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A pavement distresses 
identification method optimized 
for YOLOv5s
Keyou Guo, Chengbo He*, Min Yang & Sudong Wang

Automatic detection and recognition of pavement distresses is the key to timely repair of pavement. 
Repairing the pavement distresses in time can prevent the destruction of road structure and the 
occurrence of traffic accidents. However, some other factors, such as a single object category, shading 
and occlusion, make detection of pavement distresses very challenging. In order to solve these 
problems, we use the improved YOLOv5 model to detect various pavement distresses. We optimize 
the YOLOv5 model and introduce attention mechanism to enhance the robustness of the model. 
The improved model is more suitable for deployment in embedded devices. The optimized model 
is transplanted to the self-built intelligent mobile platform. Experimental results show that the 
improved network model proposed in this paper can effectively identify pavement distresses on the 
self-built intelligent mobile platform and datasets. The precision, recall and mAP are 95.5%, 94.3% 
and 95%. Compared with YOLOv5s and YOLOv4 models, the mAP of the improved YOLOv5s model is 
increased by 4.3% and 25.8%. This method can provide technical reference for pavement distresses 
detection robot.

Smart cities are developing with the development of artificial intelligence. Qi et al.1 Proposed ’privacy-aware Data 
Fusion and Prediction With spatial–temporal Context for Smart City Industrial Environment’. It combines smart 
cities with transportation and healthcare, generating data analysis and forecasting. Hu et al.2 proposed ’Digital 
Twin-assisted real-time Traffic Data Prediction Method for 5G-enabled Internet of Vehicles’. The coordinates of 
physical vehicles are represented on the control platform through 5G network, and reasonable transmission of 
their information helps optimize traffic scheduling. Xu et al.3 proposed “Trip Res: Traffic Flow Prediction Driven 
Resource Reservation for Multimedia IoV with Edge Computing”, which simplifies the complex distribution of 
edge servers by dividing the city map into zones and treating the edge servers within a zone as “big Edge Serv-
ers”. Wang et al.4 proposed “6G-enabled short-term Forecasting for large-scale Traffic Flow in Massive IoT Based 
on Time—Aware the Locality—Sensitive Hashing”, which was used for accurate and efficient short-term traffic 
prediction in large-scale IoT. Liu et al.5 proposed “An Attention-based category-aware GRU model for the next 
POI Recommendation”, which uses an attention mechanism to focus on the relevant historical check-in traces 
in the check-in sequence. The development of smart transportation is becoming more and more mature with 
the development of smart cities.

With the rapid development of road infrastructure in various countries, road inspection and daily main-
tenance work are increasingly heavy. The detection and repair of pavement distresses, such as cracks, cracked 
networks, damaged landmarks, potholes, and damaged manhole covers, become the most important part of 
road maintenance. Repairing pavement distresses in time can avoid road structure damage and traffic accidents. 
The detection of multiple types of pavement distresses has become an important research value. In the manual 
assessment, the technician will make the assessment according to the condition of the road, but the result of 
the assessment depends on the ability of different technicians. It is worth noting that this type of work requires 
a degree of expertise and work experience. For them, such work is boring, unsafe and expensive. In order to 
overcome these shortcomings, we need to adopt a lower cost and better performance of automatic pavement 
distresses detection technology. Automatic detection technology includes ultrasonic detection method, laser 
detection method, traditional computer vision detection method and deep learning detection method. In the 
mid-1980s, Sanasfone and Carino in the United States achieved the goal of nondestructive testing by using the 
mechanical wave reflection method in cement concrete and other assembled nonmetallic composite materials. 
Ultrasonic waves will be affected by moisture content, mix ratio, road temperature and other factors in the road 
surface, which lead to the fluctuation of sound velocity and thus affecting the measurement precision. Therefore, 
we still have a lot of research work to do. At present, a research institution in Britain is studying the automatic 
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detection of pavement distresses by using high-speed 3D laser scanning technology. Due to the problems such 
as poor laser scanning speed, small data storage and weak processing ability, the technology can not realize the 
function of high-speed detection of fine cracks, so it has not reached the degree of engineering application. Tra-
ditional computer vision detection methods mainly include threshold-containing segmentation6, edge detection7, 
minimum path search8 and wavelet transform9. Machine learning methods such as handcrafted feature-based 
clustering10, random forests11 and support vector machines12 have also obtained good results in detection tasks. 
However, they require high-quality input images, and the detection results will be greatly affected when the 
external conditions change with uneven lighting and noisy interference. Therefore, in this study, we use deep 
learning algorithm to further explore the development of artificial intelligence to study the effect of pavement 
distresses detection in smart traffic.

