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Emulation of synaptic functions 
with low voltage organic 
memtransistor for hardware 
oriented neuromorphic computing
Srikrishna Sagar 1, Kannan Udaya Mohanan3, Seongjae Cho 3, Leszek A. Majewski 2 & 
Bikas C. Das 1*

Here, various synaptic functions and neural network simulation based pattern-recognition using 
novel, solution-processed organic memtransistors (memTs) with an unconventional redox-gating 
mechanism are demonstrated. Our synaptic memT device using conjugated polymer thin-film and 
redox-active solid electrolyte as the gate dielectric can be routinely operated at gate voltages (VGS) 
below − 1.5 V, subthreshold-swings (S) smaller than 120 mV/dec, and ON/OFF current ratio larger 
than  108. Large hysteresis in transfer curves depicts the signature of non-volatile resistive switching 
(RS) property with ON/OFF ratio as high as  105. In addition, our memT device also shows many 
synaptic functions, including the availability of many conducting-states (> 500) that are used for 
efficient pattern recognition using the simplest neural network simulation model with training and 
test accuracy higher than 90%. Overall, the presented approach opens a new and promising way to 
fabricate high-performance artificial synapses and their arrays for the implementation of hardware-
oriented neural network.

Since the inception of civilization, researchers have dreamt about building an electronic machine with similar 
functionality as a brain. As a result, brain structure-inspired neuromorphic computing has been extensively 
explored as a promising way to realise artificial intelligence systems that are capable of learning and performing 
complex  tasks1,2. The first hardware-based neural functionality was demonstrated using Si-based CMOS logic but 
the demonstrated electronic circuits were cumbersome and consumed huge amount of  energy3. To date, substan-
tial developments have been made in both software algorithms and hardware  designs4,5. However, in terms of size, 
power efficiency, massively parallel connectivity, self-learning capability, fault-tolerant operation, data storage, 
and data processing, the human brain is still much more efficient than any neuromorphic platform built thus  far6. 
In fact, the brain can efficiently process real-time unstructured signals such as sound, light, pressure, heat, and 
taste, which is impossible to realise using today’s computers. To perform such complex tasks, the brain functions 
in massively parallel ways using interconnected neurons and synapses. Typically, the action potential signal is 
passed from one neuron to the next by modulating the chemical fluxes inside the synaptic cleft that changes the 
synaptic weight in response to the signal  frequency7. Neurons also emulate the Hebbian learning principle and 
spike-timing-dependent plasticity (STDP), which forms the basis of learning and memory functions. Notably, 
the Hebbian postulate states that the synaptic strength among pre- and post-neurons can only be modulated if 
both are fired momentarily with a mandatory temporal  correlation8. Mimicking various synaptic functionalities 
such as excitatory postsynaptic current (EPSC), short-term potentiation and depression (STP/STD), long-term 
potentiation and depression (LTP/LTD), paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), as well 
as many others have recently been reported in the  literature6,9,10. However, reaching the energy efficiency close 
to the brain (1–100 fJ) for an artificial synaptic event is still very  challenging6,11 to achieve.

Consequently, many efforts have been devoted to develop low energy consuming synaptic devices and neural 
circuits using unconventional electronic materials and  devices9. For example, the demonstration of memristor 
(MR) in 2008 sparked a strong interest in building neuromorphic circuits using  MR12. Since then, many mem-
ristor designs have been proposed to emulate biological synaptic plasticity, including phase-change memories, 
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resistive switching devices, and so  on13–22. However, even though these devices consume much less energy 
compared with the software-driven neural network hardwares, they still cannot achieve the energy efficiency 
close to the brain. Recently, three-terminal ferroelectric, floating-gate, and electrolyte-gated thin-film transis-
tors (TFTs) based memory devices have been under intense study to mimic synaptic  actions23–25. In particular, 
electrolyte gated TFTs have been broadly investigated as their structure is quite similar to that of a biological 
synapse and they can be operated at low gate voltages (< 3.0 V) due to the large specific capacitance offered by the 
electrolyte gate  dielectrics26–29. In these TFTs, the gate electrode resembles a presynaptic input terminal called the 
axon and the drain electrode corresponds to the postsynaptic output terminal called the dendrite. Accordingly, 
functionalities of a biological synapse can be simulated by modulating/demodulating the channel conductance 
(so-called synaptic weight) by applying voltage pulses to the gate (presynaptic) and drain (postsynaptic) termi-
nals. However, the efficacy of a synaptic device depends on several factors including the device structure, used 
active channel materials, stability of operation, synaptic behaviours, and energy consumption per synaptic event. 
Hence, exploring and studying alternative materials and device structures is essential to realize high-performance 
artificial electronic synapses and large-area synaptic arrays.

