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Forecasting and modeling 
of the COVID‑19 pandemic 
in the USA with a timed 
intervention model
Gary D. Hachtel1*, John D. Stack2 & Jordan A. Hachtel 3*

We propose a novel Timed Intervention S, P, E, I, Q, R, D model for projecting the possible futures of 
the COVID‑19 pandemic in the USA. The proposed model introduces a series of timed interventions 
that can account for the influence of real time changes in government policy and social norms. 
We consider three separate types of interventions: (i) Protective interventions: Where population 
moves from susceptible to protected corresponding to mask mandates, stay‑at‑home orders and/or 
social distancing. (ii) Release interventions: Where population moves from protected to susceptible 
corresponding to social distancing mandates and practices being lifted by policy or pandemic 
fatigue. (iii) Vaccination interventions: Where population moves from susceptible, protected, and 
exposed to recovered (meaning immune) corresponding to the mass immunization of the U.S. 
Population. By treating the pandemic with timed interventions, we are able to model the pandemic 
extremely effectively, as well as directly predicting the course of the pandemic under differing sets of 
intervention schedules. We show that without prompt effective protective/vaccination interventions 
the pandemic will be extended significantly and result in many millions of deaths in the U.S.

The pandemic has led to increased world interest in epidemiological modeling and prediction research, much of 
which focuses on extensions of the dynamic SIR model developed for generalized modeling of pandemics and 
applied to the spread of the plague on the island of Bombay between 1905 and  19061. Some of the recent relevant 
academic research has been reported in  References2–5. Here we propose a new model which can, by parameter 
assignment, be reduced to the model  of2, which appeared in February, 2020. Like the model of  Reference2, the 
model proposed here partitions the total population into 7 states (or “compartments”). Unlike the model  of5, 
no explicit delays are included in the formulation. Rather, delays arise as an inherent property of the parameter 
assignment, and the structure of the state equations in Eq. (1) below.

The growth of populations as diverse as yeast cultures and national populations was studied in a very general 
setting  in6. In that work, Pearl showed that the logistic function provided a quantitative model for the growth of 
various populations. Similarly,  Rappole7 used logistic functions to model habitat control of avian populations, 
again employing logistic modeling. In our study, it is found that logistic-like functions model sink states like 
the recovered and deceased states R and D, but that Gaussian-like functions are needed to model the non-sink 
states exposed, infected, and quarantined states E, I, and Q, since these states all exhibit extrema in their time 
evolution. The timed interventions directly control the waveforms of the susceptible and protected states S, and 
P, which would normally be modeled by logistic-like functions but have a piecewise waveform in our model that 
is only logistic-like between successive interventions.

Epidemics are not rare but are frequent visitors to the world stage, like earthquakes and category 5 hurri-
canes. As a result, there is an inherent need for established and validated long term forecasting of epidemics, to 
help guide policy making decisions and establish cost-benefit  analyses8,9. This is all the more critical during the 
current COVID-19 crisis.
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Results
The COVID‑19 pandemic in the USA. Figure 1 demonstrates the primary motivation for developing the 
proposed timed intervention model.

Here, we consider the COVID data from the U.S. as a whole from the date of the first recorded case (January 
21st, 2020) to the time of submission of this manuscript (December 16th, 2020). The smoothed (7-day rolling 
average) waveform appears to have 5 distinct phases. The first, for 0 < t ≤ 62 , could be called a “preliminary 
spread” phase. In this phase the outbreak established itself in the state of Washington. However, we see that 
around day 64 the preliminary spread began to slow, reaching a peak in cases per day at around day 78 and then 
beginning to decrease. Day 62 would be March 23rd, 2020 which was approximately the time when stay-at-home 
orders were beginning to be issued nationwide. Thus, from 62 < t ≤ 140 , the number of new cases per day 
stabilizes and starts to decrease resulting in a significant decrease in deaths per day. We call this a “protective” 
phase. However, we see that at around day 140 the cases begin to trend sharply upwards again, which likely 
corresponds to the lifting of the stay-at-home orders and the general population relaxing their commitment to 
social distancing guidelines, we call this a “release” phase. It can be seen clearly that the release phase lasts from 
140 < t ≤ 185 , where another protective phase begins which goes from 185 < t ≤ 230 . The most alarming 
trend is that since day 230 the U.S. has been in an extended release phase, with cases per day and deaths per day 
spiking to unprecedented levels. In this data the influence of four effective interventions can be observed, along 
with a clear need for a fifth protective intervention. It is important to note, that the pandemic will, of course, have 
progressed beyond these dates by the time of publication, so our results here are designed to exemplify how one 
can use the timed intervention model to make predictions according to these data specifically. We also provide 
the code and an interactive iPython notebook (see “Methods”) so that researchers can extend the modeling and 
predictions to future data.

The classical predator-prey models of the Lotka-Volterra equations that first appeared  in1 do not show such 
articulated multi-phase behavior. Similarly, more modern work on pandemic  modeling2 also does not show such 
behavior, necessitating the development of a new model.

