.67 8.33 7.00

Sungai Dungun 4.00 4.33 4.67 1.00 2.00 5.00 7.00 8.67 8.33

Sungai Klang, 1.67 3.00 1.33 6.00 4.67 8.00 8.00 6.67 5.67

Average RM 4.48 4.21 4.00 3.79 3.21 3.27 7.58 7.27 7.18

Figure 17.   Bar chart of average RM for each model based on all data sets.
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and temporal factors as well as the heterogeneity of water balance components. Based on Table 23 and Fig. 17, 
it is determined that ANN2 exhibits the highest average RM with a score of 3.21. This makes ANN2 the most 
reliable model in predicting SF with a relatively high accuracy for different data sets, in comparison to the other 
tested models. ANN3 produced the second-best average RM score (average RM = 3.27) which is very close to the 
ANN2 average RM score, while ANN1 produced the third-best average RM score (average RM = 3.79). Overall, 
it is found that the top three average RM scores were produced by the ANN models.

The best model for SF prediction in the present study is then selected based on the findings with regards to 
the first evaluation which is the number of times a model produced the best predictive performance for a data 
set; and the second evaluation which is the reliability of each model in producing SF predictions of relatively 
high accuracy. For the first evaluation, Table 21 shows that ANN3 was the most accurate SF predictive model for 
4 out of the 11 tested data sets, which is more than any of the other tested models. Through the second evalua-
tion, it was found that ANN2 produced the best average RM as shown in Table 23 and Fig. 17, hence indicating 
that it was the most reliable model in producing relatively high-accuracy SF predictions. Therefore, the two 
evaluations utilized have proposed different best models, which are ANN2 and ANN3. To make a distinction 
of the best overall model in the present study, the performances of ANN2 and ANN3 are compared side by side 
to truly determine the most advantageous SF predictive model. With regards to the first evaluation, it can be 
seen in Table 21 that there is a clear and significant difference between the performance of ANN2 and ANN3, 
as ANN2 produced the best SF predictive performance for only 1 out of the 11 tested data sets while ANN3 
managed to outperform the other models in 4 out of the 11 tested data sets. Meanwhile, the second evaluation 
shows that although ANN2 is superior compared to the other models, the difference between the average RMs 
of ANN2 and ANN3 is very small and negligible as can be seen in Table 23 and Fig. 17. Based on these analyses, 
ANN3 is selected and proposed as the universal ML model that is capable of predicting SF with high accuracy 
for rivers within the region of Peninsular Malaysia. Although ANN2 obtained the best average RM score, this 
model only produced the best predictive performance for 1 out of the 11 tested data sets which is significantly 
lesser compared to ANN3 which outperformed all the other models for 4 out of the 11 tested data sets, hence 
why ANN3 was selected as the best model.

Table 21 and Fig. 17 highlight ANN as the most suitable and successful algorithm in the present study, 
while SVR is the second-best algorithm and LSTM is the poorest performing algorithm. The LSTM predictive 
performance was significantly poor compared to that of the ANN and SVR algorithms, as the LSTM was only 
able to outperform ANN and SVR for only one data set while exhibiting the poorest average RMs out of all the 
algorithms. The poor performance of LSTM in the present study is attributed to the volatility and lack of clear 
time pattern in the SF data sets, as LSTMs are generally effective in solving problems with clear time patterns. 
On the other hand, ANN and SVR performed better because they are regression-based methods which appears 
to be more suited for the current problem of predicting SF in Peninsular Malaysia.

The superiority of the ANN algorithm over the other algorithms in predicting SF may be attributed to the 
advantages of the ANN algorithm in general. In addition to being able to easily handle large data sets; detect 
complex non-linear relationships; and easily relate input and output parameters without the need for complex 
mathematical calculations, the ANN algorithm is also able to learn by itself and produce output or predictions 
that are not limited to the input provided to it. These advantages appear to have facilitated high-accuracy SF 
predictive performances by the ANN algorithm, as the ANN algorithm was able to produce the best SF predictive 
performance for the most data sets (7 out of 11 data sets) compared to the other algorithms. On top of that, it can 
be seen in Fig. 6 to Fig. 16 that the ANN algorithm predicts the extreme SF values or SF spikes more accurately 
compared to the other algorithms. Input scenario 3 is found to induce the most success when coupled with the 
ANN algorithm, as the ANN3 model outperformed all other models in 4 out of the 11 tested data sets while 
obtaining among the best average RM scores in the present study. This may be because input scenario 3 provides 
an optimum amount of useful historical SF input that can be used by the ANN algorithm to make accurate SF 
predictions, hence enabling the ANN3 model to produce highly accurate SF predictions and outperform the 
other SF predictive models in the present case study.