The contributions of this study are as follows.
Real road environment is simulated, and our datasets of pavement distresses is enhanced by using our data 

enhancement tools.
For the specific task of pavement distresses detection, we optimize the relevant modules of YOLOv5 to make 

it more suitable for the detection of this task.
In the optimized YOLOv5 model, we combine some other algorithms, such as attention mechanism, CIOU 

algorithm and K_means algorithm, which aims to make our model more suitable for the detection of specific 
tasks.

Compared with the unoptimized model, this model is improved to some extent, which verifies the superiority 
and effectiveness of this model in the field of pavement distresses detection.

The rest of this article is organized as follows: ‘Related work’ briefly summarizes the existing work related to 
our task. ‘Methods’ describes in detail the work we do, including the processing of datasets, improved methods, 
recombination and arrangement of network models. ‘Results and discussion’ section presents and analyzes the 
experimental results after the deployment of our method, and discusses the advantages and disadvantages of our 
model. In the section of ‘Conclusions’, we summarize the whole paper and put forward the idea of improving 
our research in the next step.

Related work
Artificial intelligence, as the theoretical basis of deep learning, has been updated by researchers in recent years. 
Liu et al.13 proposed A long-term memory-based model for greenhouse climate prediction. He used long short-
term memory (LSTM) model to capture the dependence between historical climate data. The unreliability of 
label data has been studied across borders. Liu, Qi et al.14,15 proposed a framework for tag noise filtering and 
missing Tag Supplement (LNFS). They take location tags in location-based social networks (LBSN) as an example 
to implement our framework. In addition, They propose an attention-based bidirectional gated recurrent unit 
(GRU) model for point-of-interest (POI) category Prediction (ABG_poic). They combine the attention Mecha-
nism with Bidirectional GRU to Focus on history Check-in records, which can improve the interpretability of 
the model.

Deep learning is gradually applied to the task of pavement distresses detection. Yusof et al.16 used deep 
convolutional neural networks for crack detection and classification of asphalt pavement images. In their study, 
the input to their network framework required clear and high-quality pictures with a relatively single category 
of predictions. This does not match the complexity of actual pavement distress. Xianglong et al.17 studied the 
recognition of road cracks based on VGG deep convolutional neural network, and the types of cracks include 
transverse, longitudinal and mesh. This has led to a certain increase in the variety of road diseases, but the VGG 
network has the disadvantage of a large number of network parameters and slow working speed, which cannot 
be ported to embedded devices in practical applications. In order to solve the problem of a single type of pave-
ment disease, the number of parameters is large and the model cannot be well ported to the embedded device. 
V Mandal et al.18 proposed a deep learning framework-based pavement hazard study. He used the YOLOv5s 
framework for classification detection and expanded the detection sample, but the detection precision was low. 
Based on this, we need to further ah expand the data samples and restructure the network model to improve the 
detection efficiency of detecting pavement distress. Therefore, we adopt the one-stage algorithm.

The single-stage algorithm has high detection accuracy, which not only achieves success in the pursuit of 
high detection accuracy, but also shows excellent performance in the detection efficiency. Therefore, YOLO rep-
resents the work of the single-phase algorithm, as well as the update from YOLOv2 to YOLOv5. The YOLOv519 
is the latest model in the YOLO20 family. The network model has high detection precision and fast reasoning 
speed. The fastest detection speed can reach 140 frames per second. On the other hand, the weight file size of the 
YOLOv5s object detection network model is small, which is nearly 90% smaller than that of YOLOv421, which 
indicates that YOLOv5 model is suitable for deploying embedded devices to realize real-time detection. There-
fore, the advantages of YOLOv5s are that the network is characterized by high detection precision, light weight 
and fast detection speed. There are four architectures of YOLOv5, specifically named YOLOv5s, YOLOv5m, 
YOLOv5l and YOLOv5x. The main difference is the depth and width of the models. As there are five categories 
of objects to be identified in this study, the recognition model has high requirements on real-time performance 
and lightweight performance. Therefore, we optimize and improve the model in order to improve the accuracy 
and efficiency of the model.

