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Speed‑up and slow‑down 
of a quantum particle
X. Gutiérrez de la Cal1*, M. Pons2 & D. Sokolovski1,3

We study non‑relativistic propagation of Gaussian wave packets in one‑dimensional Eckart potential, 
a barrier, or a well. In the picture used, the transmitted wave packet results from interference between 
the copies of the freely propagating state with different spatial shifts (delays), x ′ , induced by the 
scattering potential. The Uncertainty Principle precludes relating the particle’s final position to the 
delay experienced in the potential, except in the classical limit. Beyond this limit, even defining an 
effective range of the delay is shown to be an impracticable task, owing to the oscillatory nature of the 
corresponding amplitude distribution. Our examples include the classically allowed case, semiclassical 
tunnelling, delays induced in the presence of a virtual state, and scattering by a low barrier. The 
properties of the amplitude distribution of the delays, and its pole representation are studied in detail.

A classical particle, crossing in one dimension a short-range potential V(x), goes faster over a well, V(x) < 0 , 
and slower over a barrier, V(x) > 0 . Once it has left the potential, this can be checked either by evaluating the 
distance x′ separating the particle from its freely moving counterpart at a given time t, or by measuring the time 
interval τ between the two arrivals at a fixed detector. The reason is simple. The particle’s velocity inside the 
potential either exceeds that of the free motion, or is reduced, and τ = x′/v0 , where v0 is the speed of free motion.

This explanation relies on the existence of a classical trajectory, and can no longer be used in the quantum case. 
There, a particle described by a wave packet may tunnel across the barrier even if its energy is smaller than the 
barrier’s height. Attempts to ascribe to tunnelling a single duration τ began with McColl’s observation that “there 
is no appreciable delay in transmission of the packet through the barrier”1, and continue to date, encouraged 
by the recent progress in atto-second experimental  techniques2–4. The discussion has recently become a dispute 
between those who think that τ should be  zero3, and those believing that it should have a non-zero  value4,5.

Before estimating the value of a commodity, it may be useful to enquire whether the commodity in question 
does indeed exist. This is particularly true in the case of tunnelling, where the existence of a well defined “tun-
nelling time” can be shown to contradict the Uncertainty  Principle6,7. Recently, there has been renewed interest 
in the tunnelling time problem  (see8–14). Although tunnelling is, without a doubt, the most interesting example, 
there are many other situations in which the classical analysis should fail. For example, such would be the case 
of a slow particle moving across a shallow well, supporting only few bound states, or passing over a low potential 
barrier. In brief, it would be helpful to have a general approach to quantum scattering, setting clear limits on what 
can and what cannot be asked of a quantum particle. Such an approach was outlined, and applied to wave packet 
tunnelling,  in15. In this paper, we discuss a more general application of the method to the transmission across 
an Eckart  potential16. Unlike the rectangular barriers and wells, often discussed in a similar context, Eckart’s 
potential is amenable to standard semiclassical  treatment16. The corresponding transmission amplitude, T(p, V), 
is known analytically, as well as the positions and residues of its poles in the complex momentum plane. All this 
makes this potential an ideal candidate for our demonstration.

The rest of the paper is organised as follows. In “Gaussian wave packets in an Eckart’s potential” we briefly 
discuss Eckart’s potential and Gaussian wave packets, used throughout the rest of the paper. Section “The classi-
cal limit: spatial advances and delays”  discusses the classical limit for passing over an Eckart’s well, or barrier. In 
Section “Apparently “instantaneous” semiclassical tunnelling”  we analyse the semiclassical limit of a tunnelling 
transmission. In Section “Scattering potential as an “interferometer”” a change to the coordinate representation 
allows us to describe a potential as a kind of an “interferometer” which splits the initial wave packet into the com-
ponents with different spatial delays, recombined later to produce the transmitted state. In Section “Amplitude 
distribution of the delays: a pole representation” we introduce a pole representation for the amplitude distribu-
tion of the delays. The cases of an Eckart’s barrier and an Eckart’s well are analysed separately in Sections “An 
Eckart barrier” and “An Eckart well”, respectively. In Section “Is there an effective range of spatial delays?” we 
ask whether one can define an “effective range” of the delays, and answer the question in the negative. Section 
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“Spatial delays vs. detection times” discusses the relation between special delays and measurable time intervals. In 
Section “The “phase time”” we relate the “phase time” to the displacement of the centre of mass of a wave packet, 
broad in the coordinate space. The delay experienced by a slow particle in a shallow Eckart well is discussed in 
Section “Scattering by a shallow Eckart well”. The case of a low Eckart barrier is analysed in Section “Scattering 
by a low Eckart barrier”. Our conclusions are in Section “Conclusions and discussion”.

Gaussian wave packets in an Eckart’s potential
We consider, in one dimension, scattering of a non-relativistic wave packet incident from the left on a smooth 
potential V(x), V(x) → 0 for x → ±∞ , see Fig. 1.

For the initial wave packet we have [ E(p) = p2/2µ , where µ is the particle’s mass, and � = 1 is used]

Its transmitted part is given by

where T(p, V) is the transmission amplitude. At a time t, large enough for the scattering to be completed, we will 
compare the positions of the transmitted wave packet with that of a freely propagating one, in order to determine 
whether the potential delays the particle or makes it, in some sense, go faster. In particular, we will consider an 
Eckart  potential16

a well, or a barrier, depending on the sign of U0 . For such a potential the transmission amplitude is well known 
to  be16

where Ŵ(z) is the Gamma  function17, and

The transmission amplitude has the usual  property18 (a star denotes complex conjugation)

which can also be obtained directly from (4).
We will be interested in Gaussian wave packets, and choose the momentum distribution in Eq. (1) to be

where x0 < 0 . With this, at t = 0 , the incident wave packet is a Gaussian state with a mean momentum p0 , of a 
width �x = 2/�p , placed at t = 0 a distance |x0| ≫ 1/α to the left of the barrier. In the coordinate representa-
tion we, therefore, have

(1)ψ0(x, t) =
∫

A(p− p0) exp[ipx − iE(p)t]dp.

(2)ψT (x, t) =
∫

T(p,V)A(p− p0) exp[ipx − iE(p)t]dp,

(3)V(x) =
U0

cosh2(αx)
,

(4)T(p,V) =
Ŵ(−ip/α − s)Ŵ(−ip/α + s + 1)

Ŵ(−ip/α)Ŵ(1− ip/α)
,

(5)s ≡ 2−1

[

−1+
√

1−
8µU0

α2

]

.