Proposed timed intervention model. Our dynamical pandemic model is represented by the following 
state equations

Here the seven state variables include: Protected, (P) corresponding to the population that is not likely to be 
infected due to following stay-at-home orders and social distancing guidelines, Susceptible, (S) the population 
that can potentially be exposed and infected, Exposed, (E) the population who have come in close contact with 
an infected person, Infected (I) the population who have contracted COVID-19, Quarantined, (Q) the population 
who have been isolated from the general population after infection (not exposure) to prevent further spread of 
the disease, Recovered, (R) the population who has recovered from COVID-19 and is now (for the most part) 
immune, Deceased, (D) the population that has died from COVID-19. Also, here we introduce the bilinear 

(1)

Ṗ = α(t)S − φ(t)P = Protected Population

Ṡ = −β
IS

N
− α(t)S + φ(t)P = Susceptible Population

Ė = β
IS

N
− γE = Exposed Population

İ = γE − (δ + ρ + ν)I = Infected Population

Q̇ = δI − (�+ κ)Q = Quarantine/Isolated Population

Ṙ = �Q + νI = Recovered Population

Ḋ = κQ + ρI = Deceased Population

Figure 1.  Smoothed cases per day and deaths per day from source data exhibiting inflection points.
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term, B = −β IS
N  . B is of the utmost importance for our model, because the magnitude and timing of its maxima 

dictates the magnitude and timing of the maxima in the all the populations and hence controls the course of 
the pandemic. It should be mentioned at the outset that state P of this model does not strictly correspond to the 
state of the same name  in2, where P stood for an auto-immune population. In the present model, P stands for a 
protected, i.e. “sheltered in place” or “social distancing”, population and any immune population is lumped into 
the R state. A graph showing the directional flow of population is given in the state transition diagram of Fig. 2. 
Increments of population flow systematically through this graph like clockwork, in which the time step is 1 day.

The lack of a E to S arrow in this figure indicates that, once exposed, members of the exposed population 
cannot rejoin the ranks of the susceptible population. Similarly, once infected, members of the infected popula-
tion cannot rejoin the members of the exposed population. This implies that individuals cannot be re-infected. 
The only feedback loop is from S to P and back. Note that the long dashed arrows only exist in the presence of 
vaccination, as discussed below.

This model is conservative, in the sense that it assures the total population is constant. That is,

Figure 2.  State transition graph of the model.
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The timed interventions of the model. We define B = β IS
N

 as the bilinear term of Eq. (1). The quasi-
stable dynamical system defined by these equations must eventually reach equilibrium in which Ṡ −→ 0 and 
S(t) −→ SF , and similarly for P, E, I, Q, R and D. Thus we can succinctly state definitions for 2 types of timed 
interventions at time t = τ:

• Protection–if αS(τ ) > φP(τ ) , then Ṗ(τ ) > 0 and population flows from S to P;
• Release–if αS(τ ) < φP(τ ) , then Ṗ(τ ) < 0 and population flows to S from P;

Note that intervention types are defined by the state of the system at the time of intervention, that is, at the 
start of the associated interval. Although it often happens that these conditions persist throughout the interval, 
sometimes they do not, due to the influence of the bilinear term B. The role played by B is crucial, and shall be 
closely monitored here.

The primary objective of our research is to define, seek, and realize (theoretical) virus extinction–Suppose 
there exists τ� such that ∀t > τ� , αSF = φPF = EF = IF = QF = 0 , but RF and DF are positive constants. In this 
case, since EF = IF = QF = 0 and RF > 0 , the virus, but not the host, is extinguished, and the pandemic is over. 
Model parameter values have been shown to exist which demonstrate the existence of viral extinction, without 
the entire population being infected and transitioning into the R or D end states.

Fortunately the condition that EF = IF = QF = 0 is not a rare case but is a guaranteed property of any equilib-
rium state of the model, as we now show. Here we use the definition B = β(IS)/N

.
= bIS , and define ǫ = αS − φP.

Theorem 1 Consider any set of inputs for which the dynamical system of Eq. (1) reaches an equilibrium state 
SF , PF ,EF .IF ,QF ,RF ,DF. Then    (i) BF = EF = IF = QF = 0, (ii) αSF = φPF > 0, (iii) E, I, and Q in general 
exhibit at least one local maximum, and (iv) R and D exhibit logistic waveforms.

