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TRPA1s act as chemosensors 
but not as cold sensors 
or mechanosensors to trigger 
the swallowing reflex in rats
Mohammad Zakir Hossain1,3*, Hiroshi Ando2,3, Shumpei Unno1 & Junichi Kitagawa1*

We examined the role of TRPA1s in triggering the swallowing reflex. TRPA1s predominantly localized 
on thin nerve fibers and fibroblast-like cells in swallowing-related regions and on small to medium-
sized superior laryngeal nerve-afferents in the nodose–petrosal–jugular ganglionic complex. Topical 
application of a TRPA1 agonist, allyl isothiocyanate (AITC), dose-dependently triggered swallowing 
reflexes. Prior topical application of a TRPA1 antagonist significantly attenuated the AITC-induced 
reflexes. Application of cold AITC (4 °C) very briefly reduced the on-site temperature to < 17 °C 
(temperature at which TRPA1s can be activated), but had no effect on triggering of the reflex. By 
contrast, reducing the on-site temperature to < 17 °C for a longer time by continuous flow of cold 
AITC or by application of iced AITC paradoxically delayed/prevented the triggering of AITC-induced 
reflexes. Prior application of the TRPA1 antagonist had no effect on the threshold for the punctate 
mechanical stimuli-induced reflex or the number of low-force or high-force continuous mechanical 
pressure stimuli-induced reflexes. TRPA1s are functional and act as chemosensors, but not as cold 
sensors or mechanosensors, for triggering of the swallowing reflex. A brief cold stimulus has no effect 
on triggering of the reflex. However, a longer cold stimulus delays/prevents triggering of the reflex 
because of cold anesthesia.

The sensory inputs from the pharyngeal and laryngeal regions play an important role to activate the swallowing 
central pattern generator (sCPG) located in the brainstem in triggering the swallowing  reflex1–4. The pharyngeal 
and associated regions are mainly supplied by a nerve plexus formed by the pharyngeal branches of the glos-
sopharyngeal (IX-ph) and vagus (X-ph)  nerves1,5,6. The laryngopharyngeal and associated laryngeal regions are 
mainly supplied by superior laryngeal nerve (SLN), a branch of the vagus  nerve7,8. The cell bodies of the glos-
sopharyngeal and vagal nerve afferents supplying the swallowing-related regions are located in the nodose–pet-
rosal–jugular ganglionic complex (NPJc)1–4. The laryngeal and associated esophageal regions are also supplied 
by spinal  nerves9. However, the sensory inputs traveling though the spinal nerves are not involved in triggering 
the swallowing reflex. They are believed to be involved in providing sensation from the esophageal  region9.

According to the previous studies, the SLN plays an important role in triggering the swallowing  reflex1,2. 
Mechanical stimulation of the SLN-innervated regions and electrical stimulation of the SLN can readily trigger 
the swallowing  reflex2,10. Furthermore, local anesthesia of the SLN in healthy individuals increases the incidence 
of penetration/aspiration of boli into the airway, the amount of pharyngeal residues of the boli, effortful swal-
lowing, and the illusory globus sensation in the throat during  swallowing11,12.

Transient receptor potential ankyrin 1 channels (TRPA1s) are  Ca2+-permeable non-selective cation chan-
nels widely expressed in sensory neurons and in non-neuronal  cells13. TRPA1s can act as chemosensors and are 
activated by a wide range of chemical compounds including natural agents such as allyl isothiocyanate (AITC; 
present in mustard oil, wasabi, and horseradish), cinnamaldehyde (present in cinnamon), and allicin (present 
in  garlic14–16. Previous animal study reported TRPA1 expression in the  NPJc17, while a human biopsy study 
reported TRPA1 expression in the pharyngeal and laryngeal  regions18. The presence of TRPA1s in the swallowing-
related regions and ganglia suggests potential roles in the swallowing reflex. TRPA1s were also reported to act 
as cold/noxious cold sensors (activated at temperatures < 17 °C)15,19 and as  mechanosensors20–22, although these 
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functions remain  controversial13,23. To the best of our knowledge, no studies have systematically investigated 
whether TRPA1s act as chemosensors, cold sensors, or mechanosensors in triggering of the swallowing reflex. 
Understanding the role of TRPA1s in triggering of the swallowing reflex is important for developing therapeutics 
to manage dysphagia. In this context, a recent clinical study reported that TRPA1 agonists improved the swal-
lowing response in patients with oropharyngeal dysphagia associated with aging, stroke, and neurodegenerative 
 diseases24.

At present, there are contrasting findings on the effects of cold thermal stimuli applied to the swallowing-
related regions, with reports of improvement of swallowing responses and of no  effects25–32. Importantly, however, 
those studies did not measure the on-site temperature changes in the swallowing-related regions after application 
of the cold thermal stimuli. The initial temperature reductions following application of cold stimuli may rapidly 
resolve because of the high mucosa vascularity in those regions. Thus, recording the on-site temperature changes 
after application of cold stimuli is essential when examining the effects of cold temperature on swallowing. In 
the present study, we examined the on-site temperature changes and effects on the swallowing reflex following 
application of cold stimuli in the laryngopharyngeal and associated laryngeal regions.

The aim of this study was to examine whether TRPA1s act as chemosensors, cold sensors, or mechanosensors 
to trigger the swallowing reflex and determine the effects of cold stimuli on triggering of this reflex.

Results
TRPA1s are predominantly localized on thin nerve fibers and fibroblast-like cells in the 
SLN-innervated swallowing-related regions. Photomicrographs of TRPA1 expression in different 
SLN-innervated swallowing-related regions are shown in Fig. 1. Protein gene product (PGP) 9.5 was used to 
detect nerve fibers and 4ʹ,6-diamidino-2-phenylindole (DAPI) was used for cell nucleus staining. TRPA1s were 
predominantly expressed on some thin nerve fibers and connective tissue cells (likely fibroblasts) present in the 
subepithelial connective tissue regions (Fig. 1). TRPA1s were also expressed on some chondrocyte-like cells in 
the epiglottic cartilage (not shown). No TRPA1 immunoreactivity (IR) was observed on sensory corpuscle-like 
nerve structures or on thick nerve fibers present in these regions (Supplemental Fig. 2).

TRPA1s are predominantly expressed on small- to medium-sized SLN-afferent neurons in the 
NPJc. Next, we traced SLN-afferent neurons in the NPJc using the retrograde tracer fluoro-gold (FG) (Fig. 2). 
TRPA1s were expressed on cell bodies located in the nodose (NG), petrosal (PG), and jugular (JG) ganglia 
(Fig. 2; Fig. 3A), including on approximately 50% of FG-stained SLN-afferent neurons (Fig. 3B). The majority 
of TRPA1s were expressed on small- to medium-sized SLN-afferent neurons (small neurons, 49.1%; medium 
neurons, 45.3%; Fig. 3C, D, E, and F; Table 1), with only limited expression on large SLN-afferent neurons (5.6%; 
Table 1).

Neurofilament (NF)-200 was used to differentiate between myelinated and unmyelinated neurons. In the 
whole NPJc, TRPA1s were expressed slightly more on unmyelinated neurons (NF-200 negative) than on myeli-
nated neurons (NF-200 positive) (Fig. 3B).