When compared to existing studies, the findings in the study by Ateeq-ur-Rauf25 is agreeable with the find-
ings in the present study, as the ANN algorithm outperforms the SVM algorithm. Additionally, other existing 
studies also point towards ANN as the superior ML algorithm for SF prediction when compared to other ML 
algorithms26–29. On the contrary, there are also existing studies that contradict the present study’s findings, as 
they have shown the SVM and LSTM algorithms to perform better in predicting SF compared to the ANN 
algorithm6,13,14,16,17,42,43. This may be due to differences in the experimental setup relating to elements such as 
input and output parameters; forecast horizons; data set characteristics such as number of data sets and amount 
of data available for training and testing; study location; magnitude and behaviour of SF in selected river; and ML 
algorithm hyperparameter setup. In the present study, the SVM algorithm has indeed shown that it is capable of 
outperforming the ANN algorithm, as it predicted SF better in 3 out of the 11 tested data sets namely the Sungai 
Muda, Sungai Kelantan, and Sungai Klang data sets. However, the ANN algorithm is superior on an overall scale 
as it outperformed both the SVM and LSTM algorithms in the remaining 7 tested data sets while also obtaining 
better average RMs, as shown in Table 21 and Fig. 17. Therefore, it can be summed up that the ANN algorithm 
is the most accurate and effective ML algorithm for SF prediction when the present study’s experimental setup 
is applied, which includes a univariate approach that uses lagged daily average SF to predict current daily aver-
age SF for 11 different data sets from rivers throughout Peninsular Malaysia. Although the ANN3 model has 
produced good SF predictive performance in the present study, it can still potentially be improved. Hybridization 
and usage of optimization algorithms to improve the selection of ML algorithms’ hyperparameters may enhance 
prediction capability and accuracy. Rainfall data may also be obtained and utilized as an input parameter to 
improve SF predictive performance, given that rainfall has been shown in existing studies to have a correlation 
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with SF12,34,61. These elements are yet to be investigated in the present study; hence they are suggested for future 
implementations.

Conclusion
In the present study, daily average SF time series data for 11 different rivers throughout Peninsular Malaysia were 
collected and utilized for the development of ML models that predict future SF. Three types of ML algorithms 
were used, namely SVM, ANN, and LSTM. The quantitative analyses show that the ANN3 model, which is based 
on the ANN algorithm and input scenario 3 (inputs comprising of previous 3 days SF data), represents the best 
performing model for SF prediction in the present study. ANN3 outperformed all the other tested model in pre-
dicting SF for the greatest number of data sets, which is 4 out of the 11 tested data sets. This model also exhibited 
among the best average RM scores, which indicates that it is highly reliable in producing accurate SF predictions 
for different data sets which may vary in terms of SF behaviour and magnitude. Additionally, it was found that 
the algorithm and input scenario that were most effective as model components in predicting SF were ANN and 
input scenario 3. The ANN algorithm produced the most accurate SF predictions for 7 out of the 11 tested data 
sets while the usage of input scenario 3 led to the best SF predictions for 8 out of the 11 tested data sets.

In conclusion, the present study set out to address the research gap in which a single ML model capable of 
accurately predicting SF for multiple different rivers within Peninsular Malaysia is yet to be developed and pro-
posed, as majority of existing studies have focused on the development of SF predictive models based on only 
one data set or river case study. Therefore, this research gap has been addressed in the present study by develop-
ing and testing 99 ML models, based on different established ML algorithms, input scenarios, and SF data sets 
in Peninsular Malaysia; and proposing the best performing ML model as a universal model that is capable of 
predicting SF for rivers within the study region. Based on the findings, the present study proposes the ANN3 
model as the universal model that is most capable of SF prediction for rivers within Peninsular Malaysia, hence 
the main objective of the present study is achieved. In hindsight, the findings from the present study are hoped 
to contribute towards the respective body of knowledge and aid organizations in mitigating the effects of envi-
ronmental hazards, particularly droughts and floods, through effective and accurate SF predictions using ML 
models. Further improvement of the ANN3 model for SF prediction in Peninsular Malaysia can be considered as 
the focus or topic of future studies. Hybridization and utilization of optimization algorithms or more advanced 
techniques may be used with the ANN3 model to enhance the capability of identifying optimal hyperparam-
eters, resulting in possibly improved accuracy of the model. Rainfall data may also be implemented as an input 
parameter to improve SF prediction.

Data availability
The data that support the findings of this study are available at the Malaysian Department of Irrigation and 
Drainage.
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