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Histone H2AX promotes metastatic 
progression by preserving 
glycolysis via hexokinase‑2
Yue Liu1,2, Haojian Li1,2, Crystal N. Wilson1,2, Hui Jen Bai1,2, Myriem Boufraqech1,2 & 
Urbain Weyemi1,2*

Genomic stability is essential for organismal development, cellular homeostasis, and survival. The 
DNA double‑strand breaks are particularly deleterious, creating an environment prone to cellular 
transformation and oncogenic activation. The histone variant H2AX is an essential component of 
the nucleosome responsible for initiating the early steps of the DNA repair process. H2AX maintains 
genomic stability by initiating a signaling cascade that collectively functions to promote DNA double‑
strand breaks repair. Recent advances have linked genomic stability to energetic metabolism, and 
alterations in metabolism were found to interfere with genome maintenance. Utilizing genome‑wide 
transcripts profiling to identify differentially‑expressed genes involved in energetic metabolism, we 
compared control and H2AX‑deficient metastatic breast cancer cell lines, and found that H2AX loss 
leads to the repression of key genes regulating glycolysis, with a prominent effect on hexokinase‑2 
(HK2). These observations are substantiated by evidence that H2AX loss compromises glycolysis, 
effect which was reversed by ectopic expression of HK2. Utilizing models of experimental metastasis, 
we found that H2AX silencing halts progression of metastatic breast cancer cells MDA‑MB‑231. Most 
interestingly, ectopic expression of HK2 in H2AX‑deficient cells restores their metastatic potential. 
Using multiple publicly available datasets, we found a significantly strong positive correlation 
between H2AX expression levels in patients with invasive breast cancer, and levels of glycolysis genes, 
particularly HK2. These observations are consistent with the evidence that high H2AX expression is 
associated with shorter distant metastasis‑free survival. Our findings reveal a role for histone H2AX in 
controlling the metastatic ability of breast cancer cells via maintenance of HK2‑driven glycolysis.

Most cancer deaths are due to metastatic  disease1. Understanding how cells migrate from their primary site to 
seed new tumors throughout the body is a longstanding challenge in developing novel cancer treatments. Cur-
rent models propose that invasive cancer cells undergo phenotypic changes involving epithelial to mesenchymal 
transition (EMT). EMT is characterized by the loss of cell polarity, cell–cell adhesion, and the acquisition of 
migratory and invasive  properties1. Recently, we showed that deficiency in the DNA repair histone variant H2AX 
in colon cancer cells led to chromatin remodeling and activation of key transcription factors involved in the EMT 
in colon cancer cells, but with limited impact on the metastatic potential in immunocompromised  mice2. Other 
findings implicated additional chromatin-based DNA repair proteins including BRG1, histone macroH2A.1 and 
BRCA1 in abnormal epithelial  differentiation3–5.

There is mounting evidence on the requirement for enhanced energetic metabolism in invasive cancer cells to 
establish metastases in a nutrients-poor tumor  microenvironment6,7, particularly in invasive breast cancer  cells6. 
For instance, silencing of mitochondrial biogenesis through repression of the transcription co-activator PGC-1α 
is accompanied by significant mitigation of the invasive ability of breast cancer cells, limiting their potential 
to establish tumor nodules at distant  sites6. Thus, impairment of energetic metabolism in cancer cells reduces 
metastatic potential of highly invasive cancer cells. Normal mammalian cells maintain their energetic metabo-
lism via multiple pathways coordinating the conversion of aerobic glucose into pyruvate. However, in cancer 
cells, there is an increase in the rate of glucose uptake and preferential production of lactate, even in normoxic 
conditions. This process is known as the Warburg  effect8,9. The Warburg effect provides metabolites for cancer 
cell proliferation and promotes resistance to apoptosis. Our prior research revealed repression of mitochondrial 
energetic metabolic genes in untransformed H2AX-deficient  cells10. We hypothesize that impaired energetic 
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metabolism resulting from H2AX loss increases the ability of metastatic cancer cells to heavily rely on reduced 
metabolism, thereby limiting the energy available for their proliferation in a nutrients-poor tumor environment.