A chemical agonist of TRPA1s dose-dependently triggered swallowing reflexes. To examine 
whether activation of TRPA1s can trigger the swallowing reflex, we stimulated the swallowing-related regions 
with different concentrations of room temperature AITC (diluted in saline) delivered as a single bolus dose (50 
μL) over 1 s (Fig. 4). The regions were also stimulated with saline (vehicle for AITC), with only one or two swal-
lowing reflexes triggered immediately following saline delivery. Delivery of AITC triggered swallowing reflexes 
in a dose-dependent manner up to 2.5 mM AITC. The highest number of triggered reflexes (19.17 ± 1.08) was 
observed at 2.5 mM AITC (Fig. 4B). Increasing the AITC concentration to 10 mM significantly reduced the 
number of triggered reflexes (10.00 ± 2.16) compared with that at 2.5 mM. The number of swallowing reflexes at 
1 mM, 2.5 mM, 5 mM, and 10 mM AITC was significantly higher than that triggered by 0.25 mM and 0.5 mM 
AITC or saline (Fig. 4B). The intervals between the triggered reflexes were shortened by increasing the concen-
tration of AITC and the shortening of the intervals was most prominent within the early time period following 
the onset of AITC delivery. We calculated the average interval between the swallowing reflexes from the reflexes 
evoked within the 10-s time period following the onset of stimulating solution delivery. The intervals between 
the triggered reflexes at 2.5 mM (0.77 ± 0.03 s), 5 mM (1.18 ± 0.25 s), and 10 mM (2.63 ± 1.21 s) AITC were sig-
nificantly shorter than that at 0.5 mM AITC (6.66 ± 1.92 s) (Fig. 4C).

Prior topical application of the TRPA1 antagonist significantly reduced the triggering of 
AITC-induced swallowing reflexes. Prior topical application of the TRPA1 antagonist HC-030031 
(2 mM), but not the vehicle solution for the antagonist (dimethyl sulfoxide [DMSO] and Tween-80 dissolved 
in saline), significantly reduced the number of AITC (2.5 mM)-induced swallowing reflexes (19.17 ± 1.08 and 
6.83 ± 0.48 with and without prior application of the TRPA1 antagonist, respectively) (Fig. 4D). Additionally, 
the TRPA1 antagonist significantly increased the intervals between the triggered reflexes (0.77 ± 0.03  s and 
4.02 ± 0.93 s with and without prior application of the TRPA1 antagonist, respectively) (Fig. 4E).

Topical single bolus application of cold solutions briefly reduced the on-site temperature 
to levels at which TRPA1s can be activated, but had no effect on triggering of swallowing 
reflexes. We conducted a series of experiments to examine the effect of putative TRPA1 activation by cold 
stimuli on triggering of the swallowing reflex. First, we stimulated the swallowing-related regions with saline 
at cold (4  °C) and room (22–24  °C) temperatures (Fig.  5A). To determine the on-site temperature changes 
after saline delivery, we recorded the on-site temperature using a fine surface temperature sensor placed on the 
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Figure 1.  TRPA1s are localized on thin nerve fibers and fibroblast-like cells in the laryngopharyngeal and 
associated laryngeal regions. (A) Schematics of the laryngopharyngeal and associated laryngeal regions. 
Rectangles with arrows and letters show the regions where the photomicrographs were taken. Photomicrographs 
of TRPA1 localization in the (B) vestibular fold (Ve F), (C) epiglottic vallecula (EV), (D) epiglottis (EP), and 
(E) cervical esophagus (ES). White arrowheads indicate examples of TRPA1 expression on PGP 9.5-expressing 
nerve fibers. White arrows indicate examples of TRPA1 expression on fibroblast-like cells. Scale bars = 50 μm. 
LAR, larynx; T, tongue.
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mucosa of the regions in a separate cohort of rats (n = 7, see “Methods” section). The lower traces in Fig. 5A 
show the changes in on-site temperature following delivery of saline at cold and room temperatures. Following 
cold saline delivery, the on-site temperature decreased immediately (< 17  °C for 2.19 ± 0.13  s), but then rap-
idly increased toward pre-delivery levels (Fig. 5A). Despite this brief temperature reduction to levels at which 
TRPA1s can be activated, there was no change in the number of triggered swallowing reflexes compared with 
room temperature saline (Fig. 5A, C). Note that the on-site temperature did not fall to levels at which TRPA1s 
can be activated (< 17 °C) following delivery of room temperature saline.

Figure 2.  Photomicrographs of TRPA1 localization in the NPJc. TRPA1 expression in the NG, PG, and JG. 
White arrows indicate examples of cells positive for FG, TRPA1, and NF-200. White arrowheads indicate 
examples of cells positive for both FG and TRPA1, but negative for NF-200. Scale bars = 100 μm.
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Figure 3.  Distribution of TRPA1 localization in the NPJc. (A) Number of TRPA1-positive cells/section in the 
NG, PG, and JG. (B) Percentage of FG-stained, TRPA1-positive cells on myelinated (FG + /TRPA1 + /NF +) and 
unmyelinated (FG + /TRPA1 + /NF −) neurons. (C) Size (area) distribution of TRPA1-positive cells in the NG. 
(D) Size (area) distribution of TRPA1-positive cells in the PG. (E) Size (area) distribution of TRPA1-positive cells 
in the JG. (F) Size (area) distribution of TRPA1-positive cells in the whole NPJc. FG + , cells stained with FG; 
FG + /TRPA1 + , FG-stained cells immunopositive for TRPA1; FG + /TRPA1 − , FG-stained cells immunonegative 
for TRPA1; FG + /NF + , FG-stained cells immunopositive for NF-200; FG + /TRPA1 + /NF + , FG-stained cells 
immunopositive for TRPA1 and NF-200; FG + /TRPA1 + /NF − , FG-stained cells immunopositive for TRPA1 but 
not NF-200. n = 6. Data in (A) are presented as mean ± SEM. Circles in column graph (A) represent individual 
data points. IR cells were counted using ImageJ software. Cell counts were performed in the sections showing the 
highest number of TRPA1-IR cells. Three sections were used from each rat (one section/ganglion).
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Next, we applied different concentrations of cold AITC (4 °C) to examine the effect of putative activation 
of TRPA1s using a combination of cold thermal and chemical stimuli on triggering of the swallowing reflex. 
The on-site temperature changes following delivery of cold and room temperature AITC (Fig. 5B) were similar 
to those for delivery of cold and room temperature saline, respectively. Despite the brief reduction in the on-
site temperature to < 17 °C following cold AITC delivery (Fig. 5B), there were no differences in the number of 
reflexes triggered by different concentrations of cold AITC compared with those using room temperature AITC 
(Fig. 5C). Additionally, there were no differences in the reflex intervals between the cold and room temperature 
AITC at each concentration (Fig. 5D).

Increasing the time that the on-site temperature remained at levels at which TRPA1s can be 
activated reduced the frequency of triggering of AITC-induced swallowing reflexes. In the two 
previous experiments, the on-site temperature was reduced < 17 °C very briefly (Fig. 5A and B) following single 
bolus delivery of cold saline/AITC (50 μL over 1 s). To increase the time that the on-site temperature was < 17 °C, 
we delivered 250 μL of cold (4 °C) saline/AITC (2.5 mM) into the swallowing-related regions over 4 s (Fig. 6). 
We also examined triggering of the swallowing reflex by delivery of 250 μL of room temperature saline/AITC 
(2.5 mM) (Fig. 6).

Delivery of cold solutions continuously for 4 s maintained the on-site temperature < 17 °C for a longer time 
(4.88 ± 0.27 s) than that for the 1-s delivery (single bolus delivery) (Fig. 6A and B). By contrast, delivery of room 
temperature solutions did not reduce the on-site temperature < 17 °C (Fig. 6A and B). We then calculated the 
frequency of the triggered reflexes/second over the time periods of 1–5 s and 5–20 s following the onset of solu-
tion delivery. The time periods were chosen based on the reduction of on-site temperature following cold (4 °C) 
solution delivery. The on-site temperature was ≤ 17 °C during the 1–5-s time period, but was ≥ 17 °C during the 
5–20-s time period. After initiating delivery of 250 μL of cold or room temperature saline over 4 s, there was an 
increase in the number of triggered reflexes (Fig. 6A) compared with that for single bolus delivery of 50 μL of 
the cold or room temperature solutions (Fig. 5A). In the majority of animals, swallowing reflexes were triggered 
within 5 s after delivery of cold or room temperature saline (Fig. 6A and C). Two animals showed an additional 
swallowing reflex triggered after 5 s following cold saline delivery.