(6)T(−p∗,V) = T∗(p,V),

(7)A(p− p0) = 2−1/4π−3/4�p−1/2 × exp[−(p− p0)
2/�p2 − i(p− p0)x0],

(8)ψ0(x, t) = exp[ip0x − iE(p0)t]G0(x, t)

Figure 1.  Eckart’s potentials, a barrier and a well. Also shown schematically are the initial, ψ0(x, t = 0) , and the 
transmitted, ψT (x, t) , wave packets.
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where the envelope G0(x, t) is given by Eq. (S2) of the Supplementary Appendix A. It will be convenient to meas-
ure the distances in the units of the barrier’s width 1/α , and use dimensionless variables,

Next we consider the classical limit.

The classical limit: spatial advances and delays
For a classically allowed motion we have E(p) > V(x) , and the local momentum, q(x, p) =

√

p2 − 2µV(x) , is a 
real positive quantity. The classical requirement, that the potential should vary slowly on the scale of a local de 
Broglie  wavelength16, now translates into a condition 1/min [q(x, p)] ≪ 1/α . Neglecting the small over-barrier 
reflection, we write the transmission amplitude (4)  as19

and expand the phase � in a Taylor series around the particle’s mean momentum p0,

In the classical limit one expects a wave packet of a size �x ∼ 1/�p , small compared to the size of the poten-
tial δx ∼ 1/α , to be transmitted without distortion, and experience a delay or an advancement, depending on 
whether V(x) is a barrier or a well.

The phase �(p0,V) , and its derivatives in Eq. (11) scale as 1/α as the potential becomes broader, α → 0 . The 
momenta of the initial wave packet (7) lie approximately in the range of �p ∼ 1/�x around p0 , so that we have 
(p− p0)

n ∼ 1/�xn . Distortion-free transmission will be achieved if the sum in Eq. (11) can be neglected, i.e., 
for 

∑∞
n=2 ∂

n
p�(p0,V)(p− p0)

n/n! ≪ 1 . This will be the case if we choose

In Eq. (11), the remaining term in the square brackets is the classical expression for the distance x̃′ separating 
the particle from its freely propagating counterpart at a given (sufficiently large) time t. Indeed, it can be written 
as [ v0 = p0/µ and v(x, p0) = q(x, p0)/µ]

and Eq. (1) reduces to the desired classical result

In a snapshot taken on a large scale ∼ 1/α at a large time t, both the transmitted and the freely propagating 
probability densities, |ψT (x, t)|2 and |ψ0(x, t)|2 , will look like those belonging to point-size particles. As expected, 
in the case of a well, V(x) < 0 , v(x, p) ≥ v0 , and we find the particle lying ahead of its freely propagating coun-
terpart. Similarly, a barrier, V(x) > 0 , would cause the particle to lag behind the free motion, as is illustrated in 
Fig. 2a and b. More interesting, however, is the case of transmission not allowed in classical mechanics, which 
we will discuss next.

Apparently “instantaneous” semiclassical tunnelling
Next we consider the case of a barrier, V(x) > 0 , and choose all energies, E(p) < max[V(x)] , to lie not too close 
to the barrier top. Now the local momentum q(x, p) =

√

p2 − 2µV(x) is imaginary for x< < x < x> , where 
x<(>) are the classical turning points, q(x<(>), p) = 0 , and real positive elsewhere. As α → 0 , the semiclassical 
condition is satisfied everywhere, except in the vicinities of the turning points. Using the standard connection 
 formulae16 it can be shown that, as before,

except that now q(x, p) = i|q(x, p)| for x< ≤ x ≤ x> , and |T(p,V)|2 ∼ exp
(

−2
∫ x>
x<

|
√

p2 − 2µV(x)|dx
)

≪ 1 , 
so that most of the particles are reflected, and only few are transmitted.

Acting as in the previous section, and assuming that (12) holds, we find the transmitted wave packet greatly 
reduced, narrow compared to the width of the potential, and somewhat distorted. As before, ψT (x, t) is given by 
Eq. (14), but with a complex valued spatial shift, x̃′ = x̃′1 + ix̃′2,

(9)
µ = 1, α = 1, x = αx, p = p/α,

t = α2t/µ, U0 = µU0α
2.

(10)T(p,V) ≈ exp

{

i

∫ ∞

−∞
[q(x, p)− p]dx

}

≡ exp[i�(p,V)],

(11)�(p,V) =�(p0,V)−
∫ ∞

−∞
dx

[

1−
p0

q(x, p0)

]

(p− p0)+
∞
∑

n=2

∂np�(p0,V)(p− p0)
n/n!.

(12)�x ∼ 1/αγ , 1/2 < γ < 1.

(13)x̃′ ≡ v0

∫ ∞

−∞

[

1

v0
−

1

v(x, p0)

]

dx,

(14)ψT (x, t) = exp[i�(p0,V)+ ip0x̃
′]ψ0(x − x̃′, t, p0).

(15)T(p,V) ≈ exp

{

i

∫ ∞

−∞
[q(x, p)− p]dx

}

,



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3842  | https://doi.org/10.1038/s41598-022-07599-1

www.nature.com/scientificreports/

This complex shift has a different effect on the transmitted state. For a Gaussian wave packet (7) evaluation 
of the integral (2) yields

where ψ0(x − x̃′1, t, p0 + δp0) is a free wave packet with a mean momentum p0 + δp0 , and δp0 = �p2x̃′2/2 . Thus, 
the wave packet is duly delayed by the barrier potential in the classically allowed region. It also appears to cross 
the classically forbidden region, which does not contribute to x̃′1 , “instantaneously”. Furthermore, traversing the 
region increases the particle’s mean momentum by δp0 . This is the well known “momentum filtering effect” (see, 
for  example20). Since higher momenta tunnel more easily, the transmitted particle moves faster than the incident 
one, and the factor multiplying ψ0(x − x̃′1, t, p0 + δp0) in Eq. (17) is larger than T(p0,V) . In a snapshot taken 
at a sufficiently large time t the (greatly reduced) tunnelling wave packet would be advanced due to the positive 
shift induced by the barrier, x̃′1 > 0 , as well as owing to the increase in the particle’s mean velocity (see Fig. 1c).