Proof By Eq.  (1) and the above definitions, Ṡ = −B− Ṗ = −(B+ ǫ) , where ǫ .
= αS − φP and simi-

larly Ė = B− γE . So when equilibrium is reached, (denoted by F subscripts) we have Ė = 0 , so 
γEF = BF = (β/N)IFSF . In equilibrium İ = Ṗ = 0 as well, so γEF = (δ + ρ + ν)IF and similarly αSF = φPF 
and ǫF = 0 . Also, in equilibrium Ṡ + Ė = 0 , so γEF = −ǫF = 0 and thus EF = 0 , BF = 0 , and IF = 0. Finally 
Q̇ = 0 implies QF = (δIF)(�+ κ) = 0 . Since E, I and Q start non-negative and asymptotically approach 0 for suf-
ficiently large t, their shapes must exhibit at least one local maximum (possibly at t = 0 , resulting in exponential 
decay). Finally, since Ṙ = νI + �Q , R is the integral of a Gaussian-like peak and is hence logistic (i.e. a s-shaped 
step-like waveform). The same holds true for D. In the exponential decay case, the sink populations (R and D) 
increase asymptotically towards their final values.   �

Lemma 1 Define µB to be the time of the final maximum of B(t) and similarly for µE, µI, an µQ . Then 
µB < µE < µI < µQ .

Proof Because in one day only a fraction of the population in a given state transfers to the other states, the com-
plement of this fraction remains in the state (see Fig. 2), the increase of E in the ith time step which brought E to 
its maximum, cannot be propagated to I until at least the (i + 1)th and possibly much later. The same argument 
applies to B and Q, mutatis mutandis.   �

Theorem 2 For any set of transition coefficients, β , γ , δ, ν, ρ, �, κ, there exists a set of of intervention coefficients 
α(t),φ(t) that lead to virus extinction.

Proof Consider the function B(t) at time t = µE (the final local maximum of E). Since Ė(µE) = 0 , we have 
B(µE) = γE(µE) and since by the Lemma µB < µE , it follows that B(µE) < B(µB) , and since there are no 
further maxima of B or E, it follows that both decrease to 0 asymptotically for t > µE . Next consider the inter-
val (µE < t ≤ µI ) . In this interval, I is increasing, but for sufficiently large values of the ratio φ(t)/α(t) , P(t) is 
increasing. But for t > µQ , I is strictly decreasing and at equilibrium PF > 0 and due to the conservative property, 
DF < N . Thus, the virus, but not the host, is extinguished.   �

Interventions and COVID‑19 in the USA today. The real world per day waveforms of Fig. 1 are not 
Gaussian or logistic but appear to be piecewise combinations of such waveforms. Although there have been no 
formal governmental nationwide interventions, the data behaves as if there had been. In our experience, the 
pandemic appears to be lurching through a series of punctuated equilibria. Here we attempt to model these auto-
interventions as closely as possible.

Note that in Fig. 1, vertical lines have been drawn at 64th, 150th, 178th and 250th days. These are the days 
which we have found that changes in α and φ can generate the best match to data. The model attempts to capture 

(2)

Ṡ + Ṗ + Ė + İ + Q̇ + Ṙ + Ḋ = 0,

S + P + E + I + Q + R + D = N,

S(t),P(t),E(t), I(t),Q(t),R(t),D(t) ≥ 0, ∀ t.

S(t), P(t),E(t), I(t),Q(t),R(t),D(t) ≤ N, ∀ t.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4339  | https://doi.org/10.1038/s41598-022-07487-8

www.nature.com/scientificreports/

these changes by defining the time dependence of the coefficients α(t) and φ(t) of Eq. (1) to be piecewise constant. 
That is, the overall interval [0, T] is partitioned into n+ 1 subintervals i = 0, 1, . . . , n with T ≡ τn+1.

To understand α and the other population transition rate parameters, suppose that some 
time t, S(t) = 3× 108 . If α = 0.2 , then at time t +� = t + 1 , if B and P happen to be negligible, 
S(t + 1) = S(t)− α · S(t) or (3× 108 − 0.45 · 3× 108) = 1.35× 108 . In this case 135 million people are moved 
from S to P in a single (unit) time step of 1 day.

Assignable parameters. The model definition is completed by the specification of the following assignable 
parameters:

• a 9-vector x of assignable transition rate coefficients,where 

 (see the state transition dependency graph of Fig. 2);
• n intervention time parameters τi , i = 1, 2, . . . , n;
• 2n assignable intervention rate parameters αi and φi , i = 1, 2, . . . , n.

Note that the initial rate parameters α0 and φ0 are the intervention rate parameters for the first interval. In general, 
there are 9+ 3n assignable parameters in all, not counting the 7 initial conditions on the state variables Each 
of these parameters must satisfy constraints on their allowable values shown below. The default values of these 
parameters (shown in square brackets) are the only set of transition parameters used to obtain the numerical 
results given here.

These define the constraints on the values the components of the n-vectors α and φ . A parameter set 
p ∈ τ × x × α × φ which satisfies the above constraints is called feasible and the solution of Eq. (1) correspond-
ing to such a p is called a future of the pandemic. A solution for an infeasible parameter set is a behavior of the 
model but not a future of the pandemic.

For the purpose of understanding the delays observed in the evolution of the pandemic, consider the node 
for the infected population I(t) in Fig. 2. There are 3 possible state transitions out of this state, in which members 
of the population I are either:

• quarantined with rate δ;
• recovered with rate ν;
• deceased with rate ρ;

Of course some fraction of the infected population I do not transfer out but remain in I. Delays arise because 
it may take multiple, even many, days for increments of I arriving from E at any given time step to propagate 
forward. This argument applies to the non-terminal states S, P, E, and Q as well. Numerical studies require the 
choice of the 7 initial conditions and the 9+ 3n free parameters.