Here, high-performance, low-voltage redox-gated organic memtransistors (memTs) which efficiently emulate 
various synaptic actions of a brain are demonstrated. Thin-film of poly(3-hexylthiophene-2,5-diyl) (P3HT) is 
used as the channel and redox-active ethyl viologen diperchlorate (EVP) with polyethylene oxide (PEO) solid 
electrolyte as the gate dielectric. It is shown that the availability of large number of discrete conducting states 
programmed by voltage pulses applied to the gate and improved transistor performance make memTs very 
promising devices to be used as artificial synapses that consume as little energy as 250 pJ per synaptic action (SA). 
The analog synaptic device concept proposed here can be explored further as the employed organic materials 
are relatively easy to process and their electronic properties can be tuned as desired using conventional chemical 
routes and approaches.

Results and discussion
Memtransistor characteristics with the multilevel memory property. An organic memory tran-
sistor or memtransistor (memT) is basically a thin-film transistor (TFT) possessing additional resistive switching 
and memory storage  capabilities30. Fig. 1a shows the structure of our top-gate bottom-contact organic memT 
devices using ~ 30 nm thick poly(3-hexylthiophene-2,5-diyl) P3HT thin film as active channel and a ~ 2.5 µm 
thick drop-cast solid electrolyte film of ethyl viologen diperchlorate ((EV(ClO4)2) in poly(ethylene oxide) (PEO) 
as the gate  dielectric26,29. Typical transistor characteristics reveal that the fabricated memT devices show usual 
p-channel transistor behaviour with a ON/OFF current ratio >108 and operational voltage |VGS| or |VG|< 1.5 V 
as illustrated in the Supplementary Information Fig. S1. This result also confirms that a suitable negative (− ve) 
voltage at gate is needed to switch the channel conductivity from a low to a high value. To depict the memory 
and information storage capability of our memT devices, current–voltage (I–V) characteristics were recorded to 
demonstrate the resistive switching (RS) property as per the scheme illustrated in Fig. 1b. Usually, RS property 
of 3-terminal devices is demonstrated by the channel conductivity switching from a low (OFF) to a high (ON) 
state by applying a suitable gate voltage (VGS)26,31. As per the scheme, current–voltage (ID–VDS) characteristics at 
the drain were recorded by sweeping the VD (or VDS) in a loop between − 1.0 and + 1.0 V before and after apply-
ing suitable gate voltage pulses of amplitude VGS and width tw as shown in Fig. 1c-d, respectively. Interestingly, 
multiple conducting states have been observed by varying gate voltage or write pulses from − 0.4 to − 3.0 V in 
multiple steps keeping the width (tw) constant at 2.0 s as shown in Fig. 1c. Similarly, multi-level high-conducting 
(ON) states have been observed just by varying the pulse width tw from 0.1 to 2.0 s keeping the write pulse (VG) 
amplitude constant at − 3.0 V as shown in Fig. 1d. Moreover, the device shows consistent behaviour of switching 
back to the low-conducting (OFF) state just by applying an erase (E) voltage bias pulse + 3.0 V, 2.0 s as depicted 
in both the Fig. 1c-d, respectively. We also observed similar result of consistent RS property for a device fabri-
cated later as illustrated in the Supplementary Information Fig. S2. Calculation shows a minimum energy of 3 nJ 
(E = VGS × IG × tw) per switching event considering input pulse − 3.0 V, 0.1 s and gate current 10 nA. Furthermore, 
this value can be reduced further by optimizing all parameters of energy consumption that is necessary to artifi-
cially emulate energy efficient synaptic plasticity as observed in a  brain3.

Transfer characteristics for the drain voltages (VDS) starting from − 0.5 to − 2.0 V in step of − 250 mV have 
also been recorded and it has been found that the value of VDS has negligible influence as shown in Supple-
mentary Information Fig. S3a. As such, threshold voltage (VTH) was calculated at VDS =  − 0.5 V and was found 
to be − 1.87 V (Supplementary Information Fig. S3b)26. Here, the observed hysteresis loop area of the transfer 
curve is crucial to show memory or RS property and is the signature of redox-reactions occurred between the 
dissociated ethyl viologen  (EV2+) ions in the dielectric layer and P3HT monomer unit of the polymeric backbone 
in the active  channel29. Principally,  EV2+ is reduced to  EV+ by accepting an electron and P3HT is oxidized to 
 P3HT+ (polaron) by releasing an electron under a suitable negative voltage bias at gate following the chemical 
equations  below31.