Utilizing transcriptomics to determine whether H2AX loss affects metabolic genes in highly invasive triple-
negative breast cancer cells, we found that H2AX-deficient cells exhibit repression of glycolysis genes. Nota-
bly, H2AX loss leads to a major repression of genes coordinating glycolysis, particularly hexokinase-2 (HK2). 
HK2 is one of the major frontline enzymes required for glycolysis and cancer cell  survival11,12. Recent findings 
demonstrated that HK2 elicits multiple key steps responsible for cancer progression and resistance to current 
 therapies13–16. Overexpression of HK2 in H2AX-deficient cells partly rescues glycolysis as evidenced by restora-
tion of lactate production in MDA-MB-231 cells. When injected into immunocompromised mice, H2AX-defi-
cient cells exhibit reduced metastases in the lung, and failed to establish nodules at distant sites. Ectopic expres-
sion of HK2 in H2AX-depleted cells restores their metastatic potential. Our data suggest that H2AX-deficient 
cells failure to metastasize may reflect a glycolysis-dependent energetic metabolic dysfunction. Our study reveals 
unprecedented evidence of a role for histone H2AX in promoting metastatic ability of invasive breast cancer cells, 
potentially via transcriptional regulation of hexokinase-2 and glycolysis maintenance.

Results and discussion
H2AX depletion represses glycolytic genes in invasive breast cancer cells. We previously dem-
onstrated that histone H2AX controls metabolic pathways involving oxidative phosphorylation and mitochon-
drial  homeostasis17–19. Mounting evidence point to a role for energetic metabolic pathways such as glycolysis, 
and oxidative phosphorylation in promoting metastatic cancer cells’ ability to establish tumors at distant  sites6,8,9. 
Likewise, genomic instability coupled with energetic metabolism fuel cancer cells to survive in the nutrient-poor 
tumor microenvironment. To determine the role of histone H2AX in energetic metabolism, we performed a 
genome-wide differential gene expression (DEG) analysis comparing control triple-negative MDA-MB-231 and 
BT549 breast cancer cells, with H2AX-deficient cells generated using short hairpin RNA interference approach. 
The output from the DEG analysis yields 3956 genes in MDA-MB-231 cells and 5377 genes in BT549 cells. These 
DEG between control cells and H2AX-deficient cells were merged with 2981 metabolic  genes20. The output from 
the overlay yields 347 genes prominently involved in metabolic pathways and dysregulated in cells deficient for 
H2AX (Fig. 1A). Pathway analysis on these 347 metabolic genes revealed a significant enrichment for multiple 
signaling pathways involved in cancer, with the glycolysis pathway ranking as the most repressed across cell lines 
(Fig. 1B,C).

Further analysis of genes found to be enriched in glycolysis pathway revealed consistent repression of nine 
essential glycolysis genes across cell lines including hexokinase-2 (HK2), Aldose, Fructose-Biphosphate A 
(ALDOA), Pyruvate Kinase M1/2 (PKM), and phosphoglycerate Mutase 1 (PGAM1) (Fig. 2A). HK2 encodes 
for hexokinase-2, a rate-limiting enzyme for glycolysis. These findings imply a strong correlation between H2AX 
expression and genes essential for glycolysis. To further confirm this novel link between H2AX and glycolysis, 
we conducted a correlation analysis comparing H2AX expression level with the nine glycolysis genes obtained 
from the transcriptomics output in human invasive breast cancer tissues samples available in both the Cancer 
Genome Atlas (TCGA) and the gene expression-based outcome for breast cancer online (GOBO)  datasets21. Gly-
colysis genes were clustered based on H2AX transcript levels evenly separated into 3 groups, and the output was 
used to generate a heatmap. The findings indicate that the transcript level of H2AX is significantly correlated 
with glycolysis genes across all specimens in GOBO, while the correlation is found non significant for HK2 in 
TCGA  presumably owing to the fewer number of metastatic specimens in this cohort. Specifically, patients with 
high H2AX exhibit high levels of glycolysis genes, while patients with lower H2AX have significantly repressed 
expression of the same genes (Fig. 2B,C). The transcriptional repression of HK2 in H2AX-deficient cells was 
confirmed using real-time quantitative PCR (RT-qPCR) (Fig. 2D,E). Histone H2AX is primarily described for 
its role in DNA repair and for the recruitment of repair partners proteins to the DNA-damaged sites. However, 
the observations that H2AX appeared to significantly influence transcript level of HK2 suggest a role for H2AX 
in transcriptionally regulating HK2 expression. Indeed, H2AX loss resulted in a 25% decrease in HK2 promoter 
activity. By contrast, the promoter activity of ACTB (beta-actin), a gene known not to be involved in glycolysis, 
remains relatively unchanged (Supplementary Fig. 1). Western blot analysis showed an over 40% decrease in 
HK2 protein levels in H2AX-deficient cells in both cell lines (Fig. 2F,G). Taken together, these findings reveal a 
previously unknown interplay between histone H2AX and glycolysis genes. Particularly, the repression of HK2 
following H2AX silencing suggests a potential for H2AX to control genes involved in the early steps of glycolysis. 
These findings are in line with previous reports demonstrating the importance of histone H2AX in mediating 
cancer cells  survival22. In fact, the findings established that activation of histone H2AX through its phosphoryla-
tion in response to DNA damage triggers HIF-1α enrichment in the nucleus of invasive breast cancer cells, with 
a subsequent overactivation of HIF-1α signaling. This activation is selectively associated with an accelerated 
cancer progression and metastasis. Indeed, H2AX depletion resulted in a significant decrease in cell proliferation 
associated with a higher level of apoptosis (Supplementary Fig. 2A,B). Unbiased analysis comparing differential 
pathways enrichment in both control and H2AX-deficient cells revealed that genes controlling activation of 
apoptosis are significantly overexpressed in H2AX-deficient cells (Supplementary Fig. 2C–E). Taken together, 
our new findings reveal a unique link between H2AX and glycolysis, pointing to a potential for H2AX to control 
energetic metabolism in invasive breast cancer cells’ survival.

