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A non‑field analytical method 
for gas dissolution under forced 
compression
Vladimir Kulish1* & Vladimír Horák2

This paper presents an extension of the non-field analytical method—known as the method of Kulish—
to model gas dissolution into a liquid due to forced compression. Solutions are obtained for the time 
evolution of pressure (and, hence, mass concentration) at the gas–liquid interface. These solutions 
are in the form of series with respect to fractional differ-integral operators. The asymptotic solutions 
for the two limiting cases of compression—slow and fast compression—have been established as well. 
Then several particular examples of the law of gas volume variation are considered. Among them, the 
law of a linear volume variation is the most interesting for practical purposes, in which case numerical 
values of the dimensionless pressure as a function of dimensionless time are provided.

List of symbols
an, bn	� Coefficients in fractional series
C, kg/m3	� Mass concentration
c	� Dimensionless mass concentration
D, m2/s	� Diffusion constant
F, m2	� Gas contact area
f 	� Volume change function
k, n 	� Summation indices
M, kg/mol	� Molar mass
P, Pa	� Pressure
p	� Dimensionless pressure
R, J/(kmol · K) 	� Universal gas constant
T , K 	� Temperature
t, s	� Time
V , m3	� Gas volume
x, m 	� Spatial variable

Greek
Ŵ	� The gamma function
θ 	� Dimensionless temperature
ζ	� Dummy variable
κ , kg/(m3 · Pa) 	� Henry coefficient
�, ξ	� Dimensionless variables
ν 	� Order of fractional differ-integration
τ	� Dimensionless time

Special symbols
∂ν	� Fractional differential operator of order ν
D	� Fractional operator
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This paper presents an extension of the non-field analytical method—known as the method of Kulish1—to model 
gas dissolution into a liquid due to forced compression.

The method has been first proposed by Kulish and Lage2 more than 2 decades ago and since then was success-
fully employed for solving various problems in heat and mass transfer3, fluid mechanics4,5, and other areas6,7. In 
one of the recent works, the method received its full theoretical justification, whereas it has been shown that the 
solutions it renders can always be represented in the form of either series with respect to fractional differ-integral 
operators8, or compact fractional differ-integral operators with improved convergence9.

The problem, considered in this study, belongs to a large class of problems on the dynamics of phase interac-
tion—ranging from modelling the process of boiling10, to combustion of solid propellants12, and even to applica-
tions in military technology (e.g., the non-equilibrium model of depressurisation in two-phase fluids to study the 
performance of air-guns used in combat training)11. In all of these cases, to tackle this type of problems, various 
methods are used, but all of them render approximate solutions only10–12. In contrast, the method, employed in 
this study, renders exact solutions. Moreover, the mentioned approximate methods are much more laborious in 
contrast to the easy-to-apply formulae, obtained in this study for the first time. In particular, the inequality for 
estimating the lower pressure limit, established in “Asymptotic solutions for the two limiting cases of compres-
sion” section, may be very useful for practicing engineers.

“Problem formulation” section is fully devoted to the problem formulation and assumptions made. Then, 
in “Solution procedure” section, solutions are obtained for the time evolution of pressure (and, hence, mass 
concentration) at the gas–liquid interface. These solutions are in the form of series with respect to fractional 
differ-integral operators. In “Asymptotic solutions for the two limiting cases of compression” section, the asymp-
totic solutions for the two limiting cases of compression—slow and fast compression—have been established. 
In addition, an important inequality for estimating the pressure is as well provided. “Some examples” section 
presents several particular examples of the law of gas volume variation. Among them, the law of a linear volume 
variation is the most interesting for practical purposes, in which case numerical values of the dimensionless 
pressure as a function of dimensionless time are provided.

The solution method considered in this paper, in addition to direct practical interest, seems to be useful from 
a methodological point of view, since the approach proposed here is applicable to the study of more complex 
problems of the dynamics of phase interaction.

Problem formulation
The process of gas dissolution under forced compression, if convective currents are absent, can be modelled by 
the following set of equations11:

where V0 is the initial volume of the gas, θ is the compression time to zero volume, f  denotes a given volume 
change function [ f (0) = 1 ; f (1) = 0 ], M is the molar mass of the gas, R is the universal gas constant, D is the 
gas diffusivity in the liquid, κ is the Henry coefficient, F is the gas contact area, and C denotes the concentration 
of the dissolved gas.