Scattering potential as an “interferometer”
To get an alternative perspective on the three cases shown in Fig. 2, we change to a different representation by 
taking a Fourier transform of the transmission amplitude with respect to p, and inserting the result into Eq. (2). 
This yields an equivalent expression for the transmitted  state15,

(16)
x̃′1 ≡ v0

∫ ∞

−∞

{

1

v0
− Re

[

1

v(x, p0)

]}

dx,

x̃′2 ≡ −v0

∫ x>

x<

dx

|v(x, p0)|
< 0.

(17)ψT (x, t) = T(p0,V) exp[�p2x̃
′2
2 /4+ ip0x̃

′
1] × ψ0(x − x̃′1, t, p0 + δp0)

Figure 2.  (a) A wave packet is transmitted across an Eckart well, U0 = −2× 104 , p
0
= 200 , �p = 6.67 , 

x0 = −4 , and t = 0.04 . Also shown by the dashed line is its freely propagating counterpart in Eq. (1). The 
spatial advancement calculated in Eq. (13) is αx̃′ = 0.6619 b) Same a) but for a passage above an Eckart 
barrier, U0 = 105 , p

0
= 700 , �p = 6.67 , x0 = −4 , and t = 0.012 . The spatial delay calculated in Eq. (13) is 

αx̃′ = −0.5392 . (c) Wave packet (multiplied by z = 10221 for better viewing) tunnels across an Eckart barrier, 
U0 = 104 , p

0
= 50 , �p = 3.64 , x0 = −4 , and t = 0.17 . Freely propagating wave packets with mean momenta 

p0 and p0 + δp0 , are shown by dashed and dot-dashed lines, respectively. The spatial advancement in Eq. (16) 
is αx̃′ = 0.8515 . (d, e) and f) show Re[η̃(p0, x′)] (solid) and its average, Re[y−1

∫ x′+y
x′ η̃(p0, x

′′)dx′′] (thick solid) 
for the cases in (a, b and c), respectively. Where it exists, the classical value x̃′ is marked by a vertical dashed line.
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where G0(x, t) is the freely propagating envelope in Eq. (8). The distribution η(p0, x′) is a sum of a Dirac delta, 
and a non-singular smooth function,

where

With this, the action of a potential V(x) can be understood as follows. There is a continuum of routes, each 
labelled by the value of x′ , via which the particle can reach its final state. Along each route an envelope G0(x, t) 
is enhanced, or suppressed, by a factor |η̃(p0, x′)| , acquires an additional phase, arg[η̃(p0, x′)] , and is shifted in 
space by x′ . On exit from this “interferometer”, all envelopes are recombined, and added to G0(x, t) to produce 
the transmitted wave packet in Eq. (18). In addition, we have

so that η̃(p0, x′) can be understood to be the probability amplitude for a particle with a momentum p0 to experi-
ence a spatial shift x′ while crossing a short-range potential V(x) (see Supplementary Appendix B).

To see how a unique shift appears in the classical limit of Section III, we insert the semiclassical approximation 
(10) into (20), and evaluate the integral over k by the method of steepest  descent21. This yields

where k̃(x) satisfies a condition

As a function of x′ , η(p0, x′) has a critical point at x̃′(p0) , such that

or, explicitly,

For a particle passing over a well, or above a barrier, x̃′(p0) is real, and we recover the result (13), but in a new 
context. The smooth part of the amplitude distribution, η̃(p0, x′) has two important features. One is a region 
centred at x̃′(p0) where its oscillations are slowed down, the other is a finite narrow dip near x′ = 0 . The purpose 
of the dip is to cancel the contribution from the δ-function in Eq. (19) (for a similar “Zeno peak” occurring in 
quantum measurements  see22). The purpose of the stationary region is to replace the now cancelled out G0(x, t) 
with G0(x − x̃′, t) . Thus, the classical advancement (or delay), x̃′ , corresponds to a stationary point of the phase 
of a rapidly oscillating η(p0, x′) , as shown in Fig. 2d and e. If the incident wave packet is not too narrow [ 
�x > 1/

√

∂2p�(p0,V))] a single envelope G0(x − x̃′, t) is selected by the integral (18), and the classical picture 
is restored.

The case of tunnelling in Section IV is radically different. The position of x̃′ is controlled by the particle’s 
mean momentum p0 and, for E(p0) < max[V(x)] , x̃′ becomes the position of a complex saddle point off the real 
x′-axis. On the real x′-axis, the amplitude distribution η(p0, x′) rapidly oscillates, and it is impossible to choose 
a single real spatial delay, associated with a classically forbidden tunnelling transition (cf. Fig. 2f). Destructive 
interference between the delays makes the tunnelling amplitude T(p0,V) exponentially small, yet η(p0, x′) is not 
itself small, and differs only by a phase exp[−i(p0 − p′0)x

′] from a distribution for a particle with mean momen-
tum p′0 passing over the barrier top [cf. Eq. (20)] . This makes semiclassical tunnelling much more delicate, as 
both the shape and position of the tunnelled wave packet are now determined by the analytic continuation of 
the envelope G0(x, t) , G0(x − x̃′1 − ix̃′2, t) , into the complex x′-plane.

In the general case one cannot obtain the transmitted state by a single coordinate shift, be it real or complex 
valued, and has to sum the contributions of all the delays by evaluating the integral (21). In the next Section we 
discuss a useful way of doing it.

Amplitude distribution of the delays: a pole representation
One can close the contour of integration in Eq. (20) in the upper and the lower halves of the complex k-plane 
for x′ > 0 and x′ < 0 , respectively, and obtain η(p0, x′) by summing the contributions of pole singularities of the 
transmission amplitude. The poles of T(k, V) fall into two  categories18. Those on the positive imaginary semi-axis 
correspond to the bound (B) states, supported by the potential V(x). The poles in the lower half-plane, located 
symmetrically on both sides of the negative imaginary semi-axis describe scattering resonances (R). It is sufficient 

(18)ψT (x, t) = exp[ip0x − iE(p0)t] ×
∫ ∞

−∞
G0(x − x′, t)η(p0, x

′)dx′,

(19)η(p0, x
′) = δ(x′)+ η̃(p0, x

′),

(20)η̃(p0, x
′) ≡ exp(−ip0x

′)ξ(x′) = (2π)−1 exp(−ip0x
′)

∫ ∞

−∞
[T(k,V)− 1] exp(ikx′)dk.