There were no differences in the total number of triggered reflexes (over 20 s) between delivery of cold or 
room temperature saline (3.40 ± 0.51 vs 3.00 ± 0.45, respectively). Additionally, there were no differences in the 
frequency of triggered reflexes/second between the delivery of cold and room temperature saline (Fig. 6C). 
By contrast, the total number of triggered reflexes (over 20 s) was significantly reduced following cold AITC 
(2.5 mM) delivery compared with that for room temperature AITC (2.5 mM) (16.60 ± 0.93 vs 20.80 ± 1.24, respec-
tively). The frequency of triggered reflexes/second during the 1–5-s time period was significantly lower for cold 
AITC (when the on-site temperature was ≤ 17 °C) compared with that for room temperature AITC (when the 
on-site temperature was > 17 °C) (Fig. 6D). Additionally, upon cold AITC delivery the frequency of the triggered 
swallowing reflexes/second was significantly lowered during the 1–5-s time period (when the on-site temperature 
was ≤ 17 °C) compared with that for the 5–20-s time period (when the on-site temperature was ≥ 17 °C) (Fig. 6D).

Prolong reduction of on-site temperature to levels at which TRPA1s can be activated pre-
vented the triggering of AITC-induced swallowing reflexes. In these experiments, we placed iced 
saline/AITC (2.5 mM; 50 μL) into the swallowing-related regions. Gradual melting of the iced solutions kept 
the on-site temperature < 17 °C for prolonged times (Fig. 7A and B), which allowed us to examine the effect of 
longer cold stimulation on triggering of the swallowing reflex (Fig. 7). We compared the effect of placement of 
the iced solutions (50 μL) on triggering of the swallowing reflex with that for delivery of cold (4 °C) solutions (50 
μL). Despite a marked difference in the on-site temperatures, there were no differences in the number of trig-
gered swallowing reflexes between iced and cold (4 °C) saline (1.20 ± 0.20 vs 1.60 ± 0.40, respectively; Fig. 7C). 
By contrast, the number of swallowing reflexes was markedly reduced (4.4 ± 0.51 vs 17.80 ± 0.73, respectively) 

Table 1.  Cell size distribution of FG stained TRPA1-IR neurons in the NPJc. All data obtained from 18 
Sects. (1 section/ganglion/rat). n = 6. The number within each parenthesis indicates the raw number of 
analyzed neurons.

Small (0–600 μm2) Medium (600–1200 μm2) Large (> 1200 μm2)

NG 35.3% (42/119) 58.0% (69/119) 6.7% (8/119)

PG 67.3% (35/52) 38.9% (15/52) 3.8% (2/52)

JG 65.1% (28/43) 30.2% (13/43) 4.7% (2/43)

NPJc 49.1% (105/214) 45.3% (97/214) 5.6% (12/214)

Average area of FG stained TRPA1-IR cell bodies (mean ± SEM)

Small (0–600 μm2) Medium (600–1200 μm2) Large (> 1200 μm2)

NG 417.3 ± 104.15 (42) 826.1 ± 169.92 (69) 1351.1 ± 39.17 (8)

PG 344.7 ± 143.53 (35) 808.1 ± 142.81 (15) 1385.0 ± 171.38 (2)

JG 353.0 ± 140.86 (28) 764.2 ± 173.96 (13) 1643.4 ± 46.90 (2)

NPJc 376.0 ± 132.34 (105) 815.0 ± 166.29 (97) 1405.4 ± 47.59 (12)
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and the intervals between the triggered reflexes significantly increased (2.34 ± 0.39 s vs 0.89 ± 0.03 s, respectively) 
following placement of iced AITC compared with delivery of cold AITC (Fig. 7C and D).

Prior topical application of the TRPA1 antagonist at a concentration that significantly reduced 
the triggering of AITC-induced swallowing reflexes had no effect on the threshold for mechan-
ical stimuli-induced swallowing reflexes. To examine the contribution of TRPA1s in the mechanical 
stimuli-induced swallowing reflex, we performed several experiments using the TRPA1 antagonist HC-030031 
(which significantly reduced triggering of the AITC-induced reflexes). First, we examined the effect of prior 
topical application of the TRPA1 antagonist on the threshold to trigger a swallowing reflex by punctate mechani-
cal stimuli. This threshold was measured using von-Frey filaments in three sites within the SLN-innervated 
swallowing-related regions—the right vestibular fold, left vestibular fold, and the midline area between these 
folds. The threshold to trigger a swallowing reflex by punctate mechanical stimuli in the vestibular folds (both 
right and left) was very low (Fig. 8). To examine the effect of blocking TRPA1s on the threshold to evoke a swal-
lowing reflex, the TRPA1 antagonist was applied topically to the swallowing-related region at 10 min before 
the mechanical stimuli. An antagonist concentration (2 mM) that significantly reduced the number of AITC 
induced-swallowing reflexes (Fig. 4) had no effect on the threshold to trigger a swallowing reflex at any of the 
measuring sites compared with the no antagonist and antagonist vehicle groups (Fig. 8). Similarly, increasing 
the concentration of the antagonist to 5 mM (more than double the concentration that reduced AITC induced-
swallowing reflexes) had no effect on the threshold to evoke a swallowing reflex by punctate mechanical stimuli 
(Fig. 8).

Prior topical application of the TRPA1 antagonist had no effect on the triggering of low-force 
or high-force mechanical pressure stimuli-induced swallowing reflexes. Next, we applied con-
tinuous mechanical pressure stimuli using von-Frey filaments in the vestibular folds (right/left) for 20 s to evoke 
a mechanical pressure stimuli-induced swallowing reflex. To examine the role of TRPA1s in triggering of the 
swallowing reflex by continuous low-force mechanical pressure stimuli, a continuous threshold-level force was 
applied to the right/left vestibular fold for 20 s and the number of triggered reflexes was compared between with 
and without prior topical application of the TRPA1 antagonist (5  mM; more than double the concentration 
that reduced the AITC induced-swallowing reflexes) (Fig. 9). Application of continuous low-force mechanical 
pressure stimuli triggered a few swallowing reflexes (Fig. 9A). There were no differences in the number of low-
force mechanical pressure stimuli-induced reflexes between with and without prior application of the TRPA1 
antagonist (Fig. 9A and C).

To activate high-threshold mechanoreceptors and to assess the contribution of TRPA1s in triggering the swal-
lowing reflex by continuous high-force mechanical pressure stimuli, a 1-g von-Frey filament force (approximately 
125–250 times higher than the threshold-level force required to trigger a swallowing reflex) was applied to the 
right/left vestibular folds for 20 s and the number of triggered swallowing reflexes with and without prior appli-
cation of the TRPA1 antagonist (5 mM) were counted. The continuous high-force mechanical pressure stimuli 
in the vestibular folds triggered numerous swallowing reflexes (Fig. 9B). However, there were no differences in 
the number of reflexes between with and without prior application of the TRPA1 antagonist (Fig. 9B and C).

Prior topical application of the TRPA1 antagonist had no effect on the triggering of swallow-
ing reflexes induced by delivery of saline continuously for 4 s. We also examined the effect of the 
TRPA1 antagonist on the number and interval of the swallowing reflexes induced by delivery of saline (250 μL 
at room temperature) continuously for 4 s to assess the contribution of TRPA1s in saline-induced swallowing 
reflexes. There were no differences in the number and interval of triggered reflexes between with and without 
prior application of the TRPA1 antagonist (Supplemental Fig. 3).