Methods
Pavement distresses images acquisition.  Materials and image data acquisition methods.  The datasets 
we use were provided by Jiangsu Provincial Department of Industry and Information Technology. The datasets 
included cracks in different directions, complex cracked networks, damaged landmarks in different degrees, dif-
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ferent potholes, damaged manhole covers, and intact roads. Figure 1 shows part of the datasets. Furthermore, 
the datasets were captured by an iPhone in the morning, midday, and afternoon. Shadows, rain, and other envi-
ronmental conditions were considered in the shooting process. The images were captured at a resolution of 4500 
pixels × 6000 pixels in jpg format.

Preprocessing of images.  First, we randomly divided the 2338 images into two groups. One was a test datasets 
with 644 images, and the rest were training datasets. The detailed distribution of image samples is shown in 
Table 1. To improve the training efficiency of the pavement distresses recognition model, we compressed the 
original images of the training and val datasets so that they meet the input channel requirements of YOLOv5s. 
Next, Datasets labeling software "LabelImg" was used to draw rectangular boxes of multicategory pavement 
distresses object in the road images to achieve manual labeling of the pavement distresses. The image is labeled 
according to the most complete rectangle around the pavement distresses. After the annotation was completed, 
an XML format file was generated. Finally, to enrich the datasets, a data enhancement process was performed to 
better extract the features of the pavement distresses objects and to avoid overfitting the data obtained in train-
ing.

To improve the generalization ability of pavement distresses object detection model, a variety of image 
enhancement methods were applied to 1694 training datasets. The image enhancement methods include image 
brightness enhancement and reduction, horizontal mirroring, vertical mirroring, and multiangle rotation. In 
addition, we consider that the image acquisition equipment wobble will make the image blurred. In the process 
of datasets pretreatment, gaussian noise was added to the image and motion blur is processed. Data processing 
is shown in Table 2.

First, Image cropping and image conversion can be implemented using functions. a new photo can be cre-
ated by OpenCV ‘numpy. shape ’function. The transformed images and cropped image can improve the detec-
tion performance of the model by correctly identifying the cracks of different orientations. Second, we used 
OpenCV add Weighted to adjust the image brightness. Converts the original image to a blended image, which is 
a function that helps with alpha blending of the image. The generic syntax for this can be as follows: ‘img = cv2.
addWeighted(source1, alpha, source2, beta, gamma)’. Here, we can add weights to redefine the transparency and 
translucency of the images. we add the image and then add the pixel values. The new image is the source where 

Figure 1.   Datasets of pavement distresses under different conditions. (a) Crack (b) The cracked networks (c) 
Damaged landmarks (d) Pothole (e) Damaged manhole covers (f) The complete pavement under the shaded 
part.

Table 1.   Pavement distresses type comparison table.

Id Classes Description Number of labels

1 Crack Cracks 2169

2 Net Cracked networks 370

3 Marking Damaged landmarks, 228

4 Pothole Potholes 471

5 Abnormal Manhole Damaged manhole covers 1265
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we will multiply the alpha value and the second source with the beta value. The gamma value will be added to 
this value and help in processing and alpha blending the image. Then, We used The flip function of OpenCV to 
rotate the image Angle. It has the ability to flip a two-dimensional array in different directions, whether it’s verti-
cally, horizontally, or on either axis, we can use it to do the Angle rotation of the image. And finally, the addition 
of Gaussian noise to the raw images was implemented using the OpenCV function ‘kimage.util. random_noise’.

The final training datasets of the pavement distresses object recognition model consists of 9184 images, 
including 7490 enhanced images and 1694 images from the training datasets. It should be noted that since no 
pavement distresses were marked in the negative samples, they did not need to be enhanced. The detailed distri-
bution of the training datasets is shown in Fig. 2. There was no overlap between the training and the test datasets.