The minimum potential required for this coupled redox-reaction is found to be about 0.97 V assuming no 
ohmic losses and considering standard electrode potential  (E0) values of + 0.52 V ( P3HT → P3HT+ ) and − 0.45 V 
( EV+2

→ EV+ ) vs. NHE,  respectively32. Therefore, the devices need at least − 1.0 V applied to the gate to initi-
ate the redox reaction considering unavoidable ohmic losses for RS based memory application and projected 

P3HT + EV+2
⇋ P3HT+

+ EV+,

EV(ClO4)2 ⇋ EV+2
+ 2 · ClO

−

4 .
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neuromorphic device functionalities. Moreover, the subthreshold swing (S) as low as 120 mV/dec was routinely 
obtained as shown in the inset of Supplementary Information Fig. S3b, which is equal or indeed much smaller 
S than the similar devices reported  previously26,33. Notably, this low value of S indicates that our memT devices 
are suitable for low-power circuit design of artificial synaptic plasticity and neural  functionalities30.

Modulation of synaptic weight by varying training pulse numbers. For any biological neural 
action, the delay time required to reach the OFF conducting or baseline state after the excitatory postsynaptic 
current (EPSC) facilitation is crucial to classify the synaptic weight changes in terms of the short-term (STP) or 
long-term (LTP) potentiation. Fig. 2a represents the testing setup to study the effect of consecutive presynaptic 
spike numbers on EPSC potentiation and related relaxation time. The consecutive − 3.0 V, 2 s presynaptic pulses 
were programmed to appear at the gate terminal and the corresponding postsynaptic current at the drain was 
recorded by applying a voltage bias − 0.5 V until the OFF-conducting state was reached. As illustrated in Fig. 2b, 
the EPSC responses were monitored temporally by applying 1 to 25 consecutive presynaptic pulses at the gate in 
open circuit condition (relay-based isolation) to observe the neural decay. We found that the retention for single 
and dual pulses are of the order of 200 ms which increased further with the applied pulse numbers by following 
a power law ( tR = AxB ) as illustrated in Fig. 2c. Retention or relaxation time is estimated by the time required for 
the EPSC response after applying the pulses to reach the current value ~ 1.0 nA through natural decay. Clearly, 
the result shows that there is at least sixfold enhancement in the retention time as the number of incoming pulses 
increases from 1 to 25. Interestingly, these results clearly resemble the synaptic plasticity observed in brain that 
shows the strengthening of synaptic connectivity with the increase of propagation of action potential spikes. 
Moreover, this response is reflected as the facilitation of memory level, which can be retained for a longer time 
through training and rehearsal. This is almost similar to the structural model of human brain proposed in 1968 
by Atkinson and  Shiffrin34. Particularly, the model classifies memorization into three separate variants—the sen-
sory register (SR), short-term store, and long-term store. First, the incoming information is stored in the SR for 
a short while, then it decays, and eventually it is either completely lost or it is transmitted to the short-term store. 
However, the retention of SR can be improved upon rehearsal and subsequent  transformation to short-term 
store. Then, the information can be transmitted to the long-term store, which can last for few minutes lifetime 

Figure 1.  (a) Schematic diagram of the redox-electrolyte gated thin-film memtransistor (memT) including the 
details of the pulse and sweep measurement protocol. (b) Schematic representation of the voltage pulses at the 
gate terminal and DC voltage sweep across source-drain (S-D) contacts to measure the channel conductivity of 
the fabricated 3-terminal memT devices. (c, d) Show multiple discrete conducting states of the device channel 
measured after applying different voltage pulse amplitudes (VGS) and widths (tw), respectively.
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based on the duration of the rehearsal as observed here for our memT  device34. Retention around 100 s can be 
classified as the short-term memory (STM) and higher values of retention represent the long-term memory 
(LTM).