Prior topical application of local anesthetic or transection of the bilateral SLNs completely 
abolished triggering of the swallowing reflexes by the various stimuli. We applied a local anes-
thetic (2% lidocaine) into the swallowing-related regions to confirm that triggering of the swallowing reflexes 
by the various stimuli was caused by excitation of the afferent nerves that carry sensory information from these 
regions to the sCPG located in the brainstem. Prior (10 min) topical application of lidocaine completely pre-
vented triggering of the swallowing reflexes with various stimuli applied to the SLN-innervated swallowing-
related regions (Supplemental Fig. 4).

We also transected the bilateral SLNs to confirm that triggering of the swallowing reflexes by the various 
stimuli involved the SLN-afferents but not the spinal nerve afferents. In all previous experimental studies (except 
during recording of the on-site temperature), we recorded the swallowing reflexes with intact bilateral SLNs, 
but with transection of the other nerves (bilateral IX-ph, X-ph, and lingual branches of the glossopharyngeal 
[IX-li] nerves, and the recurrent laryngeal nerves [RLN]) that may carry sensory information to the sCPG to 
trigger the swallowing reflexes. In the present experiments, the bilateral SLNs were also transected. As observed 
for prior topical application of a local anesthetic, no swallowing reflexes were triggered by various stimuli after 
transection of the SLNs (Supplemental Fig. 4).

Discussion
Our findings of TRPA1 expression on thin nerve fibers and fibroblast-like cells located in the subepithelial areas 
of the SLN-innervated swallowing-related regions are supported by previous findings in human biopsy tissues 
taken from the pharyngeal and laryngeal  regions18. In the NPJc, TRPA1s were predominantly expressed on small- 
to medium-sized SLN-afferent neurons of both myelinated (likely Aδ-type) and unmyelinated (likely C-type) 
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neurons. A small number of large-sized (likely Aβ-type) neurons also expressed TRPA1s. These findings are in 
agreement with a study that retrogradely traced afferent neurons from the vagus  nerve17.

Chemical activation of TRPA1s facilitated triggering of the swallowing reflex. Direct activation of TRPA1s 
located on nerve fibers by chemical agonists and resulting nerve excitation may activate the sCPG in the brain-
stem to trigger the swallowing reflex. TRPA1s expressed on fibroblasts-like cells may also contribute to trigger-
ing of the swallowing reflex. Expression of TRPA1s on non-neuronal cells (e.g., human lung fibroblast cells and 
odontoblasts) was  reported33–38. Activation of TRPA1s on fibroblasts by chemical agonists can also cause release 
of various neurostimulatory mediators including substance  P39 and adenosine  triphosphate34, which can act on 
their respective receptors on nerve fibers and indirectly excite sensory nerves to trigger swallowing reflexes.

The laryngopharyngeal and associated laryngeal regions are richly  innervated40,41. Previous studies, including 
those from our group, have reported that chemical stimulation of these regions can modulate SLN activity and 
trigger swallowing reflexes, which suggests an important role for  chemosensors4,42–46. In support, several studies 
including randomized clinical trials in patients with dysphagia have reported improvements in the efficacy, safety, 
and physiology of swallowing by chemical stimulation in the peripheral swallowing-related  regions4,24,47–53. Fur-
thermore, a clinical trial of patients with dysphagia reported reduced penetration of bolus particles in the airway 
when TRPA1 agonists (cinnamaldehyde and zinc) were added to the  bolus24. Other clinical studies reported facili-
tation of swallowing function by piperine (a dual activator of TRPA1s and TRPV1s) in dysphagia  patients51,54. 
Therefore, targeting TRPA1s in the peripheral swallowing-related regions may be a promising pharmacological 
treatment strategy for the management of oropharyngeal dysphagia. Recently, pharmacological therapies using 
TRP channel agonists have been recommended in guideline for the treatment of neurogenic dysphagia as a 
supplement to behavioral swallowing interventions particularly in patients with a delayed swallow  response55,56.

In the present study, we also investigated whether TRPA1s in the SLN-innervated regions were activated by 
cold stimuli to trigger the swallowing reflex. We stimulated these regions with cold saline or AITC and compared 
the number and intervals of triggered reflexes with those triggered by the same solutions at room temperature. 
Delivery of saline (at both cold and room temperatures) as a single bolus triggered only one or two swallow-
ing reflexes immediately following delivery, which may be attributed to mechanical stimuli exerted by solution 
delivery. By contrast, delivery of AITC (at both cold and room temperatures) as a single bolus dose-dependently 
triggered swallowing reflexes up to 2.5 mM AITC. The initial one or two reflexes observed immediately after 
AITC delivery may be attributed to mechanical stimuli exerted by the solution delivery. Nevertheless, the later 
reflexes are likely related to the chemical activation of TRPA1s by AITC. Interestingly, there were no differences 
in the number or intervals of AITC-induced reflexes between the cold and room temperature solutions, which 
suggests that application of the cold stimulus to the swallowing related-regions had no additional effect on trig-
gering of the swallowing reflex. The delivery of cold (4 °C) solutions as a single bolus only very briefly reduced 
the on-site temperature < 17 °C (the temperature at which TRPA1s can be activated), which may explain the lack 
of effect on triggering of the swallowing reflexes.

To achieve a relatively longer reduction in on-site temperature < 17 °C, cold solutions (4 °C) were delivered 
continuously for 4 s. However, this increased the time for mechanical stimulation caused by solution delivery, 
with a resulting increase in the number of triggered reflexes immediately following onset of solution delivery 
compared with solution delivery as a single bolus; this was particularly evident in the saline group.

The frequency of reflexes/second following cold AITC delivery was significantly reduced during the time 
period when the on-site temperature was ≤ 17 °C compared with that when the temperature was ≥ 17 °C. How-
ever, there was no difference in the frequency of triggered reflexes/second between delivery of cold and room 
temperature saline, despite the marked difference in on-site temperature. This may relate to the initial mechanical 
stimuli exerted in the regions by the continuous solution delivery. Thus, these mechanical stimuli may activate 
the sCPG before starting the action of the cold temperature, resulting in triggering of a similar number of reflexes 
between delivery of cold and room temperature saline.

We observed that the triggering of chemical stimuli-induced swallowing reflexes was reduced rather than 
facilitated when the on-site temperature was maintained at levels for a relatively long time at which TRPA1s can 
be activated. The findings indicate development of cold anesthesia in the regions following prolonged application 
of cold stimuli. Collectively, our data suggest that TRPA1s in SLN-innervated regions may not function as cold 

Figure 4.  Topical application of AITC, a chemical agonist of TRPA1s triggered the swallowing reflexes which 
were significantly attenuated by prior topical application of a TRPA1 antagonist. (A) Swallowing reflexes 
indicated by high amplitude EMG activity in the mylohyoid muscle triggered by saline and AITC (2.5 mM) 
(with and without prior topical application of a TRPA1 antagonist). Black arrowheads indicate the onset of 
stimulating solution delivery. (B) Comparison of the number of swallowing reflexes triggered by saline and 
different AITC concentrations. (C) Comparison of the intervals between the swallowing reflexes triggered by 
different AITC concentrations. (D) Comparison of the numbers of swallowing reflexes triggered by AITC with 
and without prior application of the TRPA1 antagonist or vehicle. (E) Comparison of the intervals between the 
swallowing reflexes triggered by AITC with and without prior application of the TRPA1 antagonist or vehicle. 
n = 6. The number of triggered swallowing reflexes counted for 20 s following application of the stimulating 
solutions and the intervals between the swallowing reflexes calculated from the reflexes evoked within the 10-s 
time period following the onset of stimulating solution delivery. Data are presented as mean ± SEM. Circles in 
the column graphs represent individual data points. In (C), there are only two individual data points for AITC 
0.5 mM because only two rats showed triggering of more than one swallowing reflex (within 10-s time period) 
at this concentration (at least two swallowing reflexes are required to measure the interval between the reflexes). 
*P < .05 by one-way repeated measures ANOVA followed by Tukey’s test or Kruskal–Wallis one-way ANOVA on 
ranks followed by Tukey’s test. S, seconds.
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sensors to trigger the swallowing reflex, but rather that a prolonged reduction in on-site temperature, to levels 
at which TRPA1s can be activated, induces local cold anesthesia.