Improvement of YOLOv5s network architecture.  YOLOv5s network architecture.  The YOLOv5s 
framework is mainly composed of three parts, namely, the backbone network, neck network, and detection net-
work. The backbone network is a convolutional neural network that aggregates different fine-grained images and 
forms image features. To be more specific, the first layer of the backbone network is the focus module (Fig. 3).
First, the image input with 3 channels was divided into four pieces, and its size was 3 × 320 × 320 per slice, using a 
slicing operation. Second, the concat operation links four slices together in depth, resulting in an output feature 
map of size 12 × 320 × 320. Then, through a convolutional layer composed of 32 convolution kernels, an output 
feature map with a size of 32 × 320 × 320 was formed. Finally, through the BN layer (Batch Normalization)22 and 
SiLU23 activation functions, the results were output into the next layer.

The second layer of the network framework is the standard convolutional layer (Fig. 4), which consists of 
convolutional operations, normalization processing (BN layer) and activation function Leaky_ReLU.24 The size 
of the convolution kernel is 1 × 1. The image is passed through the convolution layer to obtain the field of percep-
tion and improve the efficiency of subsequent processing.

Table 2.   Data enhancement algorithm.

Require: Image enhancement

1: Loading image list from file

2: Loading bounding box in all files

3: For image, bounding box in all files

4: For num in number of enhancements

5: Add noise, change lights, cut out, rotate, translation, mirror in random rates

6: Save new image and bounding box

Figure 2.   The distribution of training datasets data.
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The third layer of the backbone network is the Bottleneck C3 module (Fig. 5), which aims to extract the deep 
features of the image better. The C3 module is mainly composed of a bottleneck module, which is a residual net-
work architecture. C3 is composed of a convolution layer (Conv2d + BN + SiLU activation function) whose con-
volution kernel size is 1 × 1, a convolution layer of which the convolution kernel size is 3 × 3. The initial input and 
the final output of this part are added through the residual structure as the final output of the bottleneck module.

The C3 module (Fig. 6) input channel is divided into two branches. Through the convolution operation of 
the two branches, the number of channels in the feature map is halved. Then, the feature map goes through the 
bottleneck layer, the Con2d and BN layers in the second branch, and the concat layer is used to deeply fuse the 
two branches. Finally, the output feature map of the module is generated after continuous passage through the 
BN layer and Conv2d layer, the size of the feature map is the same as the input size of the C3 module.
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3 320 320

3 320 320

3 320 320
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Figure 3.   Structure of Focus module.
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Figure 5.   Structure of bottleneck module.
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The SPP25 module (spatial pyramid pooling) (Fig. 7) is located at the ninth layer of the backbone network. It 
accomplishes two things: fusing multi-scale features and converting different inputs into fixed dimension vec-
tor. In the SPP module of YOLOv5s, the input feature size is 512 × 20 × 20. First, the feature map with the size 
of 256 × 20 × 20 is output, after a pass through the convolutional layer; the convolution kernel size is 1 × 1. Then, 
the feature map is subsampled under the action of three parallel max-pooling layers, and the output feature map 
whose size is 1024 × 20 × 20 is connected in depth. Finally, the final output feature with a size 512 × 20 × 20 is 
generated under the action of a convolution layer with 512 convolution kernel.

The neck network is composed of a certain number of mixed features and combined image features. Feature 
Pyramid Networks26 (FPN) is generated by it, then, output image feature through the detect network is generated 
(Fig. 8). Because the top-down FPN structure is added to the network, the feature information of the high level 
is transferred and fused by the subsampled method to obtain the feature map for prediction. On that basis, a 
bottom-up feature pyramid containing two Pixel Aggregation Network27 (PAN) structures has also been added 
behind the FPN layer. In this combination, the FPN layer transmits strong semantic features from the top to 
down, while the feature pyramid transmits strong positioning features from the bottom to up, the two layers work 
together to aggregate the parameters of different detection layers from different backbone layers.