(21)T(p0,V) =
∫ ∞

−∞
η(p0, x

′)dx′,

(22)η(p0, x
′) ∼ exp(−ip0x

′) exp[i�(k̃(x′),V)+ ix′k̃(x′)]

(23)∂k[�(k,V)+ kx′]|
k=k̃(x′) = 0.

(24)∂x′ [�(k̃,V)+ k̃x′ − p0x
′]|x′=x̃′(p0) = k̃(x̃′)− p0 = 0,

(25)x̃′(p0) = −∂k�(k,V)|k=p0 =
∫ ∞

−∞
dx

[

1−
p0

q(x, p0)

]

.
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to know all poles positions, kn , and the corresponding residues, Res(kn) , in order to evaluate all the quantities 
of interest. In particular, we have

and

In the above equations the sums are over the simple poles corresponding to the bound states ( nB ), and to the 
resonances ( nR ). The advancement of a classical particle passing over a potential well is already anticipated in 
Eqs. (26) and (27). Indeed, an envelope in Eq. (18) is advanced relative to free propagation, provided we have 
x′ > 0 . Such advanced envelopes would be present whenever V(x) is a well, supporting at least one bound state, 
and would not be there for a barrier where V(x) > 0 for all x. Special cases where T(k, V) has higher (second) 
order poles must be treated differently, as discussed in the Supplementary Appendix C.

[Note that although η(p0, x′) is clearly not an analytical function, the asymptotic analysis of the previous Sec-
tion still applies. In the case of tunnelling, one could construct the asymptote of η(p0, x′) e.g., on the negative x′
-axis, analytically continue it into the entire x′-plane, and transform the contour of integration 

∫ 0
−∞ dx →

∫

Ŵ
dx , 

making the Ŵ pass through the complex saddle x̃′ = x̃′1 + ix̃′2.]
For an Eckart potential, be it a barrier or a well, the poles’ positions and residues are known exactly. They 

occur when the argument of at least one of the Gamma functions in the numerator of Eq. (4) equals a negative 
integer, or zero, −n , n = 0, 1, 2, ... . They can, therefore, be divided into two groups,

and the corresponding residues are easily found to be given by

The cases of a barrier ( U0 > 0 ) and a well ( U0 < 0 ) need to be considered separately, as we will do next.

An Eckart barrier
If U0 > α2/8µ , we have s = [−1+ i

√

8µU0/α2 − 1]/2 , and the poles lie on two vertical lines, parallel to the 
imaginary k-axis in the lower half of the complex k-plane (see Fig. 3a),

It follows from (6) that Res[kIn] = −Res∗[kIIn ],
and it can be shown (see Supplementary Appendix D) that limn→∞ Res[kIn] = −α/2π . Subtracting the limit, 

and summing the geometric progression we find

where F(x) is given by a convergent series,

At U0 = α2/8µ , s = −1/2 , and the poles coalesce on the negative imaginary semi-axis

(26)η(p0, x
′) = δ(x′)+ i exp(−ip0x

′)×
{∑

nB
Res(knB ) exp(iknBx

′), x′ > 0
−
∑

nR
Res(knR ) exp(iknRx

′), x′ < 0,

(27)

ψT (x, t) = exp[ip0x − iE(p0)t]{G0(x, t)+ i
∑

nB

Res(knB )

∫ ∞

0
G0(x − x′, t) exp[i(knB − p0)x

′]dx′

− i
∑

nR

Res(knR )

∫ 0

−∞
G0(x − x′, t) exp[i(knR − p0)x

′]dx′}

(28)T(p,V) = 1−
∑

nB

Res(knB )

knB − p
−

∑

nR

Res(knR )

knR − p
.

(29)
kIn = iα(s − n), n = 0, 1, 2, ...,

kIIn = −iα(n+ s + 1),

(30)
Res(kIn) = i

(−1)n

n!
αŴ(−ikIn/α + s + 1)

Ŵ(−ikIn/α)Ŵ(−ikIn/α + 1)
,

Res(kIIn ) = i
(−1)n

n!
αŴ(−ikIIn /α − s)

Ŵ(−ikIIn /α)Ŵ(−ikIIn /α + 1)
.

(31)
Re[kIIn ] = 2−1α

√

8µU0/α2 − 1 = −Re[kIn] ≡ β ,

Im[kIn] = −α(n+ 1/2) = Im[kIIn ], n = 0, 1, 2, ...

(32)η̃(p0, x ≤ 0) =
exp(−ip0x)

2π

[

F(x)−
α sin(βx)

sinh(αx/2))

]

,

(33)F(x) ≡ 4π

∞
∑

n=0

exp[(n+ 1/2)αx] × Im{[Res(kIn)+ α/2π] exp(−iβx)}.

(34)
Re[kIn] = Re[kIIn ] = 0,

Im[kIn] = Im[kIIn ] = −α(n+ 1/2).
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For low barriers, 0 < U0 < α2/8µ , s remains real and negative. Thus, as U0 increases, the poles of the first 
kind, (I), move up the negative imaginary k-axis, while the poles of the second kind, (II), move down the same 
axis. As U0 → 0 , we find kI0 → 0 , and kIIn → −iαn = kIn+1 . The kI0 → 0 pole corresponds to the first virtual 
state, ready to become the first bound state when the potential becomes a shallow well. Virtual states of this type 
were described as “long-lived”  in18, and we will return to them in Section “Scattering by a shallow Eckart well”.

An Eckart well
As U0 decreases further and becomes negative, V(x) forms a one dimensional well, which always supports at least 
one bound  state16. The poles of the first kind continue their upward motion along the imaginary axis, and for 
s > M , M = 0, 1, 2, ... , M + 1 of them lie on the positive semi-axis, where they correspond to the M + 1 bound 
states, knB = kIn , nB = s − n , n = 0, 1, ...,M . The poles of the second kind, kIIn = −iα(n+ s + 1) move down the 
imaginary axis (cf. Fig. 3b). We note that some of the poles on the negative semi-axis coalesce whenever s takes 
an integer, or a semi-integer value.