Influence of the training voltage pulse anatomy on the synaptic weight change. The temporal 
retention in the order of  103–108  s has been proposed as one of the highly desired metrics for organic neu-
romorphic  devices7. Therefore, investigations to visualize the temporal retention varying pulse anatomy and 
repetition (rehearsal) were performed which would be useful further for classifying memorization process in a 
brain. Hence, we have varied presynaptic pulse number (N), width (tw), and amplitude (VGS) and simultaneously 
measured postsynaptic currents for longer time as shown in the Supplementary Information Fig. S4a–c, respec-
tively. Repeated rehearsals using voltage pulse − 3.0 V, 50 ms result in huge variation in retention by increasing 
number of pulses. We found that the retention time depends much stronger on the number of the applied pulses 
rather than on the pulse amplitude and width. These results are in strong agreement with our previous reports on 
the retention times of high-conducting states in memTs29,31,35. However, a minimal amplitude of the presynaptic 
voltage pulse is necessary to see the prominent potentiation as we observed in a separate test with 50 consecutive 
spikes and varying amplitude as illustrated in the Supplementary Information Fig. S5. Now, the EPSC response 
of up to 60 s is considered as a reference value to classify the information storage and processing steps in our 
synaptic memT device. Typically, EPSC responses below 1 nA are considered as the sensory memory (SM), 1 to 
10 nA as STM, and above 10 nA as LTM. Interestingly, rehearsal with 200 pulses results in LTM with estimated 
retention to be about 85 days (≈ 3 ×  106 s) by extrapolating to the EPSC value of 1  nA7. Here, all three basic 
information storage and processing steps, namely SM, STM, and LTM, have successfully been demonstrated as 
illustrated in the Supplementary Information Fig. S4a36. We also observed the similar response in our device just 
varying number of pulses increasing from 1 to 100 i.e. gradual transformation of synaptic weight from SM to 
STM and finally to LTM as depicted in the Supplementary Information Fig. S6. Here, STM and LTM are used 
frequently in neuroscience and represent the same quantities as STP and LTP, respectively in psychology.

Availability of at least 100 discrete states is also one of the recommended projection to design efficient organic 
neuromorphic  devices7. Consequently, the fabricated memT devices were characterized for resistive random-
access memory (ReRAM) applications and we found consistent two-level and multi-level results as shown in 
the Supplementary Information Fig. S7. Therefore, these memT devices could be investigated further to induce 
large number of discrete conducting states by varying input voltage pulse parameters at the presynaptic terminal. 

Figure 2.  (a) Schematic diagram of the memT devices to study EPSC potentiation and retention by varying 
presynaptic voltage pulse numbers up to 25 pulses. (b) Potentiation and retention of EPSC result with increasing 
number of consecutive presynaptic pulses (− 3.0 V, 2 s) at the gate. (c) Dependency of the relaxation time in 
terms of natural decay of EPSC in open circuit mode to the off-conducting state on number of consecutive 
pulses applied at the gate.
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Hence, the EPSC response was recorded at the drain of our biomimetic synaptic memT device by varying presyn-
aptic pulse width from 50 to 2000 ms as shown in Fig. 3a keeping amplitude constant. In this test, 25 consecutive 
write pulses (− 3.0 V) followed by 25 erase pulses (+ 3.0 V) were applied at the presynaptic gate terminal for each 
cases. Results show that the potentiation of EPSC response of our memT device becomes more and more promi-
nent by increasing the width of presynaptic pulses. This is similar to the memorization process through rehearsing 
many times with longer incoming signals in a brain. In addition, it can also be termed as spike-width-dependent 
plasticity (SWDP) of an artificial synapse. However, the depression of the synaptic weight here looks very quick 
upon applying 25 erase pulses and it appears to be almost similar for all measurements in Fig. 3a. Hence, this 
happens due to the testing protocol in closed circuit configuration as described in the experimental details.

Furthermore, the EPSC response shows an incremental enhancement for every presynaptic pulse that 
appeared at the gate as highlighted in the insets of all sub-panel of Fig. 3a. This is further investigated through 
a surface plot by considering both the pulse widths (tw) and numbers (N) as an independent variable to depict 
the respective synaptic potentiation ratio (SPR) as shown in Fig. 3b. Here, the SPR is estimated by taking the 
ratio of postsynaptic high-conducting state for a presynaptic pulse to the premeditated low-conducting state. 
This result strongly suggests that any point on the surface plot can have the SPR values of up to ~  102 just by 

Figure 3.  (a) Presynaptic pulse width (tw) dependent variation of the EPSC response to demonstrate spike-
width-dependent plasticity (SWDP). 25 write pulses (− 3.0 V) followed by 25 erase pulses (+ 3.0 V) were 
consecutively applied at the gate by varying tw from 50 to 2000 ms. Insets, enlarged portion of the obtained 
curves to show the potentiation of EPSC for each of the incoming pulses. (b) Variation of the synaptic 
potentiation ratio (SPR) calculated from the two consecutive write (W) pulses for every pulse widths as obtained 
in (a). (c) Dependency of the sequential paired-pulse facilitation (SPPF) of synaptic weight on pulse widths and 
numbers as estimated from the results shown in (a).
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selecting a pair of values of presynaptic pulses (tw, N). It is very significant and resembles the availability of very 
large number (> 100) of discrete conducting states. In fact, the pulse width and number can be correlated with 
the stability of incoming information and rehearsal phenomena in a biological brain. This clearly resembles that 
a stable presynaptic signal initially shows more prominent SPR value i.e., potentiation of synaptic connection or 
weight and then gradually decreases with further increasing the rehearsal, which is almost similar to the mental 
fatigue in  brain37,38. Another quantity similar to paired-pulse facilitation (PPF) is also estimated considering the 
change in EPSC response for two consecutive pulses in the entire set of 25 pulses as shown in Fig. 3c. This quan-
tity is termed as the sequential paired-pulse facilitation (SPPF) and can be found using the following equation 
SPPF% = ((SN − SN−1)/SN−1)× 100%, where SN−1 and SN represent two consecutive EPSC signals. The obtained 
results show that the SPPF% can also be varied up to about  103. It also emphasizes that a strong facilitation can 
be observed for fewer rehearsal events and very strong fatigue is observed when rehearsal increases with more 
incoming signals. Our perception here is that the attained results and corresponding analysis strongly resemble 
the potentiation of synaptic weight with a very large number of discrete states as it happens in a biological nerv-
ous system after receiving various input  signals37,39.