The detection network is mainly used for the final detection part of the model. anchor boxes act on the 
feature map from the previous layer and output information vector, including the confidence of the objects and 
the maximum and minimum values of the object boundary coordinates. In the detection network of YOLOv5s, 
there are three detection layers, whose output feature maps are 76 × 76, 38 × 38 and 19 × 19. Each detection layer 
finally outputs a 30-channel vector ((5 classes + 1 class probability + 4 surrounding box position coordinates) × 3 
anchor boxes). So far, the predicted anchor frames are generated, the objects in the original photos are marked, 
and the detection of the pavement distresses is completed.
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Figure 6.   Structure of C3 module.
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Improvement of backbone network.  The optimization of the network framework for the feature extraction part 
is based on the basic requirements of the pavement distresses recognition algorithm. On the one hand, the size 
of the detection model needs to be lighter, and it can be ported to hardware devices like the NVIDIA TX2. On 
the other hand, On the other hand, the backbone network of the model must do its best to accurately detect and 
identify five pavement distressess. In this study, the YOLOv5s architecture is optimized and improved. It makes 
it more adaptable to the task of pavement distresses detection.

The backbone network of YOLOv5s architecture consists of four C3 modules. Although the convolution 
operation can extract the features in the image, the convolution kernel contains a large number of parameters, 
which leads to the existence of a large number of parameters in the recognition model. Therefore, we optimize 
the C3 module in this study. The convolutional layer on the bridge branch of the original module is removed, 
and the input feature graph of the C3 module is directly connected with the output feature graph of another 
deep branch, which effectively reduces the number of parameters in the module. An activation function named 
Mish is added to the structure after feature fusion in order to more fully incorporate the characteristics. The 
architecture of the improved C3 module, named C3-2 (Fig. 9).

The addition of attention mechanisms.  We introduce the attention mechanism28 into the improved model. The 
SE29 module (squeeze and networks, SENET) is a network of visual attention mechanisms which is mainly used 
to improve the sensitivity of the model to channel features. This module is lightweight and can be applied to net-
work architectures. It can improve the detection performance of the model with less computation. In this study, 
the SE module is embedded in the last layer of the backbone network to further enhance the detection effect 
of the improved YOLOv5s. The SE module (Fig. 10) mainly consists of two operations, squeeze and excitation, 
which can be applied to any mapping, and the mathematical expression of the mapping relationship is shown 
in Eq. (1). Taking convolution as an example, the convolution kernel is V = [v1, v2, v3, ...vc] , vc denote the cth 
convolution kernel, output U = [u1, u2, u3, ...uc] from Eq. (1), as shown in Eq. (2).

where H and H’ denote the height of the image. W and W’ are the width of the image, C and C’ mean the num-
ber of channels of the image, and X is the size of the input image. The ‘*’denotes the convolution operation, vsc 
means the 2-D convolution kernel of a channel, and xs represents the picture size of the channel number. The 
convolution layer inputs spatial features on a channel and it learns feature spatial relations. Since the result of 
the convolution of each channel is ‘add’ operation, the channel feature relation is mixed with the spatial relation 
learned by the convolution kernel. SE module is designed to remove such confounding and make the model 
directly learn channel feature relations.

(1)Ftr : X → U ,X ∈ RH ′
×W ′

×C′

,U ∈ RH×W×C

(2)uc = vc ∗ X =

C′

∑

S=1

vsc ∗ x
s

Pyramid Constrution Results RelocationHierarchical Slice Boulder Detection

Figure 8.   Structure of FPN module.

Output
Conv2d

Kernel Size:1 1
Input BattleNeck Concat Layer BN+Mish

C3-2 module

Output
Conv2d

nput BattleNeck Concat Layer BN+MishBN+SILU
Conv2d

Kernel Size:1 1

Figure 9.   Structure of improved C3 module (C3-2 module).



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3542  | https://doi.org/10.1038/s41598-022-07527-3

www.nature.com/scientificreports/

The SE module first performs a squeeze operation on the feature map to obtain global features at the channel 
level, then performs an excitation operation on the global features to learn the relationships among channels 
to obtain the weights of different channels, and finally multiplies the original feature map to obtain the final 
features. Essentially, the SE module is performing attention or gating operations on the channel dimension, and 
this mechanism allows the model to pay more attention to the most informative channel features and suppress 
those unimportant ones.