The analysis is the simplest in the case where s takes an integer value, s = M , [ U0 = −α2M(M + 1)/2µ ], 
M = 1, 2, 3, ... , and a new bound state is about to enter into the well. The only singularities are the M bound 
states poles, kIn , n = 0, ...,M − 1 , and T(k, V) remains finite elsewhere, since the singularities of the numerator 
in Eq. (4) are cancelled, by the two Gamma functions in the denominator. Thus, the series (26)–(28) become 
finite sums, and we have

where kIn = iα(M − n) , and

Note that at these integer vales of s the well is transparent for all incident momenta, |T(p,V)| = 1.
For s = M + 1/2 , M = 0, 1, ... there is a sequence of double poles, whose residues are given in Supplemen-

tary Appendix C. Note that the coalescence of the poles does not produce any visible feature in the behaviour 
of either η(p0, x′) or T(p, V).

Is there an effective range of spatial delays?
There is clearly no unique spatial delay describing scattering beyond the classical limit. But is there a characteristic 
range of delays one can use, e.g., for a qualitative description of quantum tunnelling? Consider first a probability 
distribution with a well defined range, e.g., ρ(x) = exp(−γ x) for x ≥ 0 , and 0 otherwise. It vanishes for x ≫ 1/γ , 
and obviously has a “size” ∼ 1/γ . This can be checked by evaluating its moments, xm =

∫

xmρ(x)dx/
∫

ρ(x)dx , 
m = 1, 2, ... , and noting that x = 1/γ and σ ≡

√

x2 − x2 =
√
2/γ , yield estimates for the position and the width 

of the region which contains most of the distribution.
This is no longer true if a distribution is allowed to change sign (for a more detailed discussion  see23). Consider 

next a different “distribution”,

whose size, defined as above, should be of order of 1, since the slowest decaying term in the sum (37) is exp(−x) . 
An integral I(z) ≡

∫∞
0 exp(−x2/z2)ρ(x)dx , now restricted to an effective range of the order of z, should converge 

to I =
∫∞
0 ρ(x)dx = ǫ as z → ∞ . The question is how fast? Expanding exp(−x2/z2) ≈ 1− x2/z2 and requiring 

(35)η(p0, x
′) = δ(x′)+ i exp(−ip0x

′)×
{

∑M
n=0 Res(k

I
n) exp(ik

I
nx

′), x′ ≥ 0
0, x′ < 0,

(36)Res(kIn) = (−1)niα
(2M − n)!

n!(M − n)!(M − n− 1)!
.

(37)ρ(x) = (1/2+ ǫ) exp(−x)− exp(−2x), x ≥ 0,
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Figure 3.  (a) Poles of T(k, V) of the first (open circles) and the second (closed circles) types for an Eckart 
barrier, U0 > 0 . (b) same as (a), but for an Eckart well, U0 < 0 , supporting three bound states at s = 2.25.
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that the contribution of the second term to be negligible, yields an estimate z2 ≫
∣

∣

∣
x2
∣

∣

∣
 . Thus, for ǫ → 0 we have 

z ≫ 1/
√
ǫ → ∞ , at odds with the expected condition z ≫ 1 . Clearly, a much longer integration range is required 

for recovering a very small result to a good relative accuracy.
A similar problem would occur in trying to estimate how many delays must be taken into account in order to 

accurately reproduce the transmission amplitude T(p, V) in the case of tunnelling. Like ρ(x) in Eq. (37), the distri-
bution ξ(x′) in Eq. (20) is a sum of exponential terms [cf. Eq. (26)], and for an Eckart barrier with U0 > α2/8µ the 
exp(ikI0x

′) and exp(ikII0 x′) have the slowest decay rate of Im[kI0] = α/2 . Can it then be said that the transmission 
amplitude is a result of interference between delays in a range −α � x′ < 0 ? The previous example points toward 
a problem which may arise, especially where a small result is obtained due to cancellations between terms which 
are not small, as happened in the case of tunnelling (see Fig. 4b). Acting as in the above, we can define complex 
valued moments of the distribution η(p0, x‘),

and obtain a necessary (but not sufficient) condition to have |T(p0,V |z)− T(p0,V)|/|T(p0,V)| ≪ 1,
T(p0,V |z) ≡

∫ 0
−∞ exp(−x

′2/z2)η(p0, x
′)dx′,

For semiclassical tunnelling one finds z ≫
√

x̃21 + x̃22  , so the range R(p0,V) , defined in this manner, is of the 
order of the modulus of the complex delay in Eq. (16) , |x̃|.

We note that the dependence of R(p0,V) on p0 clearly frustrates our attempts to define an effective range of 
integration in Eq. (21), based on estimating the “size” of ξ(x′) in Eq. (20), i.e., by taking into account only the 
properties of the potential, and ignoring the value of the particle’s momentum. We will return to this subject in 
Section “Scattering by a shallow Eckart well”.

Spatial delays vs. detection times
One way to quantify the effect produced by a potential on a transmitted particle is to compare, at a given time 
t, the positions of the centre of mass (COM) of the transmitted density with that of a freely propagating state. 
For the COM delay we have

where

(38)x′m ≡
∫

x′mη(p0, x
′)dx′/

∫

η(p0, x
′)dx′ = T(p0,V)−1(i∂p)

mT(p0,V), m = 1, 2, ...

(39)z ≫
√

|x′2| =
√

|∂2pT(p0,V)/T(p0,V)| ≡ R(p0,V),

(40)δxCOM(t) ≡ xTCOM(t)− x0COM(t),

Figure 4.  (a) Real (closed circles) and imaginary (open circles) part of the residues for an Eckart well, 
supporting 42 bound states, U0 = −861 , s = 41 . Note that here are no singularities in the lower half-plane. Note 
also the scale on the vertical axis. (b) Same as (a) but for a barrier with U0 = 2485 , s ≈ −0.5+ 70, 5i . The poles 
of T(k, V) are distributed as in Fig. 3a, and there are no singularities in the upper half of the k-plane.
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With the help of Eq. (14) we readily obtain the classical result of Section “The classical limit: spatial advances 
and delays”, δxCOM(t) = x̃′ . For semiclassical tunnelling of Section “Apparently “instantaneous” semiclassical 
tunnelling”, from Eq. (17) we find

where δv0 = δp0/µ is the increase in the velocity due to the momentum filtering. In the general case the increase 
in the transmitted particle’s mean velocity can be evaluated as

For a large enough t, the term δv0t will dominate the r.h.s. of Eq. (42). However, x̃1 can still be determined, 
by comparing the position of the COM of ψT (x, t) with that of a free particle with a higher initial momentum, 
ψ0(x, t, p0 + δp0) , and no additional spatial shift. Note that in Eq. (42) one would expect v0 to be multiplied by 
the time interval between t and the moment the tunnelling particle enters the classical allowed region x > x> to 
the right of the barrier. Yet, t is the entire time of motion, as is illustrated in Fig. 2c.