Paired pulse facilitation of synaptic weight and memorization in the brain. In neurons, STM 
and paired pulse facilitation (PPF) play a very crucial role for any sub-threshold potentiation or strengthening 
of synaptic weight and these functions are validated in our redox-gated organic memT devices as demonstrated 
schematically in Fig. 4a. In this testing, two consecutive presynaptic spikes (− 3.0 V, 2 s) with a time gap of Δt are 
applied at the gate and corresponding EPSC responses were measured at the drain by applying a small voltage 
bias of − 0.5 V as shown in the top and bottom panels of Fig. 4b, respectively. As a result, EPSC value for the first 
spike facilitated to a certain peak value of  A1 and this clearly resembles the strengthening of biological synaptic 
weight. When a second presynaptic spike appears after a time interval of Δt, the EPSC increases further and 
reaches to a higher value,  A2. This is commonly known as paired-pulse facilitation (PPF) of a biological nervous 
system, which solely depends on the time delay (Δt) between the applied input pulses. Moreover, this is normally 
demonstrated by calculating the PPF index [ = (A2 − A1)/A1 × 100% ] by varying Δt as shown in Fig. 4c. Sig-
nificantly, the PPF index result exhibits an excellent fitting with a popular function, called modified Kohlrausch 
formula [ PPF = A · exp

(

−
t
τ

)

+ C ], which is well accepted in psychology to manifest one of the de-memorising 
functions in  brain40,41.

Figure 4.  (a) Schematic representation of neural connectivity via synapse in a biological brain for the action 
potential transmission. (b) Short-term potentiation by applying a pair of presynaptic spikes (VGS =  − 3.0 V) with 
Δt of 2 s. Postsynaptic currents (Ipost) were recorded by biasing the drain at − 0.5 V. (c) Paired pulse facilitation 
(PPF) of the synaptic memT devices obtained by varying the time interval Δt from 100 to 10 s.
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Spiking-timing-dependent plasticity and learning behavior. Hebbian learning rule (HLR) is a very 
basic learning rule to train neural networks but it is very important in validating the performance of artificial 
electronic synaptic devices. Normally, the most common practice to implement HLR for artificial synapses is to 
demonstrate the spike-timing-dependent plasticity (STDP). Practically, STDP represents the change in synaptic 
weight ΔW by varying the time delay Δt between the presynaptic and postsynaptic pulses. If presynaptic pulse 
stimulates momentarily before a postsynaptic pulse, Δt is considered as positive and ΔW is also positive, but if a 
postsynaptic pulse is followed by a presynaptic pulse, Δt is negative and ΔW can be either positive or  negative11,42. 
Insets of Fig. 5 show the pulses scheme with negative and positive time delay (+ Δt) including the postsynaptic 
read voltage bias pulses appeared before and after the temporally correlated pulse pair at the pre- and post-neural 
terminal. In this test, a voltage pulse of − 3.0 V, 2 s is used for both the pre and postsynaptic signal to measure the 
change in synaptic weight (ΔW) and a voltage pulse of − 2.0 V, 10 ms is used to record the EPSC values before 
(W0) and after (WSTDP) the pair-pulse transmission event. Then the ΔW% for a Δt value is calculated with the 
help of equation �W = (WSTDP −W0)/W0 multiplied by 100  only3. Finally, changes of ΔW % by varying Δt 
between ± 400 ms were measured and plotted as shown in Fig. 5, which agreeably follows the Hebbian learning 
 rule43. Since the synaptic weight change by varying Δt can be fitted with exponential decay functions, it confirms 
that the STDP behaviour similar to a biological synapse can be achieved with higher efficacy using redox-gated 
organic memtransistor (memT)  devices44,45.