Improvement of initial anchor box size.  The dimensions of the three feature graphs of YOLOv5s predicted 
network output are 76 × 76, 38 × 38 and 19 × 19. These three feature maps are multi-scale detection layers used 
to detect small, medium and large objects. Their initial anchor boxes sizes are ‘10,13, 16,30, 33,23’, ‘30,61, 62,45, 
59,119’ and ‘116,90, 156,198, 373,326’ respectively. The original anchor boxes are only suitable for COCO data-
sets, but are not suitable for pavement distresses data, so samples cannot be effectively identified during testing. 
In order to avoid low-quality object recognition and improve the precision of object interpretation, we improve 
the anchor boxes in detection layer network in YOLOv5s. We use k-means algorithm to re-cluster the coordi-
nates of anchor boxes of pavement distresses. The principle is to build K partitioned clusters according to the 
datasets of N given objects. Each divided part is a cluster, and the number of anchor boxes in this study is 9, so 
K = 9. To achieve accurate recognition of the pavement distresses object, the pavement distresses datasets is re-
clustering. the anchor box is divided into ‘19,10, 51,12, 31,29’, ‘134,13, 79,30, 60,64’ and ‘291,28, 130,81, 197,140’.

Improvement of two loss functions.  Focal loss30 was originally proposed by Kai ming He et al. which mainly 
solves the problem of model performance caused by data imbalance. The computational equations are given 
in Eqs. (3) and (4). Alternatively, during the training process, there are often some inaccuracies between the 
predicted and true values. IOU31 is a common metric used in object detection, whose main function is to evalu-
ate the distance between the predicted frame and the true frame. However, there is a problem with its original 
definition. If two boxes do not intersect, IOU is 0. Casein this situation, the gradient is not regressed. therefore, 
learning and training cannot be performed. To solve these problems, Rezatofighi et al.32 proposed the idea of 
GIoU and directly set the IoU to return the value of the loss and added a measure of intersection scale using the 
minimum outer rectangle of the two boxes to alleviate the deficiency of IOU. However, it still has some short-
comings. Zheng et al.33 proposed the idea of CIoU, which takes into account the overlap area, centroid distance 
and aspect ratio between the prediction frame and the real frame, making the regression of the prediction frame 
faster and more accurate. its specific principle is shown in Eq. (5).

where at and γ mean the weight coefficients. Focal loss is introduced to the improved YOLOv5s to solve the model 
training problem caused by sample imbalance.b and bgt respectively represent the centroids of the prediction 
box and the real box.ρ denotes the Euclidean distance between the centroids of the two boxes, and C denotes 
the diagonal distance of the smallest closed rectangle that can contain both the prediction box and the real box. 
α, ν are used as influence factors in Formula 5, which takes into account the aspect ratio of the prediction box 
to fit the object box.

(3)FL(pt) = −at
(

1− pt
)γ

log
(

pt
)

(4)pt =

{

p if y = 1
1− p otherwise

(5)LCIOU = 1− IOU +
r2
(

b, bgt
)
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Figure 10.   Squeeze-and-Excitation (SE) module.
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As shown in Fig. 11, the box in the upper left direction represents the prediction box. The box on the lower 
right represents the object box. The white dashed rectangle shows the smallest outer rectangle of the prediction 
and object boxes. C and D represent Euclidean distances between the diagonal of the smallest outer point and 
the center points of the two boxes, respectively.

We enhanced the image data and reassembled the network framework (Fig. 12). It is carried on TX2 hardware 
device and has good experimental results.

Ethics approval.  This study in the paper did not involve humans or animals.

Consent to participate.  All authors agree to participate.

Consent for publication.  All authors agree to participate.

Figure 11.   Normalized distance between the prediction frame and object frame.
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Results and discussion
Experimental environment and settings.  Based on a personal computer (Intel(R) Xeon(R) CPU 
E5-2683 v3 @ 2.00 × 56,16  GB memory; NVIDIA Geforce GTX TITAN X GPU, 8  GB video memory) , the 
PyTorch deep learning framework was built under the Ubuntu 10 operating system in the study, and Python 
language was utilized to write the program code and call CUDA, Cudnn, OpenCV and other required libraries, 
to achieve the training and testing of the pavement distresses recognition model. In this study, the improved 
YOLOv5s network was trained by stochastic gradient descent (SGD) and focal loss (FL) in an end-to-end way. 
Considering the computing power of the graphics card we used, the batch size of the model train was set to 16. 
The momentum factor (momentum) was set to 0.923, and the decay rate (decay) of weight was set to 0.00951. 
The number of training epochs was set to 600.the anchor boxes are classified as ‘19,10, 51,12, 31,29’, ‘134,13, 
79,30, 60,64’ and ‘291,28, 130,81, 197,140’. We use the same parameters to train the dataset: First, the training 
datasets was divided into 10 equal parts. In the second step, every nine equal parts were randomly trained as 
training datasets, and the training was repeated 10 times. The schematic diagram of the training method is 
shown in Fig. 13. The average parameters of 10 experiments were used as the final model performance index. 
After the training is complete, save the weight file for identification. The val datasets that did not participate in 
the training for the 10 times were used for testing. The final results were obtained, including precision, recall 
and mAP.