So far we discussed the spatial shifts, since in Eq. (20) we relied on the Fourier transform of the transmission 
amplitude T(p, V) with respect to the momentum p. Of course, knowing the positions of the COM’s at a time, as 
well as their velocities, it is easy to compare the times τ(p0,V) and τ(p0,V = 0) at which the majority of the parti-
cles would arrive at a fixed detector with and without the potential in place. In the classically allowed case we have

In the case of tunnelling, a comparison with free motion at p0 + δp0 , yields

Both Eqs. (44) and (45) refer to time intervals, which can in principle be measured, yet their interpreta-
tion is different. The l.h.s. of Eq.(44) can be understood as the “delay experienced by a classical particle in the 
potential”, since the particle’s position can be determined throughout the transmission sufficiently accurately, 
and without disturbing the transition. Such an interpretation is not available for Eq. (45), where the transmitted 
state is seen to be reshaped via interference mechanism of the previous Section (for more details  see15). The same 
is true for any transition resulting from the interference between various delays induced by the potential. If so, 
the measured time of arrival at a detector cannot reveal the delay induced by the barrier. Its value must remain 
 indeterminate6 in accordance with the Uncertainty  Principle24, just like the slit chosen by a particle in a Young’s 
double slit experiment.

The “phase time”
Whether surprisingly, or not so surprisingly, it is the x′ in Eq. (38) which can be measured in an experiment. By 
increasing the wave packet’s coordinate width �x [cf. Eqs. (7) and (S1) in Supplementary Appendix A], one can 
prepare a wave packet, broad in the coordinate space, and narrow in the momentum representation. Expanding 
the broad envelope in a Taylor series, G0(x − x′, t) ≈ G0(x, t)− ∂xG0(x, t)x

′  yields15

The last term in Eq. (46) is recognised as the distance gained due to the momentum filtering, discussed in 
the previous section, and Eq. (46) can be rewritten

where τphase ≡ v−1
0 ∂p�(p0,V) [ T(p,V) = |T(p,V)| exp[i�(p,V)] ] is known as the “phase time” (see, e.g.,25), 

and δv0 is obtained by taking the limit �p → 0 ( �x → ∞ ) in Eq. (43),

Equation (47) is valid for any potential, as long as the incident wave packet is broad enough in the coordinate 
space. Thus, in the classical limit we recover Eq. (13), and τphase becomes the excess time, positive or negative, 
spent by the particle’s trajectory in the potential.

For semiclassical tunnelling Re[x′] = x̃1 is given by the first of Eq. (16), so there is no contribution to τphase 
from the classically forbidden region, x< < x < x> . With the time to cross the forbidden region apparently 
shorter than the time it takes to cross it at the speed of light, one seems to have a dilemma. Either Einstein’s 
relativity has no say over what happens in classically forbidden quantum transitions (see, e.g.,26), or there must 
be a good reason why one should refrain from deducing the duration spent in the barrier from the distance 
xTCOM(t)− x0COM(t) . Maybe the problem is with the non-relativistic Schrödinger equation used in the calculation? 
No, the use of the fully relativistic Klein–Gordon27,28 and  Dirac13 showed the same “apparently superluminal” 

(41)xT ,0COM(t) =
∫

x|ψT ,0(x, t)|2dx/
∫

|ψT ,0(x, t)|2dx,

(42)δxCOM(t) =[x̃′1 + (v0 + δv0)t + x0] − [v0t + x0] = x̃′1 + δv0t,

(43)δv0 = δp0/µ =
∫

(p− p0)|T(p,V)|2|A(p− p0)|2dp
µ
∫

|T(p,V)|2|A(p− p0)|2dp
.

(44)τ(p0,V)− τ(p0,V = 0) = −x̃′/v0.

(45)τ(p0,V)− τ(p0 + δp0,V = 0) ≡ −Re[x̃′]/v0.

(46)δxCOM(t) ≈ Re[x′] + 2Im[x′]Im
[
∫

xG∗
0 (x, t)∂xG0(x, t)dx

]

.

(47)δxCOM(t) ≈ v0τphase + δv0t,

(48)δv0 ≈ 2∂p ln |T(p0,V)|
∫

(p− p0)
2|A(p− p0)|2dp

µ
∫

|A(p− p0)|2dp
= Im[x′]�p2/2µ.
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advancement of the (greatly reduced) transmitted wave packet. There is some consensus that the “superluminal” 
transmission results form reshaping of the initial wave packet, whereby the transmitted particles come from its 
front  tail10,11,27,28,30 and causality is never violated. (The authors  of13 reject the former suggestion, but agree in 
that no “superluminal signalling” is possible).

As far as we can see the problem with the “phase time” is as follows. With many envelopes in Eq. (18) inter-
fering destructively, one cannot determine a unique spatial shift induced by the barrier “interferometer”. In all 
routes across the barrier potential V(x) > 0 none of the envelopes G(x − x′, t) in equation (18) are advanced 
even relative to the non-relativistic free motion. The average x′ obtained with an alternating distribution in Eq. 
(38) cannot be used in the same way as the unique classical value of Sect. III. One may recall the double slit 
conundrum. The interference picture is clearly observable, yet there is no way of telling which of two the holes 
has been used by the particle (See also Supplementary Appendix E).

Scattering by a shallow Eckart well
The pole representation (26) turns out to be impractical for a deep semiclassical well, supporting many bound 
states. The magnitudes of the residues in Eq. (30) become prohibitively large (see Fig. 4a), and a large amount of 
cancellation is required to produce the classical result (14).

The representation is, however, useful in the case of a shallow well, where the semiclassical approximation 
(14) cannot be applied.