In Eq. (1b), the operation of fractional differ-integration is defined in the Riemann–Liouville sense as13

The x-axis is directed downward from the surface and the depth of the liquid is taken to be infinite.
The gas temperature is assumed to remain constant, which suggests a fairly slow compression. If necessary, 

the non-isothermality of the process can be easily taken into account by making an appropriate change in the 
function f (t/θ) . Such a kind of process is realised, for example, during thermal expansion of a liquid in a closed 
vessel containing a gas cavity.

Equation (1a) expresses the change in the mass of the gas volume due to diffusion through the gas–liquid 
interface. The mass flux is unambiguously related to the change in concentration at the boundary2 by means 
of relation (1b), which makes it unnecessary to consider the process of mass transfer in the region x > 0 . It is 
required to determine the pressure P in the "cushion" as a function of time.

Solution procedure
Upon introducing dimensionless variables p = c = C/C0 = P/P0 , ξ = x/

√
Dθ  , τ = t/θ , � = κRT

√
Dθ/(MV0) , 

the set of Eq. (1) becomes
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Eliminating (∂c/∂ξ)ξ=0 from Eqs. (3a) and (3b) renders the equation for the dimensionless concentration—
and, hence, the dimensionless pressure p(τ )—at the interface:

Applying operator D−1 =
∫ τ

0(·)dτ to Eq. (4a) and taking into account the initial condition (4b) together 
with13

yields an alternative form of Eq. (4a), which is more useful for practical purposes:

The latter equation is an integral equation with respect to the unknown function p . However, here it will be 
treated as a differential equation of fractional order. This makes it possible to take into account the specifics of 
the fractional differ-integration in the most complete way in the case when f (τ ) is given by the series

It is necessary to point out here that the latter expression belongs to the series representation of fractional 
differ-integral operators with improved convergence. Convergence of such a representation has been studied in 
much detail in a recent work by the authors9. It has been shown there that fractional power series of the form 
given by Eq. (7) provide much better convergence in comparison with the corresponding standard power series 
expansion (series of integer powers). The latter circumstance is of great importance in case when asymptotic 
solutions are to be found for large values of t.

Now, because the fractional operator D−1/2 transforms a power function into a power function [see Eq. (5)], 
the solution can be expressed in the series form as

where the coefficients an are found from the recurrent relations

Asymptotic solutions for the two limiting cases of compression
In this section, asymptotic solutions for the two limiting cases of compression are obtained, namely—slow 
compression ( � ≫ 1 ) and fast compression ( � ≪ 1).

For � ≫ 1 (slow compression), the solution of Eq. (6) can be found in the form9

Upon substituting Eq. (10) into (6) and equating the expressions at the equal powers of �−n , the solution 
becomes

As can be seen from the latter equation and Eq. (2), for τ → 1 , the first two terms in the series provide an 
asymptotic solution for � ≫ 1.

For � ≪ 1 (slow compression), an asymptotic solution can be found upon rewriting Eq. (6) in the form

Then the formal solution
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can be found upon expanding the operator into power series with respect to � (or, which is the same, with respect 
to D−1/2)9:

By direct substitution, one can verify that Eq. (14) is indeed the solution of Eq. (6).
It is worth noting here that the series in Eq. (14) diverge as τ = 1 . However, it can be used for calculations if 

τ < 1 (see details below).
The rest of this section is devoted to establishing, an important inequality, which allows one to estimate the 

pressure value.
Using the fact that9,13 

∣

∣D
ν f (τ )

∣

∣ ≪ sup |f | τ−ν

Ŵ(1−ν)
 , it follows that, for an increasing function p(τ ),

Substituting the latter expression into Eq. (6) yields

From this, it follows that, for τ = 1,

Some examples
This section discusses three examples of the law of volume variation f (τ ) that have important practical 
applications.

First, consider

From Eq. (9),

The solution in the series form (8) converges for an arbitrary value of � for all 0 ≤ τ ≤ 1 . This proves that the 
pressure value remains bounded for the moment of “collapse” of the gas volume.