Previous studies examining the effect of cold stimuli on the swallowing responses have also shown variable 
and inconclusive  results25–32. In the majority of those studies, the cold stimulus was induced by touching the 
mucosa of a swallowing-related region with a pre-cooled metal probe, which results in a combination of cold 
thermal and mechanical  stimuli25–29. Additionally, changes in on-site temperature after the stimuli were not 
recorded. Indeed, a reduction in on-site temperature by touching of a pre-cooled probe can be rapidly reversed 
because of the high vascularity of the mucosa. Furthermore, the temperature of the pre-cooled probe may 
increase before touching the mucosa because of exposure to room temperature and the warm oral cavity/throat 
 regions57. Finally, mechanical stimuli exerted by touching the mucosa can facilitate the swallowing  response29. 
Our experiments revealed that the on-site temperature rapidly increased toward baseline levels after delivery of 
the cold solutions as a single bolus in the swallowing-related regions, with this very brief cold stimulus having 
no major effect on triggering of the swallowing reflex. By contrast, a prolong reduction in the on-site tempera-
ture by constant application of cold solutions reduced/prevented triggering of the swallowing reflex because of 
development of cold anesthesia.

We also examined the role of TRPA1s in mechanical-stimuli induced swallowing reflex. Prior topical applica-
tion of a TRPA1 antagonist at a concentration (2 mM) that significantly reduced the number of AITC-induced 
swallowing reflexes, or at a concentration more than twice as high (5 mM), did not change the threshold of the 
punctate mechanical-stimuli induced swallowing reflex. Additionally, there was no effect of the TRPA1 antagonist 
on triggering of the swallowing reflexes by continuous low-force mechanical pressure stimuli on a vestibular fold. 
Furthermore, the antagonist had no effect on triggering of the swallowing reflexes by continuous saline delivery 
for 4 s that exerted mechanical stimuli on the delivery site. These findings suggest that TRPA1s present in the 
SLN-innervated regions may not act as low-threshold mechanoreceptors to trigger swallowing reflexes. This is 
supported by our observation of no TRPA1-IR on the sensory corpuscle-like nerve structures/thick nerve fibers 
present in the SLN-innervated regions, which can be activated by low-force mechanical stimuli. Additionally, 
TRPA1-IR was observed on a very small percentage of large-sized SLN-afferent neurons in the NPJc. However, 
the thin nerve fibers present in the SLN-innervated regions and the small- to medium-sized neurons in the 
NPJc, which can be sensitive to high-force mechanical stimuli, showed robust TRPA1-IR. Interestingly, there 
was no effect of TRPA1 blockade on triggering of the swallowing reflex by continuous high-force mechanical 
pressure stimuli, despite using a higher antagonist concentration than that which reduced triggering of the 
AITC-induced swallowing reflexes. These findings suggest that chemical stimuli, but not mechanical stimuli, 
can activate TRPA1s present in small- to medium-sized SLN-afferent neurons.

Collectively, our findings indicate that TRPA1s present in the SLN-innervated regions do not act as mecha-
nosensors to trigger the swallowing reflex. Thus, the molecular mechanisms underlying the mechanical stimuli-
induced swallowing reflex remain unclear. Speculatively, other mechanosensitive receptors (e.g., TRPV4s, piezo 
channels, and epithelial sodium channels) may be involved. Indeed, epithelial sodium channels were recently 
reported to play a role in initiation of low-force punctate mechanical stimuli-induced swallowing  reflexes58. 
Further studies are required to fully elucidate the transduction mechanism of the mechanical stimuli-induced 
swallowing reflex.

We observed two-third reduction of the number of AITC-induced swallowing reflexes following topical 
application of the TRPA1 antagonist (2 mM), suggesting blocking of the majority of TRPA1 channels by the 
antagonist. However, the AITC-induced swallowing reflexes were not completely abolished following application 
of the antagonist, suggesting possible activation of other receptors along with TRPA1s by the AITC.

We have conducted this study in rats but not in mice because in our experience, conducting swallowing related 
research in mice is difficult because of their size. In our experiences, surgical preparations, electrophysiologi-
cal recordings, instrumentations are difficult in mice. Many previous swallowing related researches in animals 

Figure 5.  Topical application of cold solutions as a single bolus very briefly reduced the on-site temperature 
to levels at which TRPA1s can be activated, but had no effect on triggering of the swallowing reflex because of 
the rapid increase in the on-site temperature. (A) The triggered swallowing reflexes and changes in the on-site 
temperature following delivery (50 μL, single bolus) of saline at cold (4 °C) and room (22–24 °C) temperatures. 
Black arrowheads indicate the onset of stimulating solution delivery. Data (mean ± SEM) for the on-site 
temperature are from a separate cohort of seven rats not used for counting the swallowing reflexes. (B) The 
triggered swallowing reflexes and changes in the on-site temperature following delivery (50 μL, single bolus) 
of AITC at cold (4 °C) and room (22–24 °C) temperatures. Black arrowheads indicate the onset of stimulating 
solution delivery. Data (mean ± SEM) for the on-site temperature are from a separate cohort of seven rats not 
used for counting the swallowing reflexes. (C) The number of swallowing reflexes triggered by delivery (50 μL, 
single bolus) of saline and different AITC concentrations at cold (4 °C) and room (22–24 °C) temperatures. 
(D) The intervals between the swallowing reflexes triggered by delivery (50 μL, single bolus) of saline and 
different AITC concentrations at cold (4 °C) and room (22–24 °C) temperatures. n = 6. The number of triggered 
swallowing reflexes counted for 20 s following application of the stimulating solutions and the intervals between 
the swallowing reflexes calculated from the reflexes evoked within the 10-s time period following the onset 
of stimulating solution delivery. Data are presented as mean ± SEM. Circles in the column graphs represent 
individual data points. In (D), there are only two individual data points for AITC 0.5 mM because only two rats 
showed triggering of more than one swallowing reflex (within 10-s time period) at this concentration (at least 
two swallowing reflexes are required to measure the interval between the reflexes). There were no differences 
between the solutions at cold and room temperatures (paired t-test or Wilcoxon’s signed rank test).
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Figure 6.  Continuous topical application of cold solutions increased the time that the on-site temperature 
was reduced to levels at which TRPA1s can be activated, which paradoxically reduced the triggering of AITC-
induced swallowing reflexes. (A) The triggered swallowing reflexes and changes in the on-site temperature 
with continuous delivery of saline (250 μL over 4 s) at cold (4 °C) and room (22–24 °C) temperatures. Black 
arrowheads indicate the onset of stimulating solution delivery. Data (mean ± SEM) for the on-site temperature 
are from a separate cohort of seven rats not used for counting the swallowing reflexes. (B) The triggered 
swallowing reflexes and changes in the on-site temperature with continuous delivery of AITC (250 μL over 4 s) 
at cold (4 °C) and room (22–24 °C) temperatures. Black arrowheads indicate the onset of stimulating solution 
delivery. Data (mean ± SEM) for the on-site temperature are from a separate cohort of seven rats not used for 
counting the swallowing reflexes. (C) The frequency of swallowing reflexes/second during the time period of 
1–5 s triggered by continuous saline delivery (250 μL over 4 s) at cold (4 °C) and room (22–24 °C) temperatures. 
There were no differences between the solutions at cold and room temperatures (Wilcoxon’s signed rank test). 
(D) The frequency of swallowing reflexes/second during the time periods of 1–5 s and 5–20 s triggered by 
continuous AITC delivery (250 μL over 4 s) at cold (4 °C) and room (22–24 °C) temperatures. n = 5. Data are 
presented as mean ± SEM. Circles in the column graphs represent individual data points. *P < .05 by one-way 
repeated measures ANOVA followed by Tukey’s test.
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(including our groups) have been conducted in rats. Conducting swallowing research in rats has an advantage 
of relating the findings of research with previously published findings. However, a limitation of our study is that 
we have not used TRPA1 knockout rats. Recent progress in developing knockout animals enables to develop 
knockout rats although making knockout rats may be expensive, time consuming, and needs validation.