For a Gaussian wave packet (3) the integrals in equation (27) can be expressed in terms of the error function 
(see Supplementary Appendix A), and for s = M we have

where G(x, kIn, p0) is given by Eq. (S3) in Supplementary Appendix A. We note that equation (49) is exact, and 
holds for all Gaussian initial states. An example, where a broad Gaussian wave packet ( �x ≫ 1/α ) crosses an 
Eckart well, supporting 5 bound sates is shown in Fig. 5.

This analysis can be extended to wells with s close to an integer M, |s −M| ≪ 1 . Below we consider the case 
s ∼ 1 , where the second bound state is about to enter the well. (The cases M ∼ 2, 3, ... can be analysed in a similar 
manner, see Supplementary Appendix F.) It is sufficient to include the contributions from the first two poles of 
the first kind, kI0 ≈ iαs and kI1 ≈ iα(s − 1) . Thus, for the delay distribution from Eq. (26) we have

where θ(x) = 1 for x ≥ 0 and 0 otherwise. Integrating Eq. (50) for |s − 1|, p/α ≪ 1 , yields

The first (Breit–Wigner) term ensures that, for a fixed p, |T(p, V)| is peaked around s = 1 with a width 2p/α . 
The second term needs to be taken into account when calculating the derivatives with respect to p at s = 1 . In 
particular, for the COM delay of a slow broad wave packet from (46) we obtain,

(49)
ψT (x, t) = exp[ip0x − iE(p0)t] × {G0(x, t)+

M−1
∑

n=0

Res(knI )G
B(x, kIn, p0)}

(50)
η(p, x′) ≈ δ(x′)− 2α exp[−(αs + ip)x′]θ(x′)+ α(s − 1) exp{−[α(s − 1)+ ip]x′} × [θ(x′)θ(s − 1)+ θ(−x′)θ(1− s)],

(51)T(p,V) ≈ −
ip/α

(s − 1)+ ip/α
+ 2(s + ip/α − 1)

(52)δxCOM − δv0t ≈
α(s − 1)

α2(s − 1)2 + p20
+

2

α
,

Figure 5.  The difference between the probability densities of a free wave packet, p
0
= 0.5 , �p = 0.1 , 

x0 = −100 , t = 650 and one transmitted across a shallow Eckart well with s = 5 (U0 = −15) . The COM of the 
transmitted wave packet is advanced by δxCOM(t) = 4.0768 relative to the COM of a freely propagating one 
(vertical dashed). Also shown in the insets are the real part of η(p0, x′) in Eq. (26), and the residues of the five 
poles, which contribute to Eq. (35).
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where δv0 given by Eq. (48) is the increase in the transmitted particle’s mean velocity due to momentum filter-
ing, already discussed in Sections “Apparently “instantaneous” semiclassical tunnelling” and “Spatial delays vs. 
detection times”. Thus, a broad wave packet with p0 ≪ α is advanced relative to free propagation at p0 + δp0 
by about the well’s width, ∼ 1/α . However, (see Fig. 6), the largest advancement, ∼ 1/2p0 ≫ 1/α , is achieved 
for s ≈ 1+ p0/α , where there exists a shallow level with an energy E ≈ −p20/2µ , and η(p0, x′) has a long tail 
extending into the x′ > 0 region. Similarly, the largest delay, ∼ 1/2p0 occurs for s ≈ 1− p0/α , where there exists 
a virtual state18, and η(p0, x′) extends far into the x′ < 0 region. Finally, for |s − 1| , p0/α ≪ 1 and |s − 1| ≫ p0/α 
we have δxCOM − δv0t ≈ 1/α(s − 1) , in agreement with the slowly decaying exponential term exp[−α(s − 1)] 
in Eq. (50).

One can also try to estimate the effective range the delays as proposed in Section IX. With the help of Eqs. 
(38) and (50) one finds

For s = 1 and p0/α ≪ 1 , the range R(p0,V) in Eq. (39) equals twice the wells width, R(p0,V) =
√

|x′2| ≈ 2/α . 
This is to be expected, since there η(po, x′) in Eq. (50) consists of a single exponential with a decay rate α . The range 
peaks at |s − 1| = p0/α , reaching there the largest value R(p0,V) ≈ 1/p0 as shown in Fig. 7. For |s − 1| ≫ p0/α 
one may expect the range to be given by the largest decay rate in Eq. (50), i.e., R(p0,V) ∼ 1/α|s − 1| . The correct 
answer is, however, R(p0,V) ∼ 1/α

√
|s − 1| (see Fig. 7), since the value of |T(p0,V | , determined by all three 

terms in Eq. (50), itself falls off as 1/|s − 1| . This, as we have already seen in SectionVII, is a common problem 
with estimating the effective range of an alternating distribution. An integration range, defined in this manner, 
depends not only on the apparent “size” of integrand (in this case, 1/|s − 1| ) but also on the value of the integral, 
which can itself be small due to cancellations.

Scattering by a low Eckart barrier
In the case of a high semiclassical barrier, the pole representation (26) has a similar problem (see Fig. 4b). For a 
low barrier, however, the pole expansion is more useful, as illustrated in Fig. 8.

(53)x′2 ≈ α−2T−1(p0,V)

[

−4

(s + ip0/α)3
+

2(s − 1)

(s − 1+ ip0/α)3

]

.

Figure 6.  Centre-of-mass delay of a wave packet with p
0
= 0.005 , �p = 0.001 , x0 = −3 ∗ 103 , at t = 2 ∗ 106 

vs. the well’s depth U0 > 0 , calculated using Eqs. (40)–(41) (solid), Eq. (46) (dashed), and Eq. (52) (dot-dashed).

Figure 7.  Effective range of integration in equation (21), R(p0,V) =
√

|x′2| ≈ 2/α vs. s in equation (2), 
for a shallow Eckart well, and p0/α = 0.001 (solid). Also shown by the dashed line is an approximation 
R(p,V) ≈

√

2/(p0|s − 1|).
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Low energy scattering by a low barrier can be analysed by the method of the previous section. For 
−1/2 < s < 0 , the poles remain on the negative imaginary axis, and for |s| ≪ 1 the delay is dominated by the 
presence of the last virtual state, which joins the continuum when the well ceases to exist. Accordingly, we have

and from (46)

Thus, a slow ( p0/α ≪ 1 ) and broad ( α�x ≫ 1 ) particle experiences the largest delay, δxCOM − δv0t ≈ 1/2p0 , 
is scattered by a barrier with s ≈ p0/α . This simple approximation begins to breaks down for s ≈ −1/2 
( U0 ≈ α2/8µ ), where the poles of the fist and the second kind in Fig. 3 coalesce and, as the barrier increases, 
begin to move parallel to the real axis. This change in the poles’ behaviour has no visible effect on either the 
transmission amplitude, or the delay in Eq. (42). However, for U0 > α2/8µ , a larger number of poles must be 
taken into account in order to reproduce the transmitted wave packet with sufficient accuracy, as shown in Fig. 9. 
Note that the role of the poles lying far from the real axis is to cancel the contribution form the δ-term in Eq. (19) 
and ensure the correct magnitude of the transmitted state (cf. Fig. 8).