After first reviewing prior work on pandemic modeling, we shall compare the deaths and deaths per day data 
to date to the prediction of the model for the given rate coefficients and intervention parameters.

Comparison to prior published work on pandemic modeling. As stated above, our proposed model 
is an extension of that proposed by Peng et al.2, which not only differs in the definitions of Ṡ and Ṗ , and of I, Ṙ , 
and Ḋ , but also includes the n timed interventions with their associated 3n rate constants as well. Conceptu-
ally, our protected state P represents the isolated, or “sheltered in place” population rather than the innately 
immune. These differences enable the model to obtain excellent qualitative and quantitative results for the USA 
as a whole when compared to real world data to date. More recently, a comparable SEIR model was presented 

(3)
α(t) = αi , φ(t) = φi , τi ≤ t < τi+1

α(t) = αn, φ(t) = φn, τn ≤ t < τn+1 = T

x = α0,φ0,β , γ , δ, �, κ , ν, ρ

(4)

0 ≤ α0[0] ≤ 1 ≡ initial S to P transfer rate

0 ≤ φ0[0.001] ≤ 1 ≡ initial P to S transfer rate

0 ≤ β[.92] ≤ 1 ≡ infection rate

0 ≤ γ [.0305] ≤ 1 ≡ rate of infections per exposed

0 ≤ δ[.02] ≤ 1 ≡ rate of quarantines per infected

0 ≤ �[.07] ≤ 1 ≡ quarantined recovery rate

0 ≤ κ[�/19] ≤ 1 ≡ quarantined mortality rate

0 ≤ ν[.15] ≤ 1 ≡ unquarantined mortality rate

0 ≤ ρ[ν/20] ≤ 1 ≡ unquarantined recovery rate

(5)
0 ≤ αi ≤ 1 ≡ protection rate of intervention i, i = 1, . . . , n

0 ≤ φi ≤ 1 ≡ release rate of intervention i = 1, . . . , n
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by Adak et al.10, who showed that their solutions existed, were unique, and bounded. They treated both viral 
extinction and endemic cases, and offered theorems comparable to our Theorem 1. They did not include timed 
interventions or vaccination. They gave results for the cumulative Confirm Cases Death Counts for the Covid-
19 epidemic in Spain from February to October 1920. Over that period the shape of their death curves were of 
course similar to ours for the United States. Another interesting alternative and comparable approach is given 
by Liu et al.11, which introduced an asymptomatic state in the SEIR extension and used neural networks to solve 
the parameter identification problem.

Equations (3) and (4) define 9+ 3n free parameters. The parameter space is 9+ 3n-dimensional (or 16+ 3n 
if we include the initial conditions for the 7-dimensional state space). The essence of modeling is to solve the 
parameter identification problem: Find the point in the 9+ 2n dimensional parameter space for which the model 
results best fit real world data. To solve this rigorously, a second round of research is proposed: find the optimal 
2n+ 9 ( 2n+ 16 ) parameter assignments using the approach of  Reference12, starting from the quasi-optimal 
parameter set used throughout this paper. Equation (1) specifies a set of 7 ordinary differential equations in 
which the Ė and Ṡ equations have a bilinear form which first appeared in Equation 29 of  Reference1. They were 
also used by Anderson and  May13 to model a wide variety of infectious diseases. Such equations can exhibit 
unstable, and even chaotic, behavior as was first shown by Lorenz for modeling of atmospheric  convection14, and 
has also been observed in the modeling and analysis of viral  epidemics15. Oscillatory solutions arise in practice 
for extreme values of 9+ 2n parameters, but the these can be avoided by judicious values of the upper and lower 
bounds of Eq. (2). In our limited exploration of the multi-dimensional parameter space, no chaotic behavior 
has been observed. Perhaps the last 4 linear equations constitute a dissipative damping effect which inhibits the 
oscillatory behavior which might be generated by the state equations for S and E.

Early epidemiological  research1 focused on detailed qualitative reasoning and Taylor series expansions. The 
lack of computing facilities did not stop them from considering a formulation even more general than that dis-
cussed here. They derived the SIR equations as a special case, and they found a special case solution in terms of 
hyperbolic functions for z = R + D . In this solution ż appeared to be Gaussian and z therefore a logistic function 
, and they were able to assess viral extinction in their analysis. Similar results from the same era were obtained 
 in6 whose author emphasized the same classification of population growth functions as logistic and Gaussian 
(except in his Fig. 8 he used the term “first derivative of logistic”). His solutions were consistent with Theorem 1 
although no theorem was stated. Many more contemporary results, for  example7  and5 had their own extensions 
to the SEIR model but the results could be similarly categorized. None of these extended SEIR models achieved 
strong matches to COVID-19 data to date, because they were limited to one rise and fall of the bilinear term B(t). 
With this limitation, the pandemic rises too rapidly, and then falls to extinction too rapidly to match data to date.