Achieving almost analogous states during potentiation and depression. In brain, neurons and 
synapses are the crucial components for perception and consequent  thought46. Normally, neurons are stimu-
lated by external stimuli and produce action potentials, which propagate to the connecting neurons through the 
synaptic cleft which result in a change in the strength of connection (synaptic weight). This change in synaptic 
weight could be either excitatory or inhibitory. To establish if our redox-gated organic memT devices posses this 
functionality, EPSC and inhibitory postsynaptic current (IPSC) response were recorded by applying 500 con-
secutive presynaptic pulses of − 2.5 V, 10 ms and + 2.5 V, 10 ms, respectively as illustrated with a scheme shown 
in Fig. 6a. Here, a postsynaptic voltage pulse − 2.0 V, 10 ms was used after every incoming input pulses at the gate 
to probe the incremental potentiation (P) and depression (D) in terms of EPSC and IPSC response as depicted 
in Fig. 6b. As shown in Table 1, our organic memTs display similar performance when compared with the previ-
ously reported devices using various electrolytes as the gate dielectric. The result obtained here is almost similar 
to the learning experience in psychology by the sequentially administered presynaptic excitatory rehearsal with 
voltage pulses. Similarly, consecutive inhibitory pulses at presynaptic terminal can cause weakening of the syn-
aptic weights that is reflected as loss of memory or depression as evidenced in psychological forgetting. This 
potentiation and depression result is obtained in our redox-gated memT-based artificial synapse just by consum-
ing energy of 250 pJ per input spike which is definitely a remarkable achievement as this is indeed very close 
to the desired and recommended metrics for artificial organic synaptic  devices7. Moreover, this result clearly 
evidences the capability of our memT devices to continuously modulate the channel conductance to more than 
500 discrete conducting states during potentiation and depression which is also much higher than the prereq-
uisite to effectively mimic a synapse  and very useful to demonstrate neural network based pattern  recognition7.

Efficient pattern recognition using artificial neural network simulation. In order to evaluate the 
pattern recognition capabilities of the proposed synaptic memT devices for neuromorphic hardware implemen-
tation, we have simulated a single layer artificial neural network (ANN) without any hidden layers using the 
normalized conductance values (weights) extracted from the recorded potentiation/depression curve of our 

Figure 5.  Synaptic weight changes estimated STDP (ΔW %) for both of negative and positive time delays (± Δt) 
with a postsynaptic read (− 2.0 V, 10 ms) pulse before and after paired pulse propagation. Insets, schematic 
representation of temporally correlated presynaptic (− 3.0 V, 2 s) and postsynaptic (− 3.0 V, 2 s) pulses for both 
the time delay of ± Δt to probe STDP responses.
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synaptic device in Fig. 6b53,54. All the simulations were performed using PyTorch package and the detail simula-
tion protocols are demonstrated in the Supplementary Information (Section H)55. The well-known Modified 
National Institute of Standards and Technology (MNIST) dataset is used here for the image recognition  task56. 
Each of the (28 × 28) pixel images are linearized to form a (784 × 1) input matrix where each of the pixel values 
are connected to a neuron in the input layer of the neural network as illustrated with schematic in Fig. 6c. Hence, 
our simulated neural network has 784 input neurons, number of pixels per label number, and 10 output neurons 
corresponding to the 10 output classes in the MNIST dataset. We have considered the mean cross entropy loss 

(a)

(b)

– 2.5 V, 10 ms (500 pulses)

R R RR

W W W

R R R R
EEEE

R

+ 2.5 V, 10 ms (500 pulses)

Time

– 2.0 V, 10 ms – 2.0 V, 10 ms

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

C
on

du
ct

an
ce

 (m
S)