Conclusions and discussion
In summary, there are two ways to look at transmission of a quantum particle across a short-range potential, 
be it a barrier or a well. Firstly, the wave packet can be seen as probing the transmission amplitude, T(p, V), in 
a range of momenta around its mean momentum, p0 , determined by the width of A(p− p0) in Eq. (1). Integra-
tion in the momentum space gives the correct answer (2) for the transmitted wave packet, but provides little 
additional insight.

(54)η(p0, x
′) ≈ δ(x′)− αs exp[−(αs + ip0)x

′]θ(−x′),

(55)T(p,V) ≈
ip/α

s + ip/α
,

(56)δxCOM − δv0t ≈
αs

α2s2 + p20
.

Figure 8.  A wave packet with p
0
= 1.5 , �p = 0.1 , x0 = −100 , at t = 500 , transmitted across a low barrier, 

U0 = 1 (s = −0.5+ 1.323i) . Also shown are the results of calculating ψT (x, t) in Eq. (27) using 2, 8, and 30 
poles, and the free wave packet (dashed). The insets show the real part of η(p0, x′) in Eq. (26), and the residues 
of the first 50 poles.

Figure 9.  Centre-of-mass delay of a wave packet with p
0
= 0.005 , �p = 0.001 , x0 = −3 ∗ 103 , at t = 2 ∗ 106 

vs. the barrier’s height U0 > 0 , calculated using Eqs. (40)–(41) (solid), Eq. (46) (dashed), and Eq. (56) (dot-
dashed).
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The second approach helps one to identify the disputed reshaping mechanism (see, e.g.,29,31,32). Equation (18) 
represents the transmitted state as a sum of freely propagating envelopes, each shifted in space by a distance x′ , 
and weighted by the corresponding probability amplitude η(p0, x′) . The problem, we argue, is most naturally 
discussed in terms of the particle’s position at a given time (One can, in principle, consider a Fourier transform 
with respect to the energy E , and represent the transmitted state as a weighted sum of the free envelopes, shifted 
in time rather than in space. The analyses is the same if the dispersion law is linear, E = cp , but becomes more 
complicated for massive particles, E = p2/2µ6, since T(E,V) is no longer single-valued in the complex energy 
plane. For this reason we prefer an analysis in terms of spacial delays). One recognises certain features familiar 
from classical mechanics. For a barrier, all envelopes are delayed relative to free propagation, and it requires a 
potential well to have some of them advanced. This does not, however, guarantee that the tunnelling particle will 
be found delayed if compared with a freely propagating one. Since η(p0, x′) may change sign, the centre of mass 
of the transmitted wave packet, constructed from the front tails of the delayed envelopes, may end up advanced, 
as shown in Fig. 2c.

One of the enduring misconceptions about the subject is the belief that the time at which a transmitted par-
ticle arrives at a fixed detector can be related to the duration, spent by the particle in the barrier. As discussed 
in Section “Spatial delays vs. detection times”, the detection times are easily linked to the transmitted particle’s 
instantaneous position. Yet they provide no further insight into which of the delays in Eq. (19) occurs in the 
barrier, and for a very fundamental reason. With several spacial delays interfering, the Uncertainty Principle 
forbids identifying the one occurred in the same sense it leaves indeterminate the slit chosen in a double slit 
experiment (see Supplementary Appendix E). In general, there is no single spatial delay, associated with quantum 
transmission. Worse still, since η(p0, x′) changes sign, we found no simple way to characterise transmission by 
an effective range of delays (see Sections “The “phase time”” and “Scattering by a shallow Eckart well”).

One exception is the classical limit. For a classically allowed transmission, the amplitude distribution η(p0, x′) 
selects a single delay x̃′ , and a single envelope G0(x − x̃′, t) , delayed or advanced relative to free propagation, 
as shown in Fig. 2a and b. This is no longer true for semiclassical tunnelling, where η(p0, x′) also has a saddle 
point, but there the similarity ends. Equation (27) sums the free envelopes along the real x′-axis, but the saddle 
at x̃′ = x̃′1 − ix̃′2 lies in the complex x′-plane and cannot be seen in Fig. 2. Interference between all real delays 
produces the resulting envelope, G0(x − x̃′1 − ix̃′2, t) , which cannot be associated with a single real spatial shift.

Then what is the “phase time”, often associated with the duration of  tunnelling33? Firstly, it is what one obtains 
by dividing the distance separating the COM of a transmitted wave packet, broad in the coordinate space, from 
the COM of its free counterpart, by the particle’s mean velocity [cf. Eq. (47)]. Secondly, it can be expressed 
as the real part of the first moment of an alternating “distribution” η(p0, x′) [cf. Eq. (38)]. It can, therefore, be 
measured, but should not be interpreted as the “excess time spent in the barrier” if one wishes to avoid a conflict 
with special relativity.

Furthermore, the transmitted state ψT (x, t) can be written as a discrete sum over the singularities of the trans-
mission amplitude T(p0,V) . This representation is convenient for describing low-energy scattering by shallow 
wells or low barriers, as discussed in Sections XI and XII. It becomes impractical in the classical or semiclassical 
limit, where individual terms of the pole sum become very large (see Fig. 4). We note that a similar behaviour 
occurs in a different model (see Section 6  of15), using an interference-based reshaping mechanism to advance 
the transmitted state.

In summary, we provided a detailed analysis of transmission across various Eckart potentials. We conclude 
that, except in the classical limit, quantum scattering is essentially an interference phenomenon, not amenable 
to simplistic descriptions in terms of a single delay experienced in the potential, or even of a probability distribu-
tion of such delays. This is the fundamental difficulty with the search for a “tunneling time” which began with 
McColl’s  paper1 almost ninety years ago.
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