Statistical  models16,17 have achieved good short term matches, but do not consider extinction, which is a long 
term event. Such models cannot effectively forecast the duration of the pandemic. Recently, modeling papers 
have appeared that are sufficiently general to accommodate the influence of social and politcial changes in the 
midst of the  pandemic4 or focus on Health Care requirements and localized  results18.  Reference3 is worthy of 
note since they prove that any accurate analysis of the pandemic must be an extended SEIR model. Our work, 
also an extended SEIR model, extends it further by using the timed interventions. The necessity to treat the pan-
demic through multiple distinct epochs, in which the bilinear term rises and falls as is clearly evidenced in the 
data analyzed. The timed-intervention SPEIQRD model permits direct projections of mortality and pandemic 
extinction, which is were clearly needed during the COVID-19 pandemic.

Further research was stimulated by the explosive growth of Covid-19. Cao and  coauthors19 offer a neural 
network modeling solution and included an extensive survey of the contemporaneous literature.  Atkeson20 gave 
an economist’s perspective on SEIR epidemiological models.  In21 the “accuracy” of short term predictive models 
are compared.

Extending data fitting results into the future with the timed interventions model. Figure 3 
illustrates the ability to use timed interventions to both tune the model to real data as well as perform long term 
predictions. In Fig. 3a we show the match between the model with timed interventions at τi = 62, 140, 185, 230 
as compared to data, the corresponding values for αi and φi are shown in Table 1. By changing the flow of popula-
tion between S and P we achieve an extremely good match to data extending all the way through the most recent 
date considered (Dec. 16th 2020), validating the effectiveness of our model.

We can then use the model to assess the influence of a potential fifth or final intervention at a date in the 
future. Figure 3b,c show the four-year predictions for Deaths per Day (b) and Total Deaths (c), where the mod-
eled interventions from Fig. 3a are shown in solid lines with the new potential final intervention shown as a 

Table 1.  Values of best fit timed intervention parameters for optimum match to data.

τi αi φi

0 0.0 0.001

62 0.148 0.004

140 0.097 0.031

185 0.085 0.003

230 0.029 0.013

350 0.085 0.003
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dashed line. Model parameter are shown in Table 1. Critically, we note that with a final intervention at day 350 
(of comparable parameters to previous interventions) the deaths per day (purple curve) dips under 1 death per 
day in 784 days, an indication of viral extinction (more on this later). In contrast, without the final intervention 
(red curve) deaths per day doesn’t dip under 1 until the 1606st day, more than 4 years out. Moreover, we can 
see the influence these two scenarios have on the total deaths that will occur during the pandemic. The scenario 
without a final intervention results in 17 times more deaths than with the final intervention, meaning that prompt 
action could (theoretically) save more than 12 million lives.

A key focal point of this study has been forecasting the duration of the pandemic in the absence of a vaccine. 
Theorem 1 states that the waveforms for the size of exposed population E, infected population I, and quarantined 
population Q must asymptotically approach 0 as the duration of the simulation approaches infinity. Since the 
initial conditions for the size of these populations are positive, it follows that each of these sizes must reach a 
maximum value and then eventually decay to zero. The duration of the pandemic is, therefore, defined by how 
long It takes for these eventualities to occur.

Since, by definition, Ḋ = ρI + κQ deaths per day must behave similarly. In fact, the red curve in Fig. 3b, 
beyond the 5th intervention, resembles a Gaussian function.

These eventualities are illustrated by the 2 year simulation of Fig. 4. The red curves in the first column again 
indicate the absence of the 5th intervention. The purple curves illustrate the effect of the 5th intervention and are 
seen to be significantly flattened by the this intervention. The days on which the red curves reach their maximum 
value are shown just above these maxima, which are ordered in accordance with Lemma 1.

On the right, it is seen that in both scenarios S is drained by the last intervention (here extended out to a four 
year prediction). However, the red curve drains far less rapidly than the purple curve does in response to the 
strong protective 5th intervention. However the purple curve for P rises sharply in response to the 5th interven-
tion, whereas the red curve drains at about the same rate as S. The asymptotic limit of P(t) for the purple curve 
reaches above 3× 108 , shortly after the date of the 5th intervention. In contrast, the asymptotic limit of the red 
curve is nearly an order of magnitude less ( 6× 107 ), and has not reached its asymptote even 2 years out. Note 
also that in the interval just before the intervention Ṗ and Ṡ tend to approach 0 and according to Theorem 1 , 
αSF = φPF at the end of that interval. We have called this effect “punctuated equilibria.”

Similarly the sink states R (labeled here as Recovered/Immune) and D approach constant values and display 
skewed logistic waveforms In accordance with Theorem 1. Again the gap between final death toll between the 
red and purple curves is approximately 1.3× 107 ( more than 13 million lives saved). Finally the bottom plot on 
the right illustrates N − D , a simple first definition of those that survive the Pandemic.