Pulse #

404 406 408 410 412 414 416

510 512 514 516 518 520
0.12

0.14

0.16

0.18

0.20

Figure 6.  (a) Pulsing scheme to demonstrate the excitatory postsynaptic current (EPSC) and inhibitory 
postsynaptic current (IPSC) response based potentiation (P) and depression (D) of synaptic weight by applying 
500 consecutive write (W) pulses (− 2.5 V, 10 ms) and erase (E) pulses (+ 2.5 V, 10 ms), respectively. A read 
pulse (− 2.0 V, 10 ms) is used to record synaptic weight change after every set of W/E pulses. (b) Potentiation 
and depression curve of synaptic weight change. Insets illustrate enlarged marked areas to visualize discrete 
conducting states during potentiation and depression. (c) Schematic of a single layer neural network used for 
MNIST pattern recognition. (d) Selected weight evolution mapping images from the output neurons layer 
corresponding to class “3” at different epochs starting from 0 to 499. (e) Training accuracy (%) vs number of 
epochs for both software and actual synaptic device based weight distribution. (d) Test accuracy (%) variation 
with the number or strength of device weight levels.
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for the error determination. The as-computed errors are then back propagated for adjusting the weight values 
for the next iteration. When the full set of training data are passed through the network in several batches, an 
epoch of training is completed. We have used 500 epochs of training for minimizing the loss function to a low 
and stable value. Fig. 6d shows the weight evolution images during ANN training using actual synaptic weights 
obtained from the proposed ST for the output neuron corresponding to digit “3”57. It is seen that as the training 
epochs increase, there is a clear evidence of “learning” observed for the neural network as the corresponding 
neuron clearly distinguishes between the target label (“3”) from the other digits. Once the training process is 
completed, we use the test data to compute the pattern recognition accuracy of the network. The entire process 
(training and testing) has been repeated 5 times for ensuring the reproducibility of the reported data and hence 
each data point is the mean value for 5 repetitions of the process. In Fig. 6e, we report the training accuracy and 
mean loss (Supplementary Information Fig. S8) as a function of the number of epochs for both software and 
synaptic device-based weight distributions. It is clearly observed that the device based (test accuracy = 92.30%) 
neural network performs similar to the purely software-based (test accuracy = 92.53%) ANN model. This reveals 
that our synaptic device is highly suited for neuromorphic hardware implementations. Such a high test accuracy 
for the device based ANN model might be due to the large number of conductance states or weights available for 
the network training. Further, we have investigated the variation in ANN test accuracy with respect to the weight 
levels available from the device. This is particularly important from a hardware realization perspective, since 
many of the conductance levels of the device may not be accessible or stable for cross-bar array implementation. 
Hence, the performance of the ANN model with the reduced weight levels needs to be studied carefully. From 
Fig. 6f, we see that the test accuracy for the device is almost constant until about 8 weight levels, below which 
there is only a marginal drop in test accuracy. This is indicative of the highly robust nature of weight values avail-
able from our proposed synaptic transistor for ANN training applications.

Conclusions
In conclusion, organic memtransistors (memT) that can efficiently mimic the synaptic functionalities as observed 
in a biological brain are demonstrated. A single memT can serve as a data storage device, as well as as an artificial 
synapse with various synaptic plasticities, including the EPSC, STP, LTP, PPF, and STDP. The proposed memTs 
can also exhibit huge variation in synaptic weight just by tuning the anatomy of incoming presynaptic pulses 
and increasing rehearsal. In particular, retention of an ON-state is enhanced from  103 to  106 just by increasing 
repetition or rehearsal from 25 to 200 times even though the pulse width decreased 40 times. Moreover, the 
presented redox-gated memTs also performed superiorly as TFTs with ON/OFF current ratios larger than  108, 
subthreshold swings around 120 mV/dec, and operating voltage VG <  − 1.5 V. In addition, it was estimated that 
the energy consumption is as low as 250 pJ per synaptic event that is a significant achievement to mimic synaptic 
plasticity in a single organic memT device. The energy consumption can be reduced further just by improving 
the response speed, reducing the input redox-current, and decreasing the threshold voltage as large varieties 
of organic semiconducting materials are available. Moreover, the ANN simulation result further confirms that 
our synaptic device performs extremely well for realistic pattern recognition task with a high level of accuracy 
and reproducibility.

Methods
Device fabrication. Redox-gated thin-film transistors were fabricated on the Si/SiO2 substrates in a bot-
tom-contact top-gated configuration. The detailed fabrication procedure can be found in reference 25. Briefly, 
Ti/Au (5/50 nm) source (S) and drain (D) electrodes were formed on the substrates using the standard pho-

Table 1.  Performance comparison of the fabricated memTs with previously reported memory 
devices using electrolytes as the gate dielectric. *[EMI][TFSA/I] → 1-Ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl) amide/imide, P(VDF-TrFE) → poly(vinylidene fluoride-co-trifluoroethylene), 
P(VDF-HFP) → poly(vinylidene fluoride-co-hexafluoropropylene), PTIIG-Np → poly(thienoisoindigo-
alt-naphthalene), PMMA → polymethyl methacrylate, PS → polystyrene, PEDOT:PTHF → poly(3,4-
ethylenedioxythiophene):poly(tetrahydrofuran), KCl → potassium chloride, NaCl → sodium chloride, 
PSS → poly(styrenesulfonate), PEI → polyethylenimine,  RbAg4I5 → rubidium silver iodide.