In conclusion, our findings suggest that TRPA1s present in the swallowing-related regions act as chemosen-
sors, but not as cold sensors or mechanosensors, to trigger the swallowing reflex. This chemosensor function of 
TRPA1s may provide an important clinical target for development of pharmacological therapeutics for manage-
ment of oropharyngeal dysphagia.

Methods
Animals and ethical approval. Seventy-four male Sprague–Dawley rats weighing approximately 200–
350 g were used in this study (immunohistochemistry, n = 10; swallowing reflex, n = 57; recording of on-site tem-
perature, n = 7). Animals were housed in a room with a 12-h light/12-h dark cycle. Food and water were provided 
ad libitum. The Intramural Animal Care and Veterinary Science Committee of Matsumoto Dental University 
approved the protocols (Ref. No. 277, 8 March 2018 and Ref. No. 394, 26 January 2021) and all animals received 
humane care in accordance with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines 
developed by the National Centre for the Replacement, Refinement, and Reduction of Animals in Research. 
All methods were carried out in accordance with relevant guidelines and regulations. Every effort was made to 
minimize animal suffering and to reduce the number of animals used.

Immunohistochemistry. For immunohistochemistry of the SLN-innervated swallowing-related regions, 
rats were deeply anesthetized and perfused with saline followed by 4% paraformaldehyde. The laryngopharyn-
geal and associated laryngeal regions were removed and immersed in the same fixative for 24 h at 4 °C. Sections 
were cut in the sagittal plane (thickness, 50 μm) using a cryostat. Sections were incubated with rabbit poly-
clonal anti-TRPA1 (1:100; Cat# ACC-037; RRID# AB_2040232; Alomone Labs, Jerusalem, Israel) and mouse 
monoclonal anti-PGP 9.5 (1:200; Cat# ab8189; RRID# AB_306343; Abcam, Cambridge, UK) antibodies over-
night at room temperature, followed by addition of appropriate secondary antibodies (Alexa Fluor 488; Cat# 
A-11029; RRID#AB_2534088; and Alexa Fluor 594; Cat# A-11037; RRID# AB_2534095; Thermo Fisher Sci-
entific, Waltham, MA) for 2 h at room temperature. Sections were then coverslipped using aqueous mounting 
medium (PermaFluor; Thermo Fisher Scientific) and examined by fluorescence microscopy (BZ-X700; Keyence 
Corp., Osaka, Japan).

For NPJc immunohistochemistry, we retrogradely traced the SLN-afferent neurons in the NPJc using the 
retrograde tracer  FG45,46. Under sodium pentobarbital anesthesia (50 mg/kg, administered intraperitoneally), 
the SLN on the right side was isolated after a midline incision in the ventral surface of the neck. The SLN was 
cut near the trachea and the cut end was inserted into a tube filled with 4% FG. After recovery for 5–7 days, rats 
were deeply anesthetized and perfused with saline followed by 4%  paraformaldehyde45,46. The NPJcs were care-
fully removed and fixed with the same fixative. After preparation, the NPJcs were sectioned (thickness, 16 μm), 
incubated with rabbit polyclonal anti-TRPA1 (1:2000; Cat# ab58844; RRID# AB_945957; Abcam, Cambridge, 
UK) and mouse monoclonal anti-NF-200 antibody (1:2000; Cat# N0142; RRID# AB_477257; Sigma-Aldrich, St. 
Louis, MO) overnight at room temperature, then incubated with appropriate secondary antibodies (Alexa Fluor 
488 and 594). The sections were coverslipped and examined using fluorescence microscopy, as described above. 
IR cells in the region of interest were counted using ImageJ software (National Institutes of Health, Bethesda, 
MD). Cell counts were performed in the sections showing the highest number of TRPA1-IR cells. Three sections 
were used from each rat (one section/ganglion). The cell body area of neurons expressing TRPA1 and FG was 
measured using ImageJ software. A cell area > 1200 μm2 was considered large, that 600–1200 μm2 was considered 
medium, and that < 600 μm2 was considered small (Table 1)59,60.

Sections of the trigeminal ganglions (TG) were used as positive controls for the anti-TRPA1 antibodies used 
in this study (Supplemental Fig. 1). Previous studies have reported the localization of TRPA1s in TG  neurons61,62. 
Universal negative control reagent (Cat# ADI-950-231-0025; Enzo Life Sciences, Inc., Farmingdale, NY)63 was 
used as a primary antibody negative control (Supplemental Fig. 1). Previous studies have used the same anti-
TRPA1 antibody to detect  TRPA1s61,62,64,65.

Surgical preparation for electrophysiological studies. Rats were anesthetized with urethane (1.0–
1.5 g/kg, administered intraperitoneally) and then placed in the supine  position45,46. The level of anesthesia was 
monitored during the experiment and supplementary urethane doses were administered if required. A midline 
incision was made in the ventral surface of the neck and the trachea was isolated from the surrounding tissues. 
A cannula was inserted into the trachea toward the lungs to maintain respiration. The head of the rat was raised 
using a pillow made of cotton rolls. A small portion of the trachea (ventral portion only), just below the cricoid 
cartilage, was surgically removed to create a window to enable stimulating solution  delivery45,46. This window 
also reduced the pressure produced in the laryngopharyngeal and associated laryngeal regions during stimulat-
ing solution  delivery45,46.

Because the SLNs were the focus of this study, we transected the other nerves involved in triggering of the 
swallowing reflex. Specifically, the IX-ph, X-ph, and IX-li nerves, and the RLN of the vagus nerve, were transected 
bilaterally prior to recording the swallowing  reflexes45,46. The IX-ph, X-ph, and IX-li branches were exposed by 
retraction of the posterior belly of the digastric muscles and the horn of the hyoid bone. The RLNs were exposed 
from either side of the trachea. These procedures provided a condition whereby the bilateral SLNs were intact, 
while the bilateral RLN, IX-ph, X-ph, and IX-li nerves were transected, during recording of the swallowing reflex 
following delivery of the different stimulating solutions.
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Recording of the swallowing reflex. During triggering of the swallowing reflex, many infra- and supra-
hyoid muscles are activated, including the mylohyoid muscle running from the mandible to the hyoid bone. 
We identified and counted the number of triggered swallowing reflexes using high amplitude electromyogram 
(EMG) activity in the mylohyoid muscle and the associated laryngeal movements during triggering of the swal-
lowing  reflex45,46. Each event that contained high amplitude firing in the EMG signal corresponded with one 
swallowing  reflex45,46. Using EMG-signal from the muscles activated during triggering of swallowing reflex is an 
established method to identify/detect swallowing in scientific  studies1,2,6,8,55,66,67. Swallowing reflexes were iden-
tified by two examiners. The EMG-signal was connected with a speaker, so that the triggering of the swallow-
ing reflexes could be easily understandable by the examiners. Bipolar urethane-coated stainless-steel fine wire 
electrodes (Unique Medical Co., Ltd., Tokyo, Japan) were implanted into the mylohyoid muscle to record EMG 
activity during swallowing. EMG signals were amplified and digitized (Power 1401 data acquisition system; 
Cambridge Electronic Design Ltd., Cambridge, UK), and then stored for later analysis.