The timing of the final intervention. As stated above, we have used theoretical interventions to deter-
mine a “best fit to data” model to simulate the behavior of the pandemic to date. During future prediction, how-
ever, we can employ future interventions, to maximize the number of survivors. These future interventions must 
be realizable in the political landscape of the United States. For example, in the “best case” future of Section 4 
the critical last intervention increased the protected population to over 92% of the total U.S. population, and so 
is probably not politically feasible.

We now look at some alternative futures based on variations of the timing of the final intervention, shown 
in Fig. 5.

This is a complex figure but it can understood as follows. Each of the 16 plots has a red curve and purple 
curve. The red curves correspond to the absence of the final intervention, and therefore they do not change 
in any given column. Each of the 4 rows correspond to a specific time value for the final intervention, for 
τ5 = 350, 400, 450, 500 , which is denoted with a dashed line. In each row the first waveform plotted is the bilinear 
term B = β IS

N  . Looking down the first column, it can be seen that the maximum of B creeps up the red curve 
until the final intervention occurs and then decreases rapidly and quasi-logistically toward 0. The second column 
shows the effect of final intervention on the protected population P. It is seen that in each row the purple curve 
rapidly increases and stablizes quickly at a final value, but as the onset of the final intervention becomes later 
and later the total population that becomes protected gets lower and lower.

Figure 3.  Best fit to deaths per day and total deaths, with and without a final intervention.
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In the 3rd column, we plot the deaths per day for each τ5 . As a result, the date of viral extinction is pushed in 
to the future significantly. This shows that even with extreme protective interventions viral extension is not be 
achieved for nearly a year, and much longer than that if the intervention is not prompt.

In the 4th column it can be seen (purple curves) that the increase in the peak of the bilinear term incurs 
a corresponding increase of the corresponding final death toll, rising in the sequence 8.30× 105 , 2.07× 106 , 
4.42× 106 , 7.03× 106 as the day of the 5th intervention increases in the sequence 350, 400, 450, 500. It is seen 
that the final death toll essentially doubles for each 50 days of delay before the 5th intervention. A similar result 
happens in the third column for deaths per day as well.

It is also to be noted that with the exception of deaths per day, all of the protected scenarios show waveforms 
that have reached (or least come close to reaching) equilibrium within two years. However, in the τ5 = 500 
scenario deaths per day does not go below 1 until day 924, nearly two years from the current date (dates where 
DPD goes below 1 shown for all scenarios in Table 2 below).

Vaccination interventions. To account for the rollout of vaccination, we introduce a new coefficient to 
our model: ξ . This value represents the rate at which the population is immunized as a function of time (i.e. the 

Figure 4.  Four year predicted state population waveforms. Best fit parameters with and without final 
intervention.
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rate at which population moves from S, P, and E to the recovered/immune state R. We can incorporate this into 
the model by treating vaccination as another timed intervention, where ξ is zero before the vaccine roll out. This 
corresponds to the following modifications of the basic model of Eq. (1).

Note that each subtracted term is accompanied by an equal and opposite added term, so that the model still has 
the conservative property of Eq. (1). The ξ terms correspond to the dashed arrows in Fig. 2.

We use the same parameters as discussed above in the intervention case but only re-use the first 4 interven-
tions. Thus the critical final protective intervention is replaced by a vaccination intervention of severity ξ that 
happens on the 350th day. The modified model produces the waveforms illustrated in Fig. 6.

(6)

Ṗ = α(t)S − φ(t)P − ξ(t)P = Protected Population

Ṡ = −β
IS

N
− α(t)S + φ(t)P − ξ(t)S = Susceptible Population

Ė = β
IS

N
− γE − ξ(t)E = Exposed Population

İ = γE − (δ + ρ + ν)I = Infected Population

Q̇ = δI − (�+ κ)Q = Quarantine/Isolated Population

Ṙ = �Q + νI + ξ(t)P + ξ(t)S + ξ(t)E = Recovered Population

Ḋ = κQ + ρI = Deceased Population

Ṙ = �Q + νI = Recovered Population

Ḋ = κQ + ρI = Deceased Population

Figure 5.  Four possible final intervention time scenarios.

Table 2.  Viral extinction dates and total fatalities as a function of day of final protective intervention, for 
scenarios in Fig. 5.

τ5 τ�Ḋ
τ� DF

350 784 1073 8.30× 105

400 868 1149 2.07× 106

450 922 1188 4.42× 106

500 954 1204 7.03× 106

None 1606 2207 1.24× 107
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As before, the plots on the left show waveforms for the 5 Gaussian-like waveforms for the transient popula-
tions B, E, I, Ḋ , and Q. The red curve is identical to the red curve in Fig. 4, which corresponds to no protective 
interventions or vaccinations, while the purple curve now represents the vaccination intervention.

The plots on the right, however tell an entirely different story. Without vaccination (red curves) the red curves 
are identical to their values in Fig. 4, but with vaccination (purple curves) they now drain down to zero. Note 
that the third plot is now labeled Recovered (Immune), rather than Recovered. The takeaway here is that the 
purple curve ( 3.46× 108 ) is substantially above the red curve ( 2.46× 108 ), and is close to the total population.