Results and analysis of road damage object detection.  To judge the model training process and the 
effectiveness of object detection, In this experiment, box loss, objectness loss, classification loss, precision, recall, 
mAP@0.5, mAP@0.5:0.95 of the training and test datasets are used as the main parameters to judge the degree 
of convergence. For the six loss functions (val) box loss, (val) objectness loss, and (val) classification loss, the 
smaller the value of their parameters, the better the training effect. The training result (Fig. 14) show the relation-

TestTraining

Datasets

Test

Val

ValTraining

Val

10 times

Figure 13.   Cross-validation diagram.

Figure 14.   Result graph.
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ship between the six types of loss functions and epoch, correctness and epoch, recall and epoch, and mAP value 
and epoch. The loss values drop rapidly in the first 300 epochs of network training and stabilize after 450 periods.

The results in Fig. 14 show that the model is not overfitted. Among the six types of loss functions of ‘box’, 
‘objectness’, ‘classification’, ‘val box’, ‘val objectness’ and ‘val classification’, Each type of loss function decreases 
as the "epoch" of the training and test datasets steadily decreases. In addition, the test datasets does not show a 
decrease followed by an increase, which indicates that we have selected the "Epoch" parameter within a reason-
able range. In the field of object detection, the objective evaluation of the model is precision, recall and mAP, 
and the formulas are calculated in Eqs. (6) to (8).

where TP (true positive) denotes the correct identification of pavement distresses such as cracks, cracked net-
works, damaged landmarks, potholes, and damaged manhole covers. FP (false negative) means the misclassifi-
cation of actual pavement distresses. FN (false negative) denotes unidentified pavement distresses. C expresses 
the number of Pavement Distresses object categories. N denotes the IOU number of thresholds. K denotes the 
IOU threshold. P(K) denotes precision, and R(K) denotes the recall rate.

Through comparison and discussion of 5 improved methods, we verified that the improved methods had a 
positive impact on the performance of YOLOv5s model. The impact of different methods on model performance 
is shown in Table 3. "√"indicates that the improved policy is used in the network experiment, and “—” indicates 
that the improved policy is not used. The improved YOLOv5s has a good performance in road surface distresses 
detection on the self-built mobile platform (Fig. 15).

To verify the feasibility of this research method in practical applications, the optimized YOLOv5s are com-
pared with YOLOv5s and YOLOv4 (Fig. 16). The improved detection precision has some improvement compared 
with YOLOv5s and YOLOv4. YOLOv5s and YOLOv4 have some errors in classification, such as identifying the 
repaired road surface as cracks and misidentifying the intact pavement markings ground road signs without 
damage defacemen, etc. In addition, the precision and recall rate of YOLOv5s and YOLOv4 are lower than the 
improved model.

The identified network model needs to be predicted after training and testing. In the prediction process, the 
confidence value is first carried out from high to bottom, and then the prediction object is screened through 
CIOU. It is worth noting that based on the same network framework, different prediction confidence thresholds, 
detection accuracies, and recall rates is different. If the set threshold was inappropriate, the predicted result is as 
shown in Fig. 17. The elongated cracks is not correctly identified.

In the task of pavement damage detection and recognition, we need to select an appropriate confidence 
threshold, which will make the detection effect more consistent with the actual situation. By testing the test data-
sets, we set different thresholds to compare precision, recall, and mAP. The results of the test are shown in Fig. 18.