Moreover, if � = Ŵ
(

n+3
2

)

/Ŵ
(

n+2
2

)

 , the series given by Eq. (8) ends on the n-th term and, hence, the solution 
can be written in a finite form. For instance,

Now consider the case of

In this case, Eq. (8) renders a finite expression, namely:

As can be seen, the pressure value remains bounded for the moment of “collapse” of the gas volume, too.
To conclude this section, consider the case, which is very important for practical applications, namely—the 

gas volume changes linearly—that is,

Two values of � are considered, namely: � = 0.1 and � = 0.01 . This corresponds to the limiting cases with the 
characteristic parameters as follows: θ = 2× 105 . . . 2× 106 s ; V0 = 1m3 ; κ = (0.1 . . . 0.3)× 10−5 kg/

(

m3 · Pa
)

 ; 
F = 7m2 ; P0 = 1.5× 105 Pa ; M = 29 kg/mol ; R = 8310 J/(kmol · K) ; D = 10−9 m2/s ; T = 293K.

For the chosen values of � , it is convenient to conduct pressure calculations using Eq. (14). The latter yields
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As follows from Eq. (24), the relative computational error is defined by the ratio of the third term of the series 
to the first one and is of the order of �2/(1− τ) . Hence, the latter equation is not applicable for τ → 1.

From comparing the law of the gas volume change given by Eq. (23) with the laws given by Eqs. (18) and 
(21), it follows that, for any finite value of � , it is possible to choose such a value of n in Eq. (21) that all values of 
the function given by Eq. (23) will be between the values of the functions given by Eqs. (18) and (21). Hence, it 
becomes obvious that the pressure value remains bounded for the moment of “collapse” of the gas volume for 
the linear volume change as well.

Table 1 shows the computational results for the pressure value as a function of time obtained from using 
Eq. (24) with the relative computational error of ∼ 1 %. The results are compared with the estimate of the pressure 
value obtained by from the inequality (16).

As can be seen, inequality (16) renders the values close to the exact value (relative error < 10%) up to 
τ = 0.7(� = 0.1) and τ = 0.9(� = 0.01) . In addition, this inequality renders the lower estimate of the pressure 
value for all values of τ . One can draw a similar conclusion upon comparing (16) with the exact solutions for 
the first two cases considered in the beginning of this section. Hence, formula (16) can be recommended for 
practical applications.

To conclude this section, it is worth noting that, if the pressure is not a monotonously increasing function of 
time, the inequality sign in (16) may change to the opposite one.

General discussion
It has been demonstrated so far that the solution for the pressure evolution at a gas–liquid interface is in the form 
of series with respect to fractional differ-integrals (derivatives of fractional order).

As has been already mentioned, problems similar to those treated here were considered earlier in connection 
with the study of the dynamics of growth and dissolution of gas bubbles taking into account many factors (e.g., 
surface tension, viscosity, etc.)10–12. Unfortunately, the said methods are quite laborious and able to render but 
approximate solutions. On the contrary, the method employed here not only renders exact solutions but is much 
less laborious. Moreover, a simple inequality for estimating pressure values has been established. The latter can 
be used by practicing engineers as a quick easy-to-use tool.

To conclude, it is worth noting here that the solution method considered in this paper, in addition to direct 
practical interest, seems to be useful from a methodological point of view, since the proposed approach is appli-
cable to the study of more complex problems of the dynamics of phase interaction. For instance, the results, 
presented here, can be used to develop advanced non-equilibrium models of depressurisation in two-phase fluids.

Received: 16 November 2021; Accepted: 17 February 2022

References
	 1.	 Frankel, J. I. Generalising the method of Kulish to one-dimensional unsteady heat conducting slabs. J. Thermophys. Heat Transf. 

20, 945–949. https://​doi.​org/​10.​2514/1.​22995 (2006).
	 2.	 Kulish, V. V. & Lage, L. J. Fractional-diffusion solutions for transient local temperature and heat flux. J. Heat Transf. 122(2), 372–376. 

https://​doi.​org/​10.​1115/1.​521474 (2000).
	 3.	 Kulish, V. V., Lage, J. L., Komarov, P. L. & Raad, P. E. A fractional-diffusion theory for calculating thermal properties of thin films 

from surface transient thermoreflectance measurements. J. Heat Transf. 123(6), 1133–1138. https://​doi.​org/​10.​1115/1.​14166​88 
(2001).