Stimulating solutions. The stimulating solutions were saline (0.9% NaCl, Otsuka Pharmaceutical Co. Ltd. 
Tokyo, Japan) and AITC (Wako Pure Chemical Industries Ltd. Osaka, Japan; 0.25 mM, 0.5 mM, 1 mM, 2.5 mM, 
5  mM, and 10  mM diluted in saline). The pH and osmolarity of the different concentrations of AITC were 
similar or very near to the saline (Supplemental Table 1). The pH of the solutions was measured using a pH 
meter (HM-30S, TOA Electronic Ltd. Tokyo, Japan) and the osmolarity of the solutions was measured using 
a micro-osmometer (Model-210, Fiske Associates, Massachusetts, USA). In pilot studies, the concentrations 
of AITC were determined as those that evoked a considerable number of swallowing reflexes. The stimulating 
solutions were delivered topically into the laryngopharyngeal and associated laryngeal regions using a syringe 
and a 21-gauge needle with a blunted tip. Before solution delivery, any mucous present in the target regions was 
removed via aspiration. During stimulating solution delivery, the blunted needle tip was placed into the window 
(surgically prepared just below the cricoid cartilage) and directed toward the laryngopharyngeal and associated 
laryngeal regions. We then recorded the swallowing reflexes for 20 s following stimulating solution delivery. The 
time interval between delivery of the various stimulating solutions was 2–3 min. During this time period, the 
delivered solutions were aspirated out using saline, which was repeated several times to thoroughly wash the 
region. Pointed pieces of tissue paper were inserted through the window to absorb the remaining saline.

Temperature and volume of the solutions. The temperature of the stimulating solutions varied 
depending on the experiments. Different concentrations of room temperature (22–24 °C) AITC were used for 
experiments testing the concentration-dependent effects of the chemical TRPA1 agonist on triggering of the 
swallowing reflex. Cold saline (4 °C) was used to examine the effect of putative TRPA1 activation by cold stimuli 
on triggering of the swallowing reflex. Different concentrations of cold AITC (4 °C) were used to examine the 
effect of putative TRPA1 activation by dual cold and chemical stimuli on triggering of the swallowing reflex. 
During these experiments, saline and the various AITC solutions were kept in containers in a pot of ice before 
delivery. The delivery syringe/needle was also kept in the pot of ice before use to help keep the solutions cold. 
Generally, we delivered 50 μL of a stimulating solution as a single bolus (in 1 s) toward the laryngopharyngeal 
and associated laryngeal regions and recorded the triggered swallowing reflexes for 20 s, unless stated otherwise. 
In one experiment, we delivered 250 μL of room temperature (22–24  °C) or cold temperature (4  °C) AITC 
(2.5 mM) in 4 s. In another experiment, iced AITC/saline (50 μL solutions) were used to examine the effect of 
putative TRPA1 activation by low temperatures on triggering of the swallowing reflex.

Measuring the changes in on-site temperature following solution delivery. The temperature 
change at the site of solution delivery was measured using ceramic-coated fine surface temperature sensors 
with a 0.20-mm tip diameter (ST-55 K-CB; RKC instrument Inc., Tokyo, Japan) connected to a thermocouple 
thermometer (AG 500; Code: K-35; RKC instrument Inc.). These sensors can detect temperature changes with a 

Figure 7.  Topical application of iced solutions persistently reduced the on-site temperature to levels at which 
TRPA1s can be activated, which prevented the triggering of swallowing reflexes by AITC. (A) Triggered 
swallowing reflexes and changes in the on-site temperature by delivery of cold (4 °C) saline (50 μL, single 
bolus) and placement of iced saline (50 μL solution). Black arrowheads indicate the onset of stimulating 
solution delivery/onset of iced solution placement. Data (mean ± SEM) for the on-site temperature are from a 
separate cohort of seven rats not used for counting the swallowing reflexes. (B) Triggered swallowing reflexes 
and changes in the on-site temperature by delivery of cold (4 °C) AITC (50 μL, single bolus) and placement of 
iced AITC (50 μL solution). Black arrowheads indicate the onset of stimulating solution delivery/onset of iced 
solution placement. Data (mean ± SEM) for the on-site temperature are from a separate cohort of seven rats 
not used for counting the swallowing reflexes. (C) The number of swallowing reflexes triggered by delivery of 
cold (50 μL, single bolus) and iced (50 μL solution) saline/AITC. (D) The intervals of the triggered swallowing 
reflexes by delivery of cold (50 μL, single bolus) and iced (50 μL solution) saline/AITC. n = 5. The number 
of triggered swallowing reflexes counted for 20 s following application of the stimulating solutions and the 
intervals between the swallowing reflexes calculated from the reflexes evoked within the 10-s time period 
following the onset of stimulating solution delivery. Data are presented as mean ± SEM. Circles in the column 
graphs represent individual data points. In (D), there are only one/two individual data points for saline because 
only one/two rats showed triggering of more than one swallowing reflex (within 10-s time period) for saline (at 
least two swallowing reflexes are required to measure the interval between the reflexes). *P < .05 by paired t-test 
or Wilcoxon’s signed rank test.
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Figure 8.  Prior topical application of the TRPA1 antagonist at a concentration that effectively reduced AITC-induced reflexes 
had no effect on the threshold for triggering the swallowing reflex by punctate mechanical stimuli. (A) Representative figures 
of swallowing reflexes triggered by threshold-level force (shown in g) applied on the right vestibular fold by von-Frey filaments 
with or without prior application of the TRPA1 antagonist/vehicle. Black arrowheads indicate the onset of the punctate 
mechanical stimuli by the von-Frey filaments. (B) Representative figures of swallowing reflexes triggered by threshold-level 
force (shown in g) applied on the area between the vestibular folds by von-Frey filaments with or without prior application 
of the TRPA1 antagonist/vehicle. Black arrowheads indicate the onset of the punctate mechanical stimuli by the von-Frey 
filaments. (C) Threshold to trigger a swallowing reflex by punctate mechanical stimuli on the vestibular folds (right and left) 
and on the area between the vestibular folds with or without prior application of the TRPA1 antagonist/vehicle. The TRPA1 
antagonist was used at either 2 mM (a concentration that significantly reduced the triggering of the swallowing reflex by AITC) 
or 5 mM (more than double the concentration that significantly reduced the triggering of the swallowing reflex by AITC). 
n = 7. Data are presented as mean ± SEM. Circles in column graphs represent individual data points. There were no differences 
between with and without prior application of the TRPA1 antagonist/vehicle (Friedman repeated measures ANOVA on ranks).
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Figure 9.  Prior topical application of the TRPA1 antagonist had no effect on triggering of the continuous low-force or 
high-force mechanical pressure stimuli-induced swallowing reflex. (A) Representative figures of swallowing reflexes 
triggered by continuous mechanical-pressure stimuli with a low-level force (threshold-level force) applied on a vestibular 
fold by von-Frey filaments (0.008 g) with or without prior application of the TRPA1 antagonist. Blue solid lines indicate 
the duration of continuous mechanical pressure stimuli applied by the von-Frey filaments. (B) Representative figures of 
swallowing reflexes triggered by continuous mechanical-pressure stimuli with a high-level force (approximately 125–250 
times higher than the threshold-level force) applied on a vestibular fold by von-Frey filaments (1 g) with or without prior 
application of the TRPA1 antagonist. Blue solid lines indicate the duration of continuous mechanical pressure stimuli 
applied by the von-Frey filaments. (C) Number of triggered swallowing reflexes by continuous mechanical pressure 
stimuli with low-level and high-level forces on a vestibular fold (right/left) with or without prior application of the 
TRPA1 antagonist. The concentration of the TRPA1 antagonist was more than twice that which significantly reduced 
the triggering of the swallowing reflex by AITC. n = 6. Data are presented as mean ± SEM. Circles in the column graphs 
represent individual data points. There were no differences between with and without prior application of the TRPA1 
antagonist (paired t-test/Wilcoxon’s signed rank test).
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sampling time of 0.25 s and an accuracy of ± 0.5%. The thin tips of the temperature sensors allowed their place-
ment onto the mucosa of the target regions for measurement of temperature changes at the solution delivery 
site. Because the shaft of the sensors was flexible, their position could be adjusted and maintained by attachment 
to the skin with adhesive tape. Note that placing of the sensor tips onto the mucosa of the target site triggered 
swallowing reflexes due to mechanical stimulation. This phenomenon will introduce errors in the number of 
triggered swallowing reflexes if the on-site temperature and the number of swallowing reflexes triggered by 
the stimulating solutions are assessed simultaneously in the same rats. To avoid this problem, we recorded the 
on-site temperature changes following delivery of different stimulating solutions in a separate cohort of seven 
rats not used for counting the swallowing reflexes. In these animals, all nerves that may carry sensory informa-
tion from the target regions (bilateral SLN, IX-ph, IX-li, and RLN nerves) were transected to prevent triggering 
of the swallowing reflexes during recording of the on-site temperature. Avoiding triggering of the swallowing 
reflexes during recording of the on-site temperature also allowed us to maintain attachment of the sensor tip to 
the mucosa of the stimulating site.