As can be seen from Fig. 18, when the confidence is above 0.6, the precision, recall and mAP all show a 
downward trend. When the confidence is between 0.3 and 0.5, all the three values have good effect. Therefore, 
considering the model’s recognition precision, recall, and mAP, the model performs best when the confidence 
is set to 0.4. Precision, recall and mAP are 95.5%, 94.3% and 95%.

This study compares the optimized YOLOv5s model with the Paper 18 method and other mainstream object 
detection model frameworks in terms of precision, recall and mAP values. The results are shown in Table 4. Based 
on paper 18, we extend the data sample and optimize the YOLOv5s network model to adapt to the embedded 
intelligent mobile platform. In paper 14, Yuwen Liu et al. improved the robustness of the model by using the 
mechanism of increasing attention. In this study, we also introduce the attention mechanism in the CV field 
into the optimized model. These optimization methods improved the detection efficiency of our model by 4.3% 
overall. The proposed algorithm is a lightweight pavement distresses detection algorithm that can be installed on 
an intelligent mobile platform. It can divide pavement distresses into various types to meet the actual needs. In 

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)mAP =
1

C

N
∑

K=i

P(k)�R(k)

Table 3.   Results of object recognition using the improved YOLOv5s network.

Method C3_2 SE Data Enhancement K_means algorithm Loss function mAP (%)

YOLOv5s — — — — — 90.7

Improvement I √ — — — — 89

Improvement II √ √ — — — 93

Improvement III √ √ √ — — 94

Improvement IV √ √ √ √ — 94.3

Improvement V √ √ √ √ √ 95
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Figure 15.   The deployment of the improved YOLOv5s in a self-built mobile platform and its object recognition 
results.

Figure 16.   Object recognition results of the improved YOLOv5s network.
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addition, its weight file size is 16 MB, and the recognition speed of each image is 0.003 s (32 FPS), which meets 
the requirements of real-time object recognition.

Our model has a lot of flexibility. Users can choose the right size of the network system for research and 
development according to the actual situation. In this study, considering the actual application environment, 
we chose the smallest YOLOv5s network as the basic model and installed it on the NVIDIA®Jetson™TX2 device 
to enable real-time detection of multiple types of pavement distresses objects. But the algorithm still has some 
limitations. First, we only discuss five types of pavement distresses types. In fact, this does not fully meet the 

Figure 17.   Impact of confidence threshold on detection result. (a) Threshold is not appropriate (b) Threshold is 
appropriate.
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Figure 18.   Numerical changes in various parameters under the model.

Table 4.   Comparison of current mainstream object detection algorithms.

Approachs Precision (%) Recall (%) mAP/AP (%)

Paper18 59.021 57.296 58.14

Faster R-CNN 38.3 41.2 39.5

YOLOv3 53.6 58 55

YOLOv4 65.3 72 70.8

YOLOv5s 94.8 90.2 90.7

Our model 95.5 94.3 95
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actual demand. we need to further expand the sample size in the next step. Second, when we use this algorithm 
to detect the category of rutting, the rutting is often incorrectly identified as crack or pothole. This is because the 
characteristics of ruts are more similar to large pits. To a certain extent, human observation can also lead to false 
identification. Third, although the algorithm has taken into account environmental factors such as rain, sunshine, 
and cloudy days, the detection of the object is not ideal in the nighttime state, especially when the smart car is 
in motion. These problems need to be solved further. Overall, the improved network model has the following 
advantages: first, it can detect more pavement distresses; second, it is suitable for the loading of intelligent mobile 
robots; finally, the proposed model is relatively light, indicating that more equipped equipment can be selected 
to reduce the hardware cost of computer vision.

Conclusions
In this paper, we propose a pavement distresses identification method optimized for YOLOv5s to detect multiple 
types of Pavement distresses under different conditions. In the proposed method, first, we expand the data sample 
of the study. Second, the original C3 module is improved in Backbone network and YOLOv5s is improved by 
using K_means algorithm and loss function. Finally, we combined the attention mechanism with the improved 
YOLOv5s algorithm to obtain our own model. Compared with other algorithms, our own model can improve 
the precision of object detection. At the same time, it is feasible to deploy the algorithm in self-built intelligent 
mobile robot. In the future, we will further increase the location information of the detection object, so that the 
information can be transmitted to the computer in real time.

Data availability
Data or code presented in this study are available on request from the corresponding author.
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