Ectopic expression of hexokinase‑2 restores glycolysis in H2AX‑deficient cells. Hexokinase-2 
was re-expressed in H2AX-deficient cells to examine whether the metabolic characteristics of the parental 
MDA-MB-231 cells would be restored. H2AX silencing leads to a 20% decrease in glycolysis as evidenced by 
level of extracellular lactate production (Fig. 3A,B). Ectopic expression of HK2 restores lactate level (Fig. 3C,D), 
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Figure 1.  H2AX is a key player in the regulation of glycolysis in triple-negative breast cancer cells. (A) 
MDA-MB-231 and BT549 cells were transfected with scrambled short hairpin RNA (shCTRL) or with short 
hairpin RNA against H2AFX (shH2AX), and the resulting cells were used for transcriptomics to generate 
Differentially Expressed Genes (DEG) between shCTRL and shH2AX. DEG were merged with 2981 metabolic 
genes to identify genes regulated by H2AX. The output from the overlay between the two genes sets revealed 
347 genes commonly shared and consistent in both MDA-MB-231 and BT549 cells. (B,C) Ingenuity Pathway 
Analysis (IPA) was used to establish cellular pathways in which the 347 metabolic genes are involved. The output 
revealed enrichment for multiple pathways involved in metabolic reprogramming of cancer cells. Glycolysis 
pathway is significantly repressed in both cell lines. Blue bars represent repressed pathways, and orange bars 
represent activated pathways. Grey bars indicate a pathway with fewer molecules and limited enrichment for a 
prediction. The height of the bar represents the p-value. The yellow line indicates the log (p-value) threshold of 
significance (1.3), which corresponds to p-value of 0.05. Statistical significance was determined by Fishers Test.
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thereby implying that HK2 may mediate the role of H2AX in glycolysis. A similar pattern of improved glycolysis 
was found in two independent H2AX-silenced clones in which HK2 expression was restored (Fig. 3E). These 
findings suggest that HK2 mediates glycolytic metabolism induced by H2AX. While studies have demonstrated 
the role of HK2 in cancer progression and metastasis, the prominent contribution of H2AX in HK2-driven 
glycolysis is strikingly novel. These new findings establish a potential dialogue between histone H2AX and key 
glycolysis genes required for cancer cells survival.

Histone H2AX loss abrogates metastatic progression of invasive breast cancer cells. Metasta-
sis is the main cause of death in patients with breast  cancer23–25. Among all forms of breast cancer, triple-negative 
breast cancer (TNBC) has the poorest outcome because of its high potential of metastatic progression, and the 
lack of effective targeted  treatments6,25,26. The importance of metabolism in the progression of TNBC is gradu-
ally being investigated, but the dialogue between genomic instability and altered metabolism has been poorly 
studied. Insights into how metabolic reprogramming connects genomic instability to metastatic progression in 
TNBC is still unclear. Mounting evidence in the recent years have pointed to the notion that only a fraction of 
cancer cells detach from the primary tumor to migrate and invade into the bloodstream, and establish metasta-
ses at distant  sites16,27,28. Reports have shown that the Warburg effect endows certain invasive cancer cells with 
the potential to evade excess lack of nutrients and stress to increase metastatic  potential29. Compromising this 
pathway may repress cancer metastasis and cancer cells survival in the tumor microenvironment. To investigate 
how glycolysis impairment due to H2AX loss impacts the metastatic colonization potential of TNBC, we injected 
control cells, H2AX-deficient cells, and H2AX-deficient cells in which HK2 was ectopically expressed into the 
tail veins of immunocompromised mice and analyzed tumor growth in the lung, and metastatic progression to 
distant organs using bioluminescence imaging. H2AX silencing leads to a 60% reduction in tumor growth in 
the lung, while HK2 re-expression in H2AX-deficient cells partly restores tumor progression (Fig. 4A,B). These 
observations are particularly substantiated by the findings that mice injected with either parental cells or H2AX-
deficient cells with ectopic HK2 expression exhibit higher number of bones and liver metastases (Fig. 4C). Imag-
ing of lung metastasis 6 weeks post tumor inoculation confirms evidence of reduced metastatic potential in 
cells depleted for H2AX expression, while HK2 reactivation is found to foster the metastatic ability of cancer 
cells (Supplementary Fig. 3). When stained with Ki-67, a marker for highly proliferating cells, we found that 
H2AX-deficient tumor cells exhibit impaired proliferative ability in vivo as revealed by tumor sites lacking posi-
tive staining for Ki-67, while ectopic expression of HK2 in H2AX-deficient cells restore their highly aggressive 
proliferative behavior (Fig. 4D).

To investigate whether the role of H2AX in the regulation of HK2 expression and glycolysis may provide 
clues for any clinical correlation, we conducted H2AX expression level analysis in multiple cell lines derived 
from human malignancies using the CCLE  dataset30. The data indicate that H2AX transcript is selectively over-
expressed in cells derived from the metastatic sites of breast and esophagogastric cancers compared to the 
primary site, while H2AX level remains relatively unchanged in other cancer cells lines including cells derived 
from ovarian, pancreatic and colorectal cancers (Fig. 5A). These observations are substantiated by the evidence 
that high H2AX expression is associated with shorter distant metastasis-free survival in invasive breast cancers 
from the GOBO dataset (Fig. 5B). We also conducted an expression level comparison of H2AX and HK2 in 
invasive breast cancer specimens available in the GOBO  dataset21, as well as in single cell-sequencing dataset of 
triple negative breast cancer patients (see GSE176078)31. Our data reveal that the transcript levels of H2AX and 
HK2 are positively correlated across all samples based on correlation coefficients (GOBO, r = 0.3410, p < 0.0001, 
n = 1434; GSE176078, r = 0.6372, p < 0.0001, n = 187, using the non-parametric Mann–Whitney test) (Fig. 5C,D). 
Collectively, these findings suggest a unique link between H2AX and HK2 in invasive breast cancers. Our data 
imply that H2AX loss leads to reduced cancer aggressiveness presumably via impairment of HK2-driven glyco-
lytic metabolism and cancer cell’s ability to survive.

From the physiological standpoint, hexokinase-2 is an essential glycolysis gene regulated by multiple tran-
scription factors including, but not limited to c-Myc, HIF1α, p63, and  p5311,32–35. The repression of HK2 tran-
script observed upon H2AX loss implies a mechanism involving H2AX-mediated HK2 transcriptional control 
as revealed by repression of HK2 promoter activity upon H2AX loss (Supplementary Fig. 1). While requiring 

Figure 2.  Down-regulation of H2AX promotes repression of key glycolysis genes. (A) Heatmap of the the ten 
genes found to be enriched in the glycolysis signaling pathway in IPA. Note that nine out of the ten genes were 
significantly repressed in cells deficient for H2AX, with only Glucose-6-Phosphate Isomerase (GPI) activated 
upon H2AX silencing. The numbering refers to independent replicates for either shCTRL sample or shH2AX 
sample. (B) The nine glycolysis genes repressed in H2AX-deficient cells were analyzed for their expression level 
in the gene expression-based outcome for breast cancer online (GOBO) dataset and compared to that of H2AX in 
the same patients. H2AX expression is significantly correlated with most glycolysis genes across specimens. (C) 
Similar comparison was performed in human invasive breast cancer samples available in the Cancer Genome 
Atlas (TCGA) dataset. (D,E) MDA-MB-231 cells (D) and BT549 cells (E) were transfected with either scrambled 
short hairpin RNA (shCTRL) or with short hairpin RNA against H2AFX (shH2AX), and transcript levels of 
HK1 and HK2 was analyzed using real-time PCR. Expression values are relative fold change for gene transcripts 
normalized to Actin transcript (Gene/Actin ratio). Error bars represent S.E.M. (n = 3). Statistical significance 
was determined by a two-tailed, unpaired Student’s t-test. (F,G). MDA-MB-231 cells (F) and BT549 cells (G) 
were transfected with either scrambled short hairpin RNA (shCTRL) or with short hairpin RNA against H2AFX 
(shH2AX) and cells were used for immunoblot analysis of H2AX and HK2 with tubulin detected as loading 
control. Statistical significance was determined by a two-tailed, unpaired Student’s t-test. *pvalue < 0.05, **p 
value ≤ 0.001, ***p value ≤ 0.0001, ns: non-significant.
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Figure 3.  H2AX silencing leads to reduced glycolysis in invasive breast cancer cells. (A,B) H2AX silencing 
resulted in a 20% diminution in glycolysis level in both MDA-MB-231 (A) and BT549 cells (B). Level of 
glycolysis was detected by measurement of extracellular lactate production as described in “Methods” section. 
Error bars represent S.E.M. (n = 9). (C) Extracellular lactate level in MDA-MB-231 control cells (shCTRL), 
H2AX-deficient cells (shH2AX), and H2AX-deficient cells in which HK2 expression was reintroduced 
(shH2AX + HK2). (D) Cells described in (C) were subjected to immunoblot for the detection of protein levels 
for H2AX, HK2, and tubulin. (E) BT-549 cells were infected with either scrambled short hairpin RNA, or with 
short hairpin RNA against H2AFX (shH2AX), and cells were selected in the presence of puromycin to establish 
stable clones (shH2AX #1, and shH2AX #2). These control and H2AX-deficient cells were transfected with 
either control vector (shCTRL) or with vector expressing HK2 (shH2AX + HK2), and the resulting cells were 
used for quantification of extracellular lactate level. Statistical significance was determined by a two-tailed, 
unpaired Student’s t-test. Error bars represent S.E.M. (n = 6). *p value < 0.05, ***p value ≤ 0.0001, ns: non-
significant.
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Figure 4.  HK2 re-expression in H2AX-deficient cells partly restores metastatic colonization in the lung. (A) 
MDA-MB-231 control cells with empty vector (shCTRL), H2AX-deficient cells with empty vector (shH2AX), 
and H2AX-deficient in which HK2 was reintroduced (shH2AX + HK2) were inoculated via the tail veins of 
immunocompromised NOD SCID gamma mice, and animals were used for bioluminescence-based imaging from 
one week up to six weeks. The extent to which tumor cells exhibit growth and metastatic progression was monitored. 
Control cells (shCTRL) showed significantly elevated tumor growth in the lung as well as distant metastases to bones 
and liver, while H2AX-deficient cells showed a 60% reduction in tumor growth with no detectable distant metastases. 
Ectopic expression of HK2 resulted in a partial restoration of growth and metastastic potential. (B) Quantification of 
the luminescence detected in the lung. (C) The extent to which tumor cells metastasize outside the lung was analyzed 
by monitoring the presence of bioluminescence in the body. Note that luminescence was primarily detected in bones 
and liver specifically when animal were injected with either control cells (shCTRL) or with H2AX-deficient cells 
ectopically expessing HK2 (shH2AX + HK2). (D) Representative Ki-67-stained lung sections from mice injected with 
control cells with empty vector (shCTRL), H2AX-deficient cells with empty vector (shH2AX) and H2AX-deficient 
cells in which HK2 was reexpressed (shH2AX + HK2). Dashed lines indicate tumor regions in mice bearing H2AX-
deficient cells with negative Ki-67 staining, implying presence of less aggressive tumor cells. Statistical significance was 
determined by a two-tailed, unpaired Student’s t-test. Error bars represent S.E.M. (n = 7 per group). *pvalue < 0.05; **p 
value ≤ 0.001.
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Figure 5.  H2AX expression is correlated with that of HK2 and with survival rate in patients with invasive breast cancer. (A) 
Dataset from Cancer Cell line Encyclopedia (CCLE) was utilized to assess level of H2AX transcript comparing cells derived 
from primary sites with the ones from metastatic sites. CCLE normalized expression data and clinical information were 
downloaded from cBioportal. Breast (n = 29 primary vs. n = 26 metastasis), colorectal (n = 48 primary vs. n = 11 metastasis), 
esophagogastric (n = 66 primary vs. n = 27 metastasis), mature B-cell neoplasms (n = 39 primary vs. n = 15 metastasis), 
melanoma (n = 31 primary vs. n = 25 metastasis), non-small cell lung (n = 75 primary vs. n = 50 metastasis), ovarian (n = 34 
primary vs. n = 15 metastasis), pancreatic (n = 26 primary vs. n = 15 metastasis), and small cell lung (n = 18 primary vs. n = 32 
metastasis). For breast, **p value = 0.0092; for esophagogastric, *p value = 0.0284; ns, non-significant. (B) Breast cancer 
microarray raw data and clinical information from GOBO (see “Methods” section) were downloaded. Chin raw data was 
downloaded from EMBL-EBI. To assess distant metastasis-free survival (DMFS), all specimens were evenly divided into 
three groups to generate a Kaplan–Meier survival curve using in-house Python script. H2AX expression level was clustered 
based on the following distribution: low (H2AFX = 4.419–6.69, n = 296 samples; intermediate (H2AFX = 6.694–7.267, 
n = 296 samples, and high (H2AFX = 7.267 – 9.14, n = 295). (C) Expression level of H2AFX and HK2 were extracted from the 
GOBO datasets described in (B) including samples without published medical history, and the analysis was performed using 
Spearman correlation coefficient. (D) Similar analysis was conducted using single-cell RNAseq dataset from GSE176078 
and specimens of triple-negative breast cancer (TNBC) were specifically considered for the analysis using Seurat library in R 
(n = cell number).
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further study, these data raise an intriguing possibility that H2AX may either elicit a remodeling of the chromatin 
prior to enhanced transcriptional regulation of HK2; or H2AX phosphorylation may initiate a cascade of DNA 
damage response signaling involved in HK2 transcriptional control. Multiple lines of evidence have pointed to the 
notion that H2AX loss may result into an H2AZ exchange, prior to either  activation of DNA damage responses, 
or to a transcriptional reprogramming required for the expression of several epithelial to mesenchymal transi-
tion genes, and  metastasis5,36–38. While further investigations are needed, it should not be excluded a possibility 
of a profound change in the chromatin configuration which may involve other histone H2A variants exchange 
upon H2AX loss. Such chromatin remodeling may be part of events leading to HK2 transcriptional repression. 
It is also worth noting the existence of post-translational modifications involved in HK2 regulation. Examples 
include Akt-mediated HK2  phosphorylation39,40, or HectH9-mediated HK2 ubiquitination among many  others12. 
While the present data tend to imply a transcriptional repression of HK2 upon H2AX loss, further investigation 
is needed to delineate mechanisms underlying HK2 regulation by the histone variant H2AX.

From the clinical standpoint, HK2 is a druggable target in multiple human malignancies. Several attempts 
have been made to develop small molecules inhibitors of HK2 for cancer therapy, including utilization of 
2-Deoxy-d-glucose (2DG), but none of these agents have advanced beyond a phase II of clinical trials, presumably 
owing to their inability to induce irreversible inhibition of  HK212,41. Therefore, insights into genes or pathways 
coordinating HK2 regulation and its functions in glycolysis and resistance to treatment are necessary to foster 
development of new therapeutic strategies.

Methods
Cell culture and plasmid transient transfection. The human breast cancer cell line MDA-MB-231 
(from ATCC, Manassas, VA USA), was grown at 37 °C with 5%  CO2 in DMEM (Fisher Scientific, Waltham, 
USA), supplemented with 10% Fetal Bovine Serum (Thermo Scientific, Waltham, USA), while BT549 (from 
ATCC, Manassas, VA USA) was grown at 37 °C with 5%  CO2 in RPMI-1640 (Cytiva, Marlborough, USA), sup-
plemented with 10% Fetal Bovine Serum and 5 μg/ml insulin (Sigma-Aldrich, Burlington, USA). Cells were 
authenticated using a colorimetric signal amplification system, and tested for mycoplasma contamination (R&D 
systems, Minneapolis, USA). All media were supplemented with penicillin and streptomycin (Gibco, Amarillo, 
USA). For HK2 overexpression experiments, both MDA-MB-231 cells and BT549 H2AX cells were transfected 
using  Lipofectamine® 3000 (Thermo Scientific, Waltham, USA) following manufacturer’s instructions. pWZL-
Neo-Myr-Flag-HK2 and pWZL-Neo-Myr-Flag-DEST vectors were purchased from Addgene (plasmid IDs: 
#20501, and #15300).

Generation of stable H2A.X knocked‑down cells. For lentiviral infection, HEK-293 FT cells were 
used for virus package according to the manufacturer’s instructions. To obtain H2AX-shRNA knockdown cells 
(shH2AX), or the control cell line (shCTRL), MDA-MB-231 or BT549 parental cells infected with pLKO.1-puro-
H2AXshRNA (shH2AX); or control vector (shCTRL) were selected with puromycin (1 μg  ml−1) for 1 week and 
the expression of H2AX was examined by western blotting. Briefly, the lentivirus packaging system was used as 
follows: lentiviral constructs that expressed shRNAs targeting H2AX; or scrambled shRNA were co-transfected 
with lentiviral packaging plasmids psPAX2 and pCMV-VSVG into HEK-293 FT cells using  Lipofectamine® 3000 
(Thermo Scientific, Waltham, USA) according to the manufacturer’s instructions. At 48  h post-transfection, 
culture medium was collected to be incubated with MDA-MB-231 or BT549 cells in the presence of polybrene 
(8 μg  ml−1). At 48 h post-infection, infected cells were either harvested for gene and protein expression analysis 
or selected with puromycin to establish stable clones. shH2AX: #TRCN0000073281 (Open Biosystems /Dhar-
macon, Thermo Scientific, Waltham, USA) was a kind gift of Dr. William M. Bonner, and has been previously 
tested for further validation.

Generation of cells stably expressing luciferase for in vivo bioluminescence. For retroviral 
infection, HEK293 FT were used for virus packaging according to the manufacturer’s instructions. Briefly, the 
lentiviral constructs pFCAG-Luc hygro (Addgene #67502), pCMV-VSVG and psPAX2 were transfected into 
HEK-293 FT cells using  Lipofectamine® 3000 according to the manufacturer’s instructions; and viral particles 
were harvested at 48 h post-transfection. Cells were infected with virus for 48 h in the presence of polybrene 
(8 μg  ml−1). Infected cells were selected to establish stable clones using hygromycin B (400 μg  ml−1).

Real‑time PCR. Total RNA was extracted from cells using RNeasy Mini Kit (Qiagen, Valencia, USA) accord-
ing to the manufacturer’s instructions. Quality of RNA preparation, based on the 28S/18S ribosomal RNAs ratio, 
was assessed using the NanoDrop one (Thermo Scientific, Waltham, USA). Reverse transcription was performed 
with High-Capacity cDNA Reverse Transcription Kit (Fisher Scientific, Waltham, USA).  Real-time PCR (RT-
PCR) was performed with TaqMan Gene Expression Master Mix (Thermo Scientific, Waltham, USA) accord-
ing to the manufacturer’s instructions. Oligonucleotides were pre-designed, validated; and are considered to be 
proprietary information by Thermo Fisher Scientific. The assays IDs are available and are referenced as follow: 
ACTB (Hs01060665_g1), HK1(Hs00175976_m1), HK2 (Hs00606086_m1), H2AX (Hs00266783_s1).

RNA‑sequencing. Total RNAs from MDA-MB-231 or BT549 cells infected with scrambled shRNAs (shC-
TRL) or with shRNAs targeting H2AX (shH2AX) were extracted using RNeasy Mini Kit (Qiagen, Valencia, 
USA) following manufacturer’s instructions. All RNAs were QC-tested and library construction and sequencing 
were done by GSAF (Genomic Sequencing and Analysis Facility, the University of Texas at Austin).
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Sequencing data analysis. The raw sequencing data were evaluated by FAST-QC including quality dis-
tribution of nucleotides, position-specific sequencing quality, GC content, the proportion of PCR duplication, 
k-mer frequency, etc. Adaptor sequences and low-quality reads that contained more than 20% of bases with qual-
ities of < 13 of the raw data were removed to obtain the clean reads. Clean reads were aligned to human genome 
(Version: UCSC hg19, RefSeq) with TopHat default  parameters42. Aligned reads were analyzed with Cufflinks to 
get normalized transcript-level and gene-level  expressions43. DESeq was applied to identify the DEGs according 
to FDR < 0.05 and log2 FC ≥|± 0.15|44. The commonly shared genes between DEGs and metabolism-related genes 
were conducted with in-house script, and biological interpretation and pathway analysis was performed with 
the Ingenuity Pathway Analysis (IPA) tool. Heatmap analysis for shared genes was applied using in-house script.

Western blots. Cells were washed twice with PBS (Thermo Scientific, Waltham, USA), directly solubilized 
in denaturing sample buffer and then subjected to SDS-PAGE. Proteins were electro-transferred to 0.2 µm nitro-
cellulose sheets (Bio-Rad, Hercules, USA) for immunodetection with the following primary antibodies: H2A.X 
(1:5000; ab20669, Abcam, Cambridge, MA, USA); HK2 (1:1000; C64G5, Cell Signaling Technology Inc); Tubu-
lin (1:2000; 11H10, Cell Signaling Technology Inc). Immune complexes were detected with goat coupled anti-
rabbit or horse coupled anti-mouse IgG antibodies (Cell Signaling Technology Inc). Cropped images for the 
western blots and molecular weight are shown in the main and supplementary figures.

Lactate measurement. 50,000 cells were seeded in each well in 96-well plates. The medium was replaced 
24  h post culture with either phenol red-free DMEM or phenol red-free RPMI-1640 (Invitrogen, Carlsbad, 
USA). All media were complemented with 10% dialyzed Fetal Bovine Serum (FBS, Atlanta Biologicals, GA, 
USA) for the experiment. Extracellular lactate production was measured 24 h following culture with phenol 
red-free medium using the Lactate Assay Kit (Eton Bioscience, San Diego, USA) acording to the manufacturer’s 
instructions.

GSEA analysis. Normalized gene-expression levels from MBA-MB-231 and BT549 cells were performed 
separately by GSEA4.1.0 using hallmark gene sets with default parameters. Consistency of gene sets with an 
FDR < 25% in both cell lines was considered.

Apoptosis. 10, 000 MDA-MB-231 cells were seeded in each well of 96-well tissue culture plate. Apoptosis 
level was measured by Caspase-Glo 3/7 assay (Promega, Wisconsin, USA) after 48 h based on the manufacturer’s 
protocol.

Proliferation. 5000 MDA-MB-231 cells were seeded in each well in of 96-well tissue culture plate. Prolif-
eration level was measured 72 h post culture using IncuCyte (Sartorius, Gottingen, Germany) according to the 
manufacturer’s instruction.

Promoter activity. Promoter activity of HK2 and ACTB was measured using LightSwitch promoter reporter 
GoClone system (SwitchGear Genomics, Carlsbad, USA) according to the manufacturer’s instruction. Positive 
control and negative control were provided by manufacturer.

Model of experimental metastasis using MDA‑MB‑231‑luciferase cells. All animals were treated 
in accordance with the recommendations of the National Institutes of Health and approved by the University 
of Texas at Austin Committee on Animal Care. All animal procedures were performed according to protocols 
approved by the University of Texas at Austin Animal Care and Use Committee (AICUC). Tail vein injection was 
performed as previously  described2. Six to eight-week-old female immunocompromised NOD SCID gamma 
mice (Stock #: 005557, Jackson Laboratory, Bar Harbor, ME, USA) were injected with MDA-MB-231 CTRL 
cells expressing control vector (shCTRL), H2AX knockdown cells expressing control vector (shH2AX), and 
HK2 revertant cells (shH2AX + HK2 vector ) via the lateral tail vein using 29.5-gauge needles, and followed up 
for metastases burden. In brief, 1 ×  106 cells suspended in 200 µl DMEM were injected into the tail vein of each 
mouse. After 6 weeks, animals were sacrificed and examined macroscopically and microscopically for the pres-
ence of metastases. Tumor growth was monitored weekly using bioluminescence imaging. Briefly, mice were 
intraperitoneally (I.P.) injected with 100 mg/kg luciferin (in 200 μL) with 25G needle and imaged using the IVIS 
Lumina instrument in the procedure room. Prior to the imaging, mice are anesthetized by using isoflurane for 
approximately less than 15 min at a time.

All mice were sacrificed using a  CO2 chamber and tissues were collected. Upon collection, tissues were fixed 
in 10% normal buffered formalin followed by sections and H&E immunostaining. During the procedures, any 
animal experiencing rapid weight loss (greater than 20%, measured weekly), debilitating diarrhea, rough coat, 
hunched posture, labored breathing, lethargy, persistent recumbence, jaundice, anemia, significantly abnormal 
neurological signs, bleeding from any orifice, self-induced trauma, impaired mobility, or has difficulty obtaining 
food or water was immediately euthanized. In addition, mice were euthanized when they became moribund.

No human participant was involved in this study. All methods are reported in accordance with ARRIVE 
guidelines for the reporting of animal experiments.

Database analysis. Breast cancer microarray raw data and clinical information from GOBO including 
GSE1121, GSE2034, GSE2603, GSE5327, GSE6532, GSE7390 and GSE12093 were downloaded from GEO. Chin 
raw data (E-TABM-158) was downloaded from EMBL-EBI. Probes signals were extracted with Expression Con-
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sole Software (Affymetrix, Thermo Fisher) and batch effects were removed by Limma library in R. Expression 
level of H2AFX, HK2, HK1 were extracted from these datasets and analyses were performed to using spearman 
correlation analysis. To assess distant metastasis-free survival DMFS (all specimens were divided evenly into 
three groups based on H2AX expression level to generate a Kaplan–Meier survival curve using in-house Python 
script. Cancer Cell line Encyclopedia (CCLE) normalized expression data and clinical information from MIT-
Broad Institute were downloaded from cBioportal. Single-cell dataset GSE176078 was downloaded from GEO 
and specimens of triple-negative breast cancer (TNBC) were considered for the analysis using Seurat library in 
 R45, and cells concurrently expressing H2AX, HK2 and ACTB were used for the analysis.

Immunohistochemical analysis. Sections were deparaffinized and rehydrated, and antigen retrieval was 
performed with citrate buffer in a water bath at 120 °C. The sections were incubated with the anti-KI67 antibody 
(for 1:200, Cell signaling) overnight at 4 °C and then incubated with a biotinylated secondary antibody for one 
hour at room temperature (Vectastain Elite Rabbit, Vector Laboratories, Burlingame, CA). The slides were devel-
oped with diaminobenzidine (Vector Laboratories, Burlingame, CA), and counterstained with hematoxylin. The 
slides were scanned at 20× magnification.

Statistical analysis. Statistical analyses were performed using GraphPad Prism 6 software (GraphPad Soft-
ware). A value of p < 0.05 was considered statistically significant. Data are presented as mean ± S.E.M.

Ethical approval. All methods were carried out in accordance with relevant guidelines and regulations.

Received: 18 October 2021; Accepted: 18 February 2022
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