We note that the total deaths is the case in vaccination is higher than in the case of a protective measure 
discussed in Fig. 4, however this is a function of rate. Here, the rate of S and P draining to R is much slower 
than the rate of S draining to P in the protective measure case, which are controlled by the parameters α and ξ 
respectively. We used such values, since protective measures such as lockdowns and stay-at-home orders can 
instantaneously affect large number of people, while vaccines must be rolled out over a longer time scale. How-
ever, the critical benefit of vaccination can be seen by comparing the final equilibrium of Potential Cases in the 
three scenarios of no further intervention (red curves), protective intervention (purple curve in Fig. 4), and 
vaccination intervention (purple curve in Fig. 6. With no further intervention, the majority of the population 

Figure 6.  Four year predicted state population waveforms. Best fit parameters with and without a vaccination 
intervention.
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contracts COVID, resulting in mass immunity and a limited number of potential future cases ( 9.14× 107 ). For 
protective intervention, even though the immediate result is many saved lives, nobody becomes immune and 
the maximum potential cases stays near the total U.S. population ( 3.33× 108 ) so any release interventions before 
viral extinction can be potentially disastrous. However, for vaccination intervention, even though more lives 
are lost in the short term the entire population becomes immunized resulting in the maximum potential cases 
dropping to zero. This is an important, possibly the most important, takeaway of our study: Whereas protective 
intervention can produce comparable or even superior mortality and viral extinction times, with vaccination 
the population becomes immune, and cannot be reinfected.

Furthermore, the mortality in the case of vaccination intervention can be improved by changing the speed 
of the vaccine roll-out, as shown in Fig. 7. Looking down the first column, it can be seen that the maximum of 
B increases and creeps up the red curve as the strength of vaccination decreases. Arguably, the purple curve 
makes it to its 0-asymptote, at least in the first 3 rows. Clearly, the red curve doesn’t quite get there in the two 
year prediction shown. The second column shows the effect of the immuninization on the Recovered (Immune) 
population, R. It is seen that only the purple curve in the first row comes close to reaching quasi-equilibrium 
in 2 Years and only for the first row (Strongest Vaccination Intervention). In the third column, the date of Viral 
Extinction can be determined from when deaths per day drops below 1, and the results are summarized below 
in Table 3 below. The fourth column again corresponds to total Deaths. The text annotations at the right indicate 
total predicted mortality with (red) and without (purple) vaccination of the strength indicated at the far left. 
Note the lives saved decreases from a factor of ten ( ξ = 0.008 ) to a factor of two ( ξ = 0.002 ), emphasizing the 
importance of vaccination roll-out rates.

Tables 2 and 3 summarize the predictions of the proposed model on the Duration of the Pandemic. We 
examine values concerning viral extinction. First, τ�Ḋ where Ḋ(t) = 0, ∀t > τ�−Ḋ indicating that the worst of 

Figure 7.  Four possible vaccination strength scenarios.

Table 3.  Viral extinction dates and total fatalities as a function of vaccination rapidity, for the scenarios shown 
in Fig. 7.

ξ τ�Ḋ
τ� DF

0.008 785 949 1.60× 106

0.006 857 1035 2.17× 106

0.004 965 1165 3.41× 106

0.002 1135 1379 6.33× 106

None 1606 2207 1.24× 107
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the pandemic is past, and true viral extinction, τ� , where E(t) = I(t) = Q(t) = 0,∀t > τ� as defined in above, 
as well as the total deaths.

Table 2 shows the effect of 5th protective intervention without vaccination and Table 3 shows the effect of 
vaccination without the 5th intervention. We see here, that for protective interventions the deaths can curbed 
and the worst of the pandemic can be avoided, but the pandemic must still run its course to achieve true viral 
extinction which will take multiple years. Moreover, since PF is high for all the scenarios in Table 2 a further 
release intervention would result in another spike of the infected population and more deaths. Such a result 
would be consistent with the pandemic as observed in Europe where extensive social distancing mandates 
nearly eradicated the virus, but as those mandates laxed new surges were seen nearly everywhere. However, 
with extreme vaccination implemented immediately τ�Ḋ and τ� can both be achieved within a year and tens of 
millions of lives can be saved.

Discussion
A timed intervention extended SEIR model was presented and applied to the United States as a whole. In the 
discussion of Figs. 4 and 5 it was shown how, by controlling the magnitude of the bilinear term B, the calamitous 
rapid rise and fall of predator-prey models can be controlled, and even be actually be eliminated. Thus the desid-
erata of viral extinction can be realized. However it was also shown that this would require that around half of 
the total population be placed into lockdown which is unlikely to be feasible in the majority of high population 
density western first world countries. These results were obtained with the most complete SEIR model extension 
employed to date, and with a parameter set which produces an almost perfect fit to the deaths per day and total 
deaths per day in the analyzed date range (see the discussion of Fig. 5).

