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Dynamical regulations on mobility 
and vaccinations for controlling 
COVID‑19 spread
Mevan Rajakaruna1, Harshana Rajakaruna2 & Rupika Rajakaruna3*

Using a system of time-dynamical equations, we investigate how daily mobility indices, such as 
the homestay percentage above the pre-COVID normal ( H% ; or H-forcing), and the vaccinated 
percentage (Vc% ; or V-forcing) impact the net reproductive rate (R0) of COVID-19 in ten island nations 
as a prototype, and then, extending it to 124 countries worldwide. Our H- and V-forcing model 
of R0 can explain the new trends in 106 countries. The disease transmission can be controlled by 
forcing down R0(H,Vc) < 1 with an enforcement of continuous H > 40% in 93% of countries with 0% 
vaccinated plus recovered, Vp . The required critical H% decreases with increasing Vp% , dropping it 
down to 20% with 25%Vp , and further down to 8% with 50%Vp . However, the regulations on H% are 
context-dependent and country-specific. Our model gives insights into forecasting and controlling 
the disease’s transmission behaviour when the effectiveness of the vaccines is a concern due to new 
variants, and/or there are delays in vaccination rollout programs.

When a novel virus emerges, the community mitigation strategies, especially those concerning population mobil-
ity, are the most readily available intervention to slow down the transmission1. Most countries implemented strict 
population mobility policies to suppress transmission of SARS-CoV-2 (COVID-19), and in some countries, a 
convincing reduction in case-incidence was observed at least temporarily2,3. Even though many vaccination 
programs are rolled out worldwide, the current rate of spread of COVID-19, as a new infection wave, with 
Delta and other variants, concerns whether the vaccines may not be effective against the evolving variants. The 
reproductive rate, R0, of the Delta variant is much greater (5.08) compared to its ancestral variant (2.79)4,5. Due 
to the high R0 associated with higher transmissibility, low vaccine coverage rates, and low vaccine effectiveness, 
the social measures will need to be strengthened to combat the ever emerging variants. A high R0 also means 
much higher vaccine coverage rates need to be achieved compared to the ancestral variants5.

Understanding the extent of population mobility and the ongoing vaccination programs of a nation is essential 
for tracking the trajectory of the national epidemic and assessing the effectiveness of continuing control measures. 
Many studies have analyzed the efforts in controlling people’s mobility to reduce the spread of the disease6–9. 
Those include studies of correlations of R0 with the mobility metrics developed by Google10. Those metrics are 
based on Google logins by people and location identifiers, and computed as proxies for people’s spatial density 
movement as percentage changes from the pre-COVID-19 scenarios. Nouvellet et al.9 have shown that a drop 
in R0, below the critical R0 = 1 requiring for disease extