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The population has a significant influence on economic growth, energy consumption, and climate 
change. Many scholars and organizations have published projections for China’s future population 
due to its substantial population amounts. However, these projections have not been evaluated or 
analyzed, which may lead confusion to extensional studies based on these datasets. This manuscript 
compares several China’s projection datasets at multiscale and analyzes the impacting factors 
affecting projection accuracy. The results indicate that the slow of actual population growth rates 
from 2017 is earlier than most datasets projected. Therefore, the turning point of population decline 
probably comes rapidly before these datasets expected during 2024 and 2034. Furthermore, the 
projections do not reveal the population decline from 2010 in the Northeast provinces such as Jilin and 
Heilongjiang, and underrate the population increase in the southern provinces such as Guangdong 
and Chongqing. According to the results of regression models, the rate of population changes and 
the number of migrations people play a significant role in projection accuracy. These findings provide 
meaningful guidance for scholars to understand the uncertainty of those projection datasets. 
Moreover, for researchers performing population projections, our discoveries provide insights to 
increase the projection accuracy.

At present, human activities have become the dominant force in Earth’s ecological processes and global climate 
change, which indicates Earth has entered a new epoch,  Anthropocene1,2. The highly intensive human activities 
have caused global temperature to warm by approximately 1.09 °C since the industrial revolution in the  1700s3. 
According to China’s seventh national population census, the total population was 1.41 billion at the end of 2020, 
accounting for about 18% of the global  population4.

As the largest populated and most active economic development country, China’s vast population provides a 
large consumer market with more business opportunities for  enterprises5–8. However, overpopulation negatively 
influences natural resources, the ecological environment, and global climate  change9,10. Moreover, the growing 
population has a critical influence on achieving the Sustainable Development Goals (SDG), such as urban expan-
sion control (SDG 11.3.1) and education equality (SDG 4.6.1)11. Therefore, China’s future population growth is 
a crucial issue that has attracted international attention.

Many international organizations have estimated China’s future population without spatial properties. For 
instance, the World Bank has estimated national total populations and age compositions with different economic 
development levels until  205012. The United Nations (UN) has assessed previous global population growth 
situations and projected future world populations in prospect  reports13. The International Institute for Applied 
Systems Analysis (IIASA) has provided a country-scale projection population dataset under different shared 
socioeconomic pathways (SSPs) from 2010 to  210014. These national-scale projections could reveal the general 
population growth tendency and serve as inputs for addressing natural and socioeconomic issues. For example, 
Scovronick et al. analyzed the impact of population growth on world climate change policies based on the UN 
future population projection  dataset15. Dottori et al. explored the threat of river flooding based on IIASA popu-
lation projections under different anthropogenic warming  scenarios16. Li et al. used the IIASA’s SSP population 
and GDP projection data to forecast worldwide urban expansion  conditions17. However, the national data cannot 
reflect the spatial heterogeneity of population distribution and is insufficient to support policy decision-making 
at local scales.
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As a result, several researchers have created spatially explicit population projections at a small scale. For 
example, Jones and O’Neill projected global population values from 2000 to 2100 over 5 years under 5 SSP 
 scenarios18. Gao converted the global 1/8-degree grid data of Jones and O’Neill to 1-km degree grids by con-
structing a downscaling transform weight matrix, thereby providing more accurate and detailed data in small 
 regions19. Furthermore, the Japanese National Institute for Environmental Studies (NIES) created global popula-
tion projection datasets from 1980 to 2100 over 10 years with 0.5-degree grids, although these datasets included 
only the SSP1, SSP2, and SSP3  scenarios20. To accurately grasp China’s future population growth tendency, the 
projections of NUIST (Nanjing University of Information Science and Technology) and THU (Tsinghua Uni-
versity) were created recently by Huang et al.21 and Chen et al.22, respectively. These spatially explicit population 
datasets have been widely used to explore the influence of future population levels on global climate  change23–26, 
extreme weather disaster  events27–29, land-use  change24, and ecosystem service  change30. Although they have 
been applied in many research fields, we know little about their projection accuracy and poorly understand the 
factors that affect their projection accuracy. Moreover, uncertainties remain about these datasets, which have 
hindered further investigations and research on adaptations to climate change and sustainability. Consequently, 
it is necessary to evaluate their projection accuracy and determine their applicability in different regions.

This study compares China’s population projections with actual census data from 2010 to 2020 at different 
scales. Then, the spatial error regression model (SEM) is applied to attribute the factors affecting projection 
accuracy. The contributions of this study are evaluating the gaps between actual and projection populations and 
analyzing the contributions of various impact factors to projection accuracy. In addition, the results provide 
a better understanding of China’s population growth situations and the characteristics of different projection 
datasets. Besides, it also provides insights into the parameters adjustment of projection models to reduce the 
projection errors in the  future31,32.

The rest of this paper is organized as follows. Second section presents the study data. Third section describes 
the methods of measuring population projection quality. Fourth section presents the results of this study. Fifth 
section provides a discussion on the study results. Sixth section summarizes this study.

Data
Population projection datasets. In this study, we collected nine population projection datasets of China 
published by different scholars and organizations. The details of these population projection datasets are sum-
marized in Table 1. We named them according to publishers’ institutions or organizations’ abbreviations. Addi-
tionally, China’s actual population at the country and province scale from 2010 to 2020 is derived from China’s 
Statistical Yearbook. In general, these datasets are different in spatial, temporal, and scenarios dimensions.

For the spatial resolution, four datasets provide spatially explicit population distribution, including THU, 
NUIST, NIES, and SEDAC. Another five datasets only project total population change at the national scale. The 
most detailed spatial resolution is 30 × 30 m of THU.

For the temporal resolution, these datasets are different in the initial year, end years, and interval timespans. 
For example, five datasets provide the population from 2010 to 2100, including THU, NUIST, SEDAC, IIASA, 

Table 1.  Population data source.

No Name Publish year Spatial resolution Temporal resolution Scenario Publisher

1 THU 2020 30 m 2010–2100, by 1 SSP1, SSP2, SSP3, SSP4, SSP5 Tsinghua  University22

2 NUIST 2019 0.5° 2010–2100, by 1 SSP1, SSP2, SSP3, SSP4, SSP5 Nanjing University of Information Science and 
 Technology21

3 NIES 2017 0.5° 1980–2100, by 10 SSP1, SSP2, SSP3 Japanese National Institute for Environmental 
 Studies20

4 SEDAC 2020 1 km 2010–2100, by 10 SSP1, SSP2, SSP3, SSP4, SSP5 Socioeconomic Data and Applications  Center19

5 IIASA 2017 Country 2010–2100, by 5 SSP1, SSP2, SSP3, SSP4, SSP5 Institute for Applied Systems  Analysis14

6 IHME 2020 Country 1950–2100, by 1 Reference, Slower, Faster, Fastest (female educa-
tional attainment) Institute for Health Metrics and  Evaluation35

7 CEPAM 2019 country 2015–2100, by 10

SSP1-Rapid Development
SSP2-CEPAM Medium
SSP3-Stalled Development
SSP2-CEPAM Double Migration
SSP2-CEPAM Zero Migration

Centre of Expertise on Population and 
 Migration36

8 WCDE 2018 Country 1950–2100, by 5

SSP1-Rapid Development
SSP2-Medium
SSP3-Stalled Development
SSP2-Medium Zero Migration
SSP2-Medium Double Migrations

Wittgenstein Centre Data  Explorer37

9 UN 2019 Country 1950–2100, by 1

Estimates
Low fertility
Medium fertility
High fertility
Instant-replacement-fertility
Momentum
Constant-mortality
No change
Zero-migration

United Nations Population  Division38



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3644  | https://doi.org/10.1038/s41598-022-07646-x

www.nature.com/scientificreports/

CEPAM. In addition, the NIES, IHME, WCDE, and UN provide the estimated population in history years before 
2010. As for the time interval, the THU, NUIST, IHME, and UN provide yearly population data. The IIASA and 
WCDE provide the population with 5 years intervals. The NIES, SEDAC, and CEPAM merely offer 10 years’ 
interval population projection.

For the scenarios, except the IHME and UN, all datasets follow the narratives of the SSPs scenarios. SSP1 is 
a sustainability scenario, representing that the increase in educational level leads to low fertility in future popu-
lation growth. SSP2 is the Business-as-Usual or moderate scenario, which keeps the traditional development 
tendency in future changes. SSP3 is the regional rivalry scenario, denoting a rapidly increasing population with 
high fertility to ensure abundant human labor resources. In the projection of CEPAM and WCDE, they extend 
the SSP2 scenario by assuming different international migration rates. The IHME focus on the role of female 
educational attainment in population growth. Therefore, they set four scenarios to represent different situations 
of female educational attainment improvement. The UN provides the most complex scenarios by combining 
different fertility, mortality, and international migrations.

Due to the mismatches in spatial, temporal, and scenarios, it is necessary to unify them into the same scale for 
comparison. Limited by the spatial resolution, we could merely compare the projection with the actual population 
at the country and province scale. Besides, only the spatial explicit datasets could be aggregated into provincial 
data, such as THU, NUIST, NIES, and SEDAC. However, we only compare the projection of NUIST and THU 
at the province scale, because the projected intervals of NIES and SEDAC are too long as 10 years. We compare 
them for the years from 2010 to 2020, due to 2010 is the initial projection year of most datasets, and 2020 is the 
latest population census year. Furthermore, we select the medium pathway scenario of each dataset to compare, 
such as the SSP2 and Middle scenarios. Because the projection in the medium scenario reflects the conditional 
population circumstances, and it is the basis of other scenarios. Additionally, the middle pathway is the most 
similar to the present world’s future  trajectory33,34.

Impact factors of projection errors. We collect thirty demographic indicators of 31 provinces of China 
reflecting the population information to support the regression of SEM, as Table 2 shows. The outline indica-
tors are the most basic information to describe the population profile for a specific province, including the total 
population, birth rate, mortality rate, natural growth rate, and annual population growth rate. The structure 
information depicts the population proportion division by the age and household registration types. The sex 
ratio is the number of males per 100 females. Besides the total sex ratios, we obtain the sex ratios for various 
population groups, such as urban, rural, and births. Fertility is significant in population projection. In this class, 
we obtain the number of births with different types and reflect females’ reproductive situations. In the migration 
class, the population leaving more than half a year and the population from other provinces could represent the 
domestic population mobility. The number of foreigners reflects the influence of transnational migration. The 
economic level plays a vital role in population change. In this class, we utilize the provincial average wage and 
unemployment rate to depict their economic standards. The governmental policy change is the crucial impact 
factor for population changes. We use the expenditure of maternity insurance and hospitals’ quantity to reflect 
government attitudes to population control. In the education class, we acquire the proportion of the population 
with high school education or above to depict the educational level of a certain province. To eliminate the effect 
of data units, all impact factor values are standardized by the Z-Score transformation.

Methods
The Fig. 1 shows the research workflow of this study. In the beginning, we collect nine projection datasets from 
various scholars and organizations. Then, we evaluate them with the actual population data from 2010 to 2020 at 
the country and province scale. Besides, we utilize the mean absolute percentage error (MAPE), mean algebraic 
percentage error (MALPE), and R-Square to measure the quantitative differences between actual and projection 
populations. Finally, we employ the SEM regression models to explore the impact factors for projection accuracy.

Measurements of population projection errors. Generally, national official census data is the most 
reliable population  criteria39–41. Smith proposed evaluating the population projection data quality by examin-
ing its projection accuracy and projection  bias42. Projection accuracy is the absolute difference between pro-
jected and actual values, and it expresses the degree of error  deviation43,44. Projection bias is the real difference 
between the values, and it shows the direction and magnitude of the projection  error32,45. Therefore, we select 
the MAPE (Eq. (1)) and the MALPE (Eq. (2)) to indicate the population projection accuracy and projection bias, 
 respectively46. Moreover, we utilize the coefficient of determination (R2 , Eq. (3)). In this study, we calculate these 
projection error indicators at the country and province scales. These indicators are calculated as follows:
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In the above equations, t  is a year from 2010 to 2020, n is 11 years. P is the population projection datasets, 
A is the actual population data. Pt and At is the projected and actual population in the t  year. According to the 
equations, a positive MALPE indicates that the projection is greater than the actual values and a negative MALPE 
means that the population projection is less than the actual values. The MAPE is a nonnegative value without 
upper limitations. The zero MAPE indicates that the projection results are entirely correct, and a large MAPE 
indicates lower projection accuracy. The percentage variables are unit-free and easy to understand and interpret. 
Thus, they are standard measurements in the applied demography literature 31,47.

Attribution analysis of projection errors. We utilize spatial error regression models to analyze the pos-
sible relationships between the projection accuracy and those impact factors. The SEM could discover the spatial 
autocorrelation of variables, allowing us to explore deeper spatial associations that the ordinary linear regression 
model cannot  reveal48,49. Due to there are only eleven years intervals of validation data as samples, it could not 
support the attribution analysis at the country scale. Therefore, we merely analyze the impact factors of popula-
tion projection at the province level. As a result, the dependent variables of the SEM models are the MAPE and 
MALPE of China’s 31 provinces from 2010 to 2020. The explanatory variables are the provincial demographic 
and social indicators, as Table 2 shown.

In the SEM, mutual effects are assumed for neighboring districts’ same explanatory variables, and the depend-
ent variables have no spatial correlations. Therefore, the formulas of SEM are shown as Eq. 4 and Eq. 5. Y  is 
the n× 1 vector of response variables, X is an n× p matrix of the explanatory variable, β is an p× 1 vector of 
regression coefficients, ε represent "white noise," u is the error refers to spatial variations, W1 is the spatial weight 
matrix describing the spatial mode of residuals, and � is the parameter of the spatial error term. The closer � is 
to 1, the more similar the explanatory variables in neighboring places.

Table 2.  Description of the demographic and socioeconomic factors (N = 31 (province), year = 2010).

Class No. Name Description Max Min Mean

Outline

1 Birth rate Birth rate (%) 6.68 15.99 11.29

2 Mortality rate Mortality rate (%) 4.21 6.88 5.83

3 Natural growth rate Natural growth rate (%) 0.42 10.56 5.46

4 Average growth rate Annual average growth rate, 2010–2020 (%) -0.02 0.20 0.06

5 Population Total population (Person) 3.00 ×  106 1.04 ×  108 4.30 ×  107

Structure

6 Proportion of aged 0–14 Proportion of population aged 0–14 (%) 8.61 25.22 16.75

7 Proportion of aged 15–64 Proportion of population aged 15–64 (%) 66.21 82.68 74.74

8 Proportion of aged 65 and above Proportion of population aged 65 and above (%) 5.09 11.56 8.51

9 Proportion of none-agricultural persons Proportion of none-agricultural population (%) 14.77 61.89 31.93

10 Proportion of ethnic minorities Proportion of ethnic minorities population (%) 0.00 0.92 0.15

Sex

11 Total sex ratio Total sex ratio (%) 101.52 114.52 105.71

12 Urban sex ratio The sex ratio of urban population (%) 99.75 117.63 104.36

13 Rural sex ratio The sex ratio of rural population (%) 98.75 113.33 106.12

14 Births sex ratio The sex ratio of births (%) 100.08 131.07 118.39

Fertility

15 Number of births The population of newborns (person) 2.57 ×  103 9.50 ×  104 3.84 ×  104

16 Number of first child The population of newborns as the first child in family (person) 1.15 ×  103 5.76 ×  104 2.39 ×  104

17 Number of second child The population of newborns as the second child in family 
(person) 7.53 ×  102 3.44 ×  104 1.20 ×  104

18 Number of third child The population of newborns as the first third in family (person) 1.42 ×  102 6.85 ×  103 2.03 ×  103

19 Number of childbearing women The population of females aged from 15 to 65 (person) 7.52 ×  105 2.77 ×  107 1.04 ×  107

20 Number of abortions The population of abortions (person) 9.85 ×  102 1.05 ×  106 2.05 ×  105

21 Total fertility rate The average number of children of female (person) 0.71 1.79 1.86

22 Contraceptive rate of married women The rate of childbearing women take contraceptive after married 
(%) 77.96 93.93 88.00

Migration

23 Number of people from other provinces The population from other provinces (person) 1.65 ×  105 2.15 ×  107 2.77 ×  106

24 Number of foreigners The population of foreigners (person) 3.79 ×  102 3.16 ×  105 3.29 ×  104

25 Proportion of population leaving more than half-year The proportion of person leaving the province more than 
6 months (%) 5.31 29.72 19.44

Economic
26 Average wage The average wage of the province (¥ Yuan) 2.77 ×  104 6.61 ×  104 3.61 ×  104

27 Unemployment rate The unemployment rate of the province (%) 1.40 4.40 3.63

Policy
28 Number of tertiary hospitals The number of tertiary hospitals (number) 0.10 13.30 3.55

29 Maternity insurance expenditure The expenditure of governmental maternity insurance (billion 
¥ Yuan) 0.20 8.50 4.06

Education 30 Proportion of population above high school Proportion of population above high school 0.01 0.60 0.09
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In this study, the dependent variables are the MAPE and MALPE of China’s 31 provinces; thus, the SEM 
model’s Y  matrix is a 31× 1 vector. We utilize the stepwise method to select the explanatory variables when 
constructing the SEM model to handle multicollinearity among variables. Therefore, the final models could 
contain different impact factors.

Results
Country scale comparison. As Fig. 2a shows, all dataset projection population to 2100, but four datasets 
provide population start before 2010, and other five start from 2010. The IHME, UN, and WCDE are higher 
than the actual data since the 1970s, yet the WCDE coincides with the proper condition in most historical years.

In the evaluation years from 2010 to 2020 (Fig. 2b), most projections show an approximatively linear growth 
trend, and they do not foresee the inflection point arising prematurely in 2017. Only the WCDE reveals the 

(4)Y = Xβ + u

(5)u = �W1 + ε

Figure 1.  Workflow of the research.

Figure 2.  Comparison between the actual and projection population at the country scale. The vertical axis is 
the population number (unit: billion), and the horizontal axis represents the years.
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slowdown tendency from 2015 to 2020. In this period, the projections of UN, IHME, WCDE, and CEPAM are 
higher than the actual population. The NIES, IIASA, SEDAC, and NUIST are lower than the truth, but the NUIST 
approaches the actual value gradually from 2015. The projection of THU is the closest to the actual population 
curve from 2010 to 2017, but it overestimates the population after 2017 as well.

According to the long-term population projection results, China’s population size is generally projected to 
peak and show a decreasing trend shortly. These datasets predict China’s maximum population is between 1.38 
billion to 1.45 billion (Supplement Table S1). The IHME thinks the population will reach the peak in 2024 as the 
fastest growth among projections. The NUIST considers it will be maximum in 2034 as the latest. The average 
value for the maximum population year of all projections is 2028. Furthermore, these datasets show three types of 
trajectories after reaching the population peak. The NUIST reveals the most slowly population decreasing trend, 
and it thinks the population will be 1.24 billion in 2100, which is the highest in nine datasets. The UN and THU 
represent the medium population reduction situations, and they project the population will maintain 1 billion 
above in 2100. The rest six datasets show the total population will sharply decrease under 0.9 billion in 2100.

The quantitative indicators for measuring projection accuracy and bias during the validation years are cal-
culated in Table 3. The THU has the lowest MAPE and MALPE, and the largest R2 as 41.40%, 8.00%, and 0.90 
respectively, thus it is the best projection dataset in this period. Inversely, the projection of UN is the worst 
among these datasets.

Furthermore, we could reveal the direction of projection bias by analyzing the relation between MAPE and 
MALPE. For example, THU’s MALPE is lower than MAPE significantly, which reveals both overestimate and 
underestimate for THU, but the overestimates cause more projection accuracy loss. The WCDE takes the second 
high projection accuracy with equal MAPE and MALPE. Thus it overestimates the population for each year in this 
period. In summary, the projection accuracy loss of NUIST, NIES, IIASA, and SEDAC is caused by the negative 
errors, and the THU, IHME, CEPAM, WCDE, and UN are own to positive errors.

Province scale comparison. At the province scale, the THU and NUIST are validated with each actual 
provincial population, and the results are shown in Fig. 3. The results reveal that NUIST and THU have various 
conditions in different provinces with over or underestimated projection compared to the actual population.

The first pattern is that the actual population turns from rapid to slow growth, such as Beijing, Tianjin, and 
Shanghai (Fig. 3 (1, 2, 9)). In these provinces, the THU discovers the slowdown trend of population, but NUIST 
keeps linearly growing without turning points in the period.

The second pattern is that the actual population keeps reducing in the period, but both projections show 
population increasing (Fig. 3 (4, 5, 6, 7, 8, 28)). The pattern includes six provinces as Shanxi, Neimenggu, Liaon-
ing, Heilongjiang, Jilin, and Gansu provinces. These provinces are all located in the northeast and northwest of 
China, and they have experienced severe population loss in the last years. However, the two projections do not 
expect such a rapid population reduction in these regions.

The third pattern is that the actual population remains to increase, but both THU and NUIST overestimate 
the tendency. There are six provinces in this category, containing Hebei, Anhui, Jiangxi, Hunan, Yunnan, and 
Qinghai provinces (Fig. 3 (3, 12, 14, 18, 25, 29)).

The fourth pattern is that the THU and NUIST underestimate the actual growth population. This class 
includes thirteen provinces as Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan, Chongqing, Sichuan, 
Guizhou, Xizang, Shannxi, Ningxia, and Xinjiang province. (Fig. 3 (10, 11, 13, 15, 19, 21, 22, 23, 24, 26, 27, 
30, 31)). These provinces are primarily located in the southwest and southeast coastal areas, revealing that the 
population of south China is maintaining increasement.

The fifth pattern is that the actual population is less than THU but larger than NUIST. The three provinces as 
Hunan, Hubei, and Guangxi belonging to the type. In this type, both the two projections are closed to the truth.

We utilize the MAPE and MALPE to measure the projection errors at the province scale quantitatively, and 
the results are displayed in Fig. 4. There are differences in the two datasets’ MAPE (Fig. 4a, b). THU’s MAPE 
distribution could be divided into three distinct portions from south to north China, the center regions have 
the least values, and the northeast provinces own the largest values. Moreover, the NUIST’s MAPE distributions 
display three sections from east to west China, the northeast and southeast provinces have the highest values, 

Table 3.  Measurements of projection error from 2010 to 2020.

MAPE (%) MALPE (%) R
2

THU 41.40 8.00 0.90

NUIST 127.88  − 127.88 0.38

NIES 115.93  − 56.11 0.74

IHME 117.15 117.15 0.50

CEPAM 77.34 77.34 0.39

WCDE 67.51 67.51 0.88

UN 176.28 176.28  − 0.06

IIASA 125.72  − 123.61 0.43

SEDAC 130.09  − 130.09 0.52
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and the middle region has the lowest values. As a result, both THU and NUIST have large errors in northeast 
China and Xizang province.

For the MALPE, the THU and NUIST have similar spatial distributions as the Fig. 4c, d shown. The red 
color indicates the projection overate the population, and the blue color means the projection underestimates 
the population growth in a certain province. Therefore, both the THU and NUIST overestimate the popula-
tion development in north China, especially the northeast regions such as Heilongjiang, Jilin, and Neimenggu 
province. The overestimated projection may be caused by they do not consider the population outflow in these 
areas. Besides, the southeast coastal provinces and southwest provinces own the negative MALPE, denoting their 
population are underestimated.

Additionally, we compare the NUIST and THU’s projection accuracies from 2010 to 2020 based on their 
MAPE values. We calculate the difference for the MAPE of NUIST and THU. When the difference is positive, 
the NUIST projection is more inaccurate than the THU projection. In contrast, if the difference is negative, the 
NUIST projection is more accurate than the THU projection in the individual province. The MAPE comparison 
results are displayed in Fig. 5.

The purple color indicates that the THU projected population is more accurate than the NUIST projected 
population. Conversely, the blue indicates that the NUIST projected population is closer to the actual population 
than the THU population. According to the Fig. 5, the purple regions are primarily distributed in the western and 
northern coast of China, such as Xingjiang, Xizang, Guangdong, and Shangdong province. The blue regions are 
mainly located in the northeastern and central of China, such as Heilongjiang, Jilin, Hubei, and Jiangxi province.

Attribution of the population projection error. We utilize the SEM model to analyze the impact fac-
tors of projection errors at the province scale. Therefore, there are four models for MAPE and MALPE of THU 
and NUIST, and their regression coefficients are displayed in Fig. 6. In this figure, only the impact factors with 

Figure 3.  Comparison between actual and projection population at the province scale. The subfigures from 
(1) to (31) represent different provinces. The vertical axis is the population number (unit: million), and the 
horizontal axis represents the validation years from 2010 to 2020. The red star indicates the actual provincial 
population, the blue circle represents the NUIST, and the purple circle denotes the THU.
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Figure 4.  Distribution of the provincial MAPE and MALPE of NUIST and THU. The left panel (a, c) shows the 
THU results, and the right panel (b, d) shows the NUIST results.

Figure 5.  Projection accuracy comparison of THU and NUIST. The purple color indicates that THU has a 
lower MAPE than NUIST, and the blue color indicates that NUIST has a lower MAPE than THU in a particular 
province.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3644  | https://doi.org/10.1038/s41598-022-07646-x

www.nature.com/scientificreports/

significant influence are drawn. The square size represents the significance level of impact factors, and the color 
indicates the regression coefficient value.

Three impact factors significantly influence THU’s MAPE, including the total fertility rate, average wage, and 
the number of tertiary hospitals. Besides, all the indicators are negatively related to the THU’s MAPE, which 
means the provinces with lower fertility rates, average wages, and more tertiary hospitals would have worse 
projection results. For instance, in the northeast provinces with low fertility rates, the THU’s projection errors 
are higher than NUIST. Furthermore, four impact factors are related to NUIST’s MAPE, including the mortality 
rate, rural sex ratio, number of the first child, and number of abortions.

When analyzing the impact factors of MALPE, it is necessary to consider the positive or negative of values. As 
shown in Fig. 5, there are five provinces with the positive MALPE, including the Heilongjiang, Jinlin, Neimenggu, 
Shanxi, and Gansu provinces. According to the Fig. 6, the MALPE of THU and NIUST are influenced by some 
common impact factors. For example, the proportion of the population aged 15 to 64, the contraceptive rate of 
married women, and the number of third children have a significantly positive relation with MALPE. Therefore, 
for the provinces with negative MALPE, the provinces with more population aged 15 to 64 would have higher 
projection accuracy.

On the contrary, the average population growth rate and proportion of the population leaving the province 
for more than a half year negatively correlate with MALPE. Therefore, their negative population growth rates 
expand projection errors for the provinces with positive MALPE, such as the Heilongjiang and Jilin provinces. 
Similarly, the provinces with negative MALPE and positive population growth rates face more significant pro-
jection errors, such as the Guangdong and Zhejiang province. Meanwhile, the proportion of the population 
leaving more than half a year is negatively related to the MALPE. As a result, the more significant growth rate 
and population migration lead to higher projection errors for the two datasets.

Discussion
The deceleration of China’s population growth rate. The slowing of China’s total population devel-
opment starts from 2017 (Fig. 2b), yet some provinces’ population reduction from 2010 already (Fig. 3). How-
ever, these projections datasets do not anticipate the turning point of China’s population growth coming so early 
and population reduction so sharply for some provinces.

The overestimate of total fertility rate (TFR) in projection is a significant reason for overrating the popu-
lation growth. Due to many studies deem the TFR 1.180 in the sixth national population census is severely 
 underestimated50,51, the TFR in 2010 is rectified higher in all projections, as Table 4 shows. The UN offers the 
maximum TFR of 1.620, and IHME provides the minimum TFR of 1.220. The THU and NUIST up-regulate 
the projected TFR of 2020 and 2030, because they think the loosened governmental birth control policies will 

Figure 6.  Regression coefficients of the SEM for the MAPE and MALPE of NUIST and THU.
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facilitate birth effectively. Nevertheless, according to the newest seventh national population census, the TFR is 
merely 1.300 in 2020. Therefore, the IHME, CEPAM, and WCDE are approaching the actual population because 
their TFR is closer to the census results. The UN and THU are higher than the actual condition in 2020 seriously.

After publishing the low TFR in the seventh census results, the worries for maintaining China’s future popu-
lation steadily growth are discussed again. For China, the present TFR is lower than the replacement-level 
fertility, which means the new generations will be seriously less than the aged population in the future. The Sub-
replacement fertility probably leads to the labor shortage, economic contraction, and increased social pensions 
 burden52. Therefore, China’s government implemented the "Three-Child" policy allowing couples to nurse three 
children in 2020 after the "Two-Child" policy permitting two children in for family in  201553. However, consid-
ering the actual TFR does not realize the high level as THU, NUIST, and UN projected in the validation years, 
the population may reach a peak earlier than these datasets projected. Besides, to avoid the population decline 
as the IHME, IIASA and WCDE predicted, China’s fertility regulation implements may need further loosened.

On the other hand, international net migration has an import effect on China’s future population change. As 
Table 4 shows, the net migration values are assumed unchanged for a time in some projections. For example, the 
UN supposes the migration invariability from 2040 to 2100, and the IIASA assumes it unchanged from 2010 to 
2060. Moreover, in the projection of the THU and IIASA, they believe the net migration would gradually equal 
to zero in 2100, as Abel  stated54. Nevertheless, other projections do not set the net migration as zero in 2100. 
Furthermore, although UN keeps a high TFR in the total periods, its projection population is not the largest, 
which could be attributed to its large population outflow. Similarly, the IHME supposed population inflow would 
be since 2070, but its low fertility hypothesis predicts the lowest population in 2100. As a result, the migration 
should be set based on more reasonable methods.

The imbalance of population growth in north–south China. As shown in Fig. 4c, d, the projections 
cannot reflect the radical population reduction in northeast provinces and underrate the increase in southwest 
and southeast provinces. For example, the THU thinks their population keeps increasing in Liaoning, Jilin, and 
Heilongjiang provinces with linear population decrease, and THU predicts it decrease with gentle rates. The 
unpredictable population reduction may be ascribed to these models underrate the population outflow intensity 
in northeast China. Besides, the population reduction is caused by low fertility and influenced by economic and 
social factors. Moreover, in southeast China such as Guangdong and Zhejiang province, both projections are 
lower than the actual values, which may be caused by their flourishing economic activities attracting plenty of 
population  inflow55.

In southwest China, the projections seriously underrate the population of Chongqing, Sichuan, and Xizang. 
These errors are likely because the government policies boost economic development and attract more population 
inflow. For instance, the "Cheng-Yu Economic Zone" policy was introduced in 2011, which accelerated the eco-
nomic development and population expansion of Chongqing and Sichuan  Provinces56,57. Due to China’s "poverty 
alleviation" policies, Xizang has received generous economic assistance from the central government to support 
its rapid  development58. However, the population projection models are unable to consider the policy changes.

Table 4.  The total fertility rate (TFR) and net migration of projection datasets. *The empty table cells mean 
original researches do not provide these data.

Total fertility rate (‰)

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Actual 1.180 1.300

THU 1.600 1.800 1.650 1.706 1.706 1.706 1.706 1.706 1.706 1.802

NUIST 1.450 1.690 1.720 1.690 1.660 1.660 1.660 1.640 1.640 1.640

IHME 1.220 1.455 1.421 1.431 1.441 1.452 1.457 1.457 1.460 1.466

CEPAM 1.470 1.420 1.390 1.390 1.410 1.430 1.460 1.460 1.510

WCDE 1.580 1.440 1.370 1.370 1.400 1.410 1.430 1.450 1.470 1.490

UN 1.620 1.690 1.720 1.730 1.750 1.760 1.760 1.770 1.770 1.770

IIASA/NIES/SEDAC 1.500 1.400 1.400 1.400 1.400 1.400 1.400 1.500 1.500 1.500

International net migration (person)

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

THU −401,881 −401,881 0

NUIST −475,859 −191,410

IHME −470,447 −495,422 −430,100 −279,577 −122,471 75,908 238,645 354,147 358,804

CEPAM −918,100 −580,400 −453,600

WCDE −478,180 −183,700 −183,780 −175,580 −162,940 −147,580 −130,780 −114,680 −100,680 −88,900

UN −435,600 −348,400 −352,200 −311,800 −310,000 −310,000 −310,000 −310,000 −310,000 −310,000

IIASA/NIES/SEDAC −377,800 −377,800 −377,800 −377,800 −377,800 −377,800 0
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Factors that impact the projection accuracy. According to the SEM regression results, some com-
mon factors impact the projection accuracy for THU and NUIST. The first category is the population change 
indicators, as the population growth rates and province-cross migration persons. The high population annually 
change rate extends the projection errors, and the population migration also brings excellent uncertainty to 
projections. Due to the siphonage phenomenon, the urban agglomeration regions constantly attract populations 
from other undeveloped provinces, such as the Pearl River Delta and Yangtze River Delta  regions59,60. However, 
the population projection models of THU and NUIST oversimplified the depiction of migration internal China. 
As a result, their projections overestimated population outflow provinces and underestimated provinces with 
massive population inflow.

Moreover, the proportion of the population aged 15 to 64 also significantly impacts the projection accuracy. 
Based on the regression results, the more population in this group, the higher the projection accuracy. Because the 
group accounts for the largest in the total population, and it is also the primary fertility group. If the projection 
could not acquire reasonable population and fertility rates in the group, the entire total population projection 
may be seriously inaccurate.

Furthermore, the contraceptive rate of childbearing married women significantly influences projection 
accuracy, and the indicator could denote people’s fertility desire. Generally, the population projection models 
estimate the future population change based on fertility, mortality, and migration rates. However, these general 
parameters are challenging to represent individual s’ mentality thoughts. Besides, society, economy, and culture 
play an essential role in people’s fertility desire. Therefore, the accurate population projection needs reasonable 
parameters of fertility, mortality, and migrations. However, fertility is depended on the individual’s choice and 
very personal behavior. While building the population projection models, scholars should combine the influence 
of society and the environment.

Conclusion
In this study, we evaluate the projection accuracy of some population projection datasets of China. Nine data-
sets are compared with the actual population from 2010 to 2020 at the country scale. The projections of THU 
and NUIST are validated at the province scale in the same periods. Besides, we utilize the MAPE, MALPE, and 
R-Square to quantificationally measure the projection errors. Furthermore, we analyze the contributions of sev-
eral impact factors to the projection errors based on SEM regression models. According to study results, these 
projections provide various population growth situations at the country and province scale, but most of them 
cannot show the deceleration of population growth after 2017. Moreover, the annual population change rates 
and the migration population significantly influence the projection accuracy. Finally, we discuss the different 
fertility values between the actual condition and projection set and provide suggestions for further population 
projection models.

Data availability
The actual demographical data are available from the National Bureau of Statistics of the People’s Republic 
of China (http:// www. stats. gov. cn/ tjsj/ pcsj/ rkpc/ 6rp/ index ch. htm). The population projection data of Nanjing 
University of Information Science and Technology (NUIST) are available from the website at https:// geogr aphy. 
nuist. edu. cn/ 2019/ 1113/ c1954 a1475 60/ page. htm. The population projection data of Tsinghua University (THU) 
are available from the website at https:// doi. org/ 10. 6084/ m9. figsh are.c. 46057 13. The population projection data 
of the International Institute for Applied Systems Analysis (IIASA) are provided on the websites of the SSP 
database (https:// tntcat. iiasa. ac. at). The population projection data of the United Nations are available from the 
website at https:// popul ation. un. org/ wpp/. The National Institute for Environmental Studies (NIES) population 
projection data are available from the website at https:// www. cger. nies. go. jp/ gcp/ popul ation- and- gdp. html. The 
population of Socioeconomic Data and Applications Center (SEDAC) are derived from https:// sedac. ciesin. 
colum bia. edu/ data/ set/ popdy namics- 1- km- downs caled- pop- base- year- proje ction- ssp- 2000- 2100- rev01. The 
data of the Institute for Health Metrics and Evaluation (IHME) is downloaded from http:// ghdx. healt hdata. org/ 
record/ ihme- data/ global- popul ation- forec asts- 2017- 2100. The data of the Centre of Expertise on Population and 
Migration (CEPAM) are acquired from https:// core. ac. uk/ displ ay/ 15864 6554? source=2. The data of Wittgenstein 
Centre Data Explorer (WCDE) are obtained from http:// datae xplor er. wittg enste incen tre. org/ wcde- v2.
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