TRPA1 antagonist. HC-030031 (Wako Pure Chemical Industries Ltd., Osaka, Japan) was used as a TRPA1 
antagonist. HC-030031 is a well-known TRPA1 antagonist. The efficacy of HC-030031 in blocking TRPA1s 
was previously  valiadted68–70. HC-030031 was dissolved in a small amount of DMSO (1%; Sigma-Aldrich, St. 
Louis, MO) and Tween 80 (1%; Sigma-Aldrich) and was diluted with saline. The corresponding DMSO/Tween 
80/saline solution was used as the vehicle. Pilot experiments were performed to determine the lowest effective 
concentrations of HC-030031 that attenuated the number of swallowing reflexes to ≤ 50% of that triggered by the 
2.5 mM AITC. The lowest effective concentrations of HC-030031 that attenuated the number of AITC-induced 
swallowing reflexes to ≤ 50% was 2 mM. Therefore, we used 2 mM HC-030031 in the remaining experiments 
where the effect of TRPA1 antagonist on the AITC-induced swallowing reflexes was tested. We used 2 mM and 
5 mM HC-030031 in the experiments where the effect of TRPA1 antagonist on the mechanical stimuli-induced 
swallowing reflexes was tested. The number of AITC-induced/mechanical stimuli-induced swallowing reflexes 
was counted 10 min following application of the TRPA1 antagonist or vehicle.

Mechanical stimuli-induced swallowing reflex. We measured the threshold of the punctate mechani-
cal stimuli required to trigger a swallowing reflex from the right and left vestibular folds and from the area 
between these folds using von-Frey filaments (Aesthesio Tactile Sensory Evaluator Kit, San Jose, CA). These 
areas of the SLN-innervated regions were chosen because they were comparatively easier to stimulate with the 
von-Frey filaments than other areas under the supine positioning of the animals. Additionally, the vestibular 
folds were highly sensitive to mechanical stimuli for triggering a swallowing reflex. A punctate mechanical stim-
ulus triggers a swallowing reflex in an all-or-none manner at the threshold  force5,58. We also used a custom-made 
filament (made of thin nylon monofilament) with a force of 0.004 g (calibrated using a digital analytical balance).

To expose the vestibular folds and the area between the folds, a midline incision was made on the ventral 
surface of the larynx up to the base of the epiglottis. The flaps on both sides of the incision were then retracted 
by suturing them with threads. The threshold of the punctate mechanical stimuli-induced swallowing reflex 
was defined as the force (g) that triggered a swallowing reflex using a series of von Frey  filaments58. To examine 
the contribution of TRPA1s on the mechanical stimuli-induced swallowing reflex, the activation threshold was 
measured before and at 10 min following delivery of the TRPA1 antagonist. The antagonist was used in two 
concentrations—2 mM (the concentration that significantly reduced the number of AITC-induced swallowing 
reflexes) and 5 mM (more than double the concentration that significantly reduced the number of AITC-induced 
swallowing reflexes). To assess the contribution of TRPA1s in triggering of the swallowing reflex by continuous 
low-force mechanical pressure stimuli, the von-Frey filament force at the threshold level was applied to the right/
left vestibular folds for 20 s and the number of triggered reflexes was counted before and after TRPA1 antagonist 
application (5 mM). Additionally, to assess the contribution of TRPA1s in triggering of the swallowing reflex by 
continuous high-force mechanical pressure stimuli, 1 g of von-Frey filament force was applied to the right/left 
vestibular folds for 20 s and the number of triggered swallowing reflexes was counted before and after application 
of the TRPA1 antagonist (5 mM). To assess the contribution of TRPA1s in triggering of the swallowing reflex 
by delivery of saline continuously for 4 s, the numbers and intervals of triggered swallowing reflexes calculated 
before and at 10 min following delivery of the TRPA1 antagonist (5 mM).

Data and statistical analysis. We counted the number of triggered swallowing reflexes for 20 s following 
application of the stimulating solutions, unless stated otherwise. We also calculated the average interval between 
the swallowing reflexes from the reflexes evoked within the 10-s time period following the onset of stimulating 
solution  delivery45,46. We chose 10-s time period for calculating the interval, because, AITC-induced shortening of 
interval between the swallowing reflexes was most prominent within this time period. The time interval between 
the start of high amplitude EMG activity for one swallowing reflex and the start of high amplitude EMG activity 
for the subsequent swallowing reflex was used as the interval between the respective swallowing  reflexes45,46. The 
changes in on-site temperature following delivery of the solutions were averaged from seven rats.

Tests for normality and equal variances were initially performed to decide whether to run parametric or 
non-parametric statistical tests. The number and intervals of the triggered swallowing reflexes with the different 
AITC concentrations were compared using one-way repeated measures analysis of variance (ANOVA) followed 
by Tukey’s test. The number and intervals of the triggered swallowing reflexes with and without prior application 
of the TRPA1 antagonist/vehicle were compared using Kruskal–Wallis one-way ANOVA on ranks followed by 
Tukey’s test. The number and intervals of the triggered swallowing reflexes using cold and room temperature 
solutions (saline and different AITC concentrations) and using cold and iced solutions were compared using a 
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paired t-test or Wilcoxon’s signed rank test. The frequency of the triggered swallowing reflexes/second following 
continuous delivery of saline at cold and room temperatures was compared using Wilcoxon’s signed rank test. 
The frequency of the triggered swallowing reflexes/second between the different time periods following continu-
ous delivery of AITC was compared using a one-way repeated measures ANOVA followed by Tukey’s test. The 
thresholds for the punctate mechanical stimuli-induced swallowing reflex with and without prior application 
of the TRPA1 antagonist/vehicle were compared using the Friedman repeated measures ANOVA on ranks. The 
number of triggered swallowing reflexes by continuous mechanical pressure stimuli between with and without 
prior application of the TRPA1 antagonist was compared using a paired t-test or Wilcoxon’s signed rank test. 
The number and intervals of the triggered swallowing reflexes by continuous delivery of saline for 4 s between 
with and without prior application of the TRPA1 antagonist were compared using a paired t-test or Wilcoxon’s 
signed rank test. Differences were considered significant at P < 0.05. All data are presented as the mean ± standard 
error of the mean (SEM). Statistical analyses were performed using Sigmaplot software (Sigmaplot 14.0; Systat 
Software Inc., San Jose, CA). The column graphs with individual data points were created using graphing software 
(GraphPad Prism Software v9.0; GraphPad; San Diego, CA).

Data availability
Data, analytic methods, and study materials will be made available to other researchers from the authors on 
reasonable request.
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