Our findings show that over a wide range of initial conditions and parameter sets, the presented model 
correctly predicts model behaviors with multiple qualitatively distinct phases. Also, we have given complete 
simulation and/or projected waveforms for all 7 of the component populations, whereas other studies focus 
more narrowly on vital statistics. More critically, we believe that this type of timed intervention model could be 
used to correlate the effects of real socio-political decisions directly to pandemic measurables like deaths per 
day. Potentially, the effects of certain protective measures (such as vaccination acceptance or adherence to mask 
mandates) could be quantified by applying the model to different states (or even counties) in the US with different 
levels of engagement towards these measures. We believe this model could be used, in conjunction with current 
economic factors, to recommend a direct intervention schedule which maximizes the number of survivors under 
realistic socioeconomic conditions.

We have presented extensive treatment of protective interventions of various degrees of timing values and 
severity. Also we have presented extensive treatment of the effects of vaccination. In this regard we have defined 
and computed viral extinction. For a representative set of supply dependent vaccination rollouts, we have given 
final mortality and theoretical final extinction dates. A key finding of our study, is that unless prompt, effective 
protective interventions, or extensive vaccination interventions are introduced, the pandemic can continue for 
many years and result in the deaths of many millions in the USA alone. The model is freely available for use 
and implemented in an easy-to-use iPython Jupyter Lab notebook (link in “Methods” section), meaning that 
epidemiologists, economists, and politicians can use the model immediately for help with long term predictions 
during the COVID-19 pandemic. The portion of the pandemic treated in this manuscript, as well as the portion 
that has occurred since, shows clearly that the progression of a pandemic cannot be modeled effectively by a 
single set of parameters. The pandemic evolves and changes as a function of time, mutation, political decisions, 
and social behaviors, and thus, so must the model parameters. The SPEIQRD model proposed here, gives a new 
tool to predict the rise and fall of the pandemic in large and small populations with time-resolved interventions 
to deal with these complexities, making it a powerful potential tool to understand and combat both the current 
and future pandemics.

Methods
Data for this paper is taken from the New York Times COVID-19 data github (https:// raw. githu buser conte nt. 
com/ nytim es/ covid- 19- data/ master/ rolli ng- avera ges/ us. csv).

Final analyses for the paper were conducted on December 16th, 2020 (corresponding to day 332). The deaths 
per day data of Fig. 1 are taken direclty from the github source, and the total deaths were determined by integrat-
ing the deaths per day values. Data is smoothed by taking a 7-Day rolling average from Day 3 through Day 328.

The odeint function from the python3 SCIPY distribution was used to solve these 7 ordinary ordinary dif-
ferential equations over the closed time interval t ∈ [0,T] , where t represents time in days, and T is the final time 
in days. Note that a one year (from January 22) simulation would only extend about 150 days into the future, the 
current time, t, is past the middle of the interval t ∈ [0,T] . We re-iterate the point that, in the simulations of this 
paper, only unit time steps are taken, as in displayed data from the model. Of course the odeint function takes 
arbitrarily smaller steps as required to deal with the waveform slope discontinuities frequently encountered in 
this study. Only the values at the unit times t = 1, 2, . . . ,T are recorded. Fortunately, for the interesting part of 
the parameter space, the solutions of these equations are well-behaved, and have been used frequently as epide-
miology models for over a century, including multiple times this millennium. Computationally, this simulation 
is easy, even trivial. Numerically, however, the simulation can be difficult, involving subtraction of large, almost 
equal terms, as well as discontinuities in the first derivative of the computed waveforms. For all predictions we 
use the following initial conditions vector.

To model the interventions, we start by selecting intervention values that generate a model with the correct 
general behavior in terms of deaths per day (i.e., model DPD goes up when data DPD goes up, model DPD 
goes down when data DPD goes down. The initial state populations are shown in Table 4 and the intervention 

https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us.csv
https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us.csv
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values are shown in Table 5. Subsequently, we proceed through the model, one intervention at a time, and using 
the SCIPY function minimize to refine the parameters to achieve the best match to deaths per day between the 
previous intervention and the subsequent intervention. Meaning for τ1 we fit between t = 0 and t = τ2 , for τ2 
we fit between t = τ1 and t = τ3 , for τ3 we fit between t = τ2 and t = τ4 , and for τ4 we fit between t = τ3 and the 
end of the data t = 332 ). The results are shown in Fig. 8.

It is important to note that this model is under-determined in the sense that there are far more parameters 
than equations for the optimization. As a result, different α and φ values than the ones shown can also result 
in strong fits. This also prevents optimization of the τ values (which by comparing Table 1 with Table 5 can be 
seen to be identical) as α and φ values can be found that minimize error in the model at any given τ . For a more 
rigorous optimization additional objective functions (other than deaths per day) are needed.

The model is implemented in an iPython notebook that can be easily altered (to account for different inter-
vention parameters) and used to model and predict the pandemic. It is freely available for download at https:// 
github. com/ hacht eja/ Timed- Inter venti ons.
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