	 4.	 Kulish, V. V. & Lage, J. L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806. https://​doi.​org/​10.​
1115/1.​14780​62 (2002).

	 5.	 Kulish, V., Nožička, J. & Suchý, J. A non-field analytical method for solving problems in aero-acoustics. Sci. Rep. 10, 19688. https://​
doi.​org/​10.​1038/​s41598-​020-​76687-x (2020).

	 6.	 Kulish, V. V., Heng, L. & Dröge, P. Z-DNA-induced super-transport of energy within genomes. Physica A 384(2), 733–738. https://​
doi.​org/​10.​1016/j.​physa.​2007.​06.​023 (2007).

	 7.	 Kulish, V. V. Market efficiency and the phase-lagging model of price fluctuations. Physica A 387(4), 861–867. https://​doi.​org/​10.​
1016/j.​physa.​2007.​10.​008 (2008).

	 8.	 Kulish, V. A non-field analytical method for solving energy transport equations. J. Heat Transf. 142(4), 042102. https://​doi.​org/​10.​
1115/1.​40463​01 (2020).

(24)p =
1

1− τ
−

2�
√
π

[

1

(1− τ)3/2
arctan

√

τ

1− τ
−

√
τ

1− τ

]

+ O

[

�
2

(1− τ)2

]

Table 1.   Dependence of the dimensionless pressure p versus dimensionless time τ in the case of the linear 
change of the gas volume.

Eq �

τ

0 0.2 0.4 0.6 0.8 0.9 0.95 0.98 1

24 0.1 1 1.24 1.62 2.32 4.11 8.63 – – –

16 0.1 1 1.23 1.60 2.23 3.60 5.94 6.94 8.44 9.86

24 0.01 1 1.25 1.66 2.48 4.91 9.66 18.86 44.87 –

16 0.01 1 1.25 1.70 2.47 4.81 9.13 16.57 31.02 89.62

https://doi.org/10.2514/1.22995
https://doi.org/10.1115/1.521474
https://doi.org/10.1115/1.1416688
https://doi.org/10.1115/1.1478062
https://doi.org/10.1115/1.1478062
https://doi.org/10.1038/s41598-020-76687-x
https://doi.org/10.1038/s41598-020-76687-x
https://doi.org/10.1016/j.physa.2007.06.023
https://doi.org/10.1016/j.physa.2007.06.023
https://doi.org/10.1016/j.physa.2007.10.008
https://doi.org/10.1016/j.physa.2007.10.008
https://doi.org/10.1115/1.4046301
https://doi.org/10.1115/1.4046301


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3421  | https://doi.org/10.1038/s41598-022-07430-x

www.nature.com/scientificreports/

	 9.	 Kulish, V. & Horák, V. A non-field analytical method for heat transfer problems through a moving boundary. Sci. Rep. 11, 18968. 
https://​doi.​org/​10.​1038/​s41598-​021-​98572-x (2021).

	10.	 Nesis, E. I. Boiling of Liquids (Nauka, 1973).
	11.	 Duc, L. D., Horák, V., Kulish, V. & Lukáč, T. On the possibility to develop an advanced non-equilibrium model of depressurisation 

in two-phase fluids. AIP Proc. 1798, 020047. https://​doi.​org/​10.​1063/1.​49726​39 (2017).
	12.	 Kulish, V., Horák, V., Duc, L. D. & Lukáč, T. Application of fractional calculus to modelling transient combustion of solid propel-

lants. AIP Proc. 1798, 020088. https://​doi.​org/​10.​1063/1.​49726​80 (2017).
	13.	 Oldham, K. B. & Spanier, J. The Fractional Calculus (Academic Press, 1974).

Acknowledgements
The authors would like to thank the Faculty of Military Technology, University of Defence, Brno for the financial 
support—Institutional Funding DZRO VAROPS.

Author contributions
V.K. wrote the main manuscript text and V.H. conducted all numerical computations and prepared Table 1.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-021-98572-x
https://doi.org/10.1063/1.4972639
https://doi.org/10.1063/1.4972680
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A non-field analytical method for gas dissolution under forced compression
	Problem formulation
	Solution procedure
	Asymptotic solutions for the two limiting cases of compression
	Some examples
	General discussion
	References
	Acknowledgements