Channel* Electrolyte* (Phase) Operation voltage (V) Energy/SA (pJ) ON/OFF ratio Analog states

P3HT47 [EMIM][TFSA] + P(VDF-TrFE) 
(Solid) 7.0

P3HT48 [EMIM][TFSA] + P(VDF-HFP) 
(Solid) 3.0

P3HT49 [EMIM][TFSA] + P(VDF-HFP) 
(Gel) 5.0 510

PTIIG-Np50 [EMIM][TFSI] + PS-PMMA-PS 
(Gel) 2.5

PEDOT:PTHF51 KCl in DI water (Liquid) 1.0

PEDOT:PSS/PEI11 Aqueous NaCl (Liquid) 1.0 10  ~ 500

P3HT52 PEO/RbAg4I5 (Solid) 2.0 2  ~ 2000

P3HT (This work) EV(ClO4)2 + PEO (Solid) 1.5 250 105  > 500
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tolithography and lift-off process. Then, hexamethyldisilazane (HMDS) and 5 mg/ml poly(3-hexylthiophene-
2,5-diyl) (P3HT) solutions were spin-coated on the substrates and annealed at 96 ℃ and 140 ℃, respectively. 
Then, the electrolyte was prepared by mixing equal weight of 4 wt% EV(ClO4)2 and 5 wt% PEO in acetonitrile 
and dropcasted in between the S/D electrodes. Finally, 50 nm thick gold (Au) electrode was deposited on top of 
the electrolyte drop as the top gate contact to complete the fabrication process.

Electrical characterizations of memTs. Electrical measurements were performed either with a Keithley 
4200-SCS parameter analyzer or by combining it with a Keithley 2602B source measurement unit (SMU). Stand-
ard transistor characterizations were performed using Keithley 4200. For DC sweep and pulse based memory 
measurements, a DC sweep voltage was applied between source (S) and drain (D) in dual sweep mode and 
corresponding drain current (ID) was measured with the 2602B keeping gate (G) terminal open for initial OFF-
conducting state. Then a write pulse voltage (VG) of width (tw) was applied at the gate using Keithley 4200 to 
switch the channel conductivity to the ON state and that was probed by measuring drain current similar to the 
initial I–V recording with Keithley 2602B SMU. To switch back the channel conductivity to the OFF state, an 
erase voltage pulse was applied to the gate followed by DC I–V measurement for probing. This measurement 
protocol is clearly demonstrated with the results using schematic diagram of device connections and sweep-
pulse sequences, as shown in Fig. 1.

Random access memory (RAM) measurements. The drain current (ID) was monitored continuously 
by applying a drain bias voltage − 0.5 V using 2602B SMU. And the ON and OFF states were induced by applying 
a write (W) pulse − 3.0 V, 2 s and a erase (E) pulse of + 3.0 V, 5 s, respectively, with 5 s wait time between them 
using a Keithley 4200-SCS. This W/E cycle was repeated for 10 times and corresponding drain current response 
was recorded as the resistive RAM application test. During the wait time of gate voltage pulses, the gate terminal 
was kept open or in the floating mode with the help of electrical relay. The schematic diagram of the device con-
nections for performing RAM and the corresponding output is shown in the Supplemental Information Fig. S7.

Electrical characterizations for synaptic plasticity. Drain current (ID) or postsynaptic current (PSC) 
response was measured continuously by biasing the drain terminal with − 0.5 V using the 2602B SMU. 25 pre-
synaptic square voltage pulses of − 3.0 V followed by 25 presynaptic square voltage pulses of + 3.0 V with differ-
ent pulse width (tw) starting from 50 to 2000 ms were applied to the gate terminal using 4200-SCS to modulate 
the channel conductance similar to the synaptic weight or connection strength. Similar measurement protocol 
was followed for other synaptic tests just varying parameters as required that are explained in the “Results and 
discussion” section. The time gap between the two presynaptic pulses was varied from 500 ms to 10 s to extract 
the paired-pulse facilitation (PPF) Index. Schematic of the spike-timing-dependent plasticity (STDP) measure-
ment scheme is demonstrated in the result and discussions section. Initial postsynaptic current response W0 was 
measured by applying a read voltage pulse − 2.0 V, 10 ms at the drain. Then a pair of presynaptic (− 3.0 V, 2 s) and 
postsynaptic (+ 3.0 V, 2 s) voltage pulses with the time delay of ± Δt was applied to the gate terminal followed by 
the final postsynaptic current response WSTDP measurement using the same read voltage pulse. The read pulses 
were applied 10 ms prior to the pre- and postsynaptic pulses and 10 ms after the pre- and postsynaptic pulses to 
measure W0 and WSTDP, respectively.

Data availability
Data for the experimental and simulation results are available from the corresponding author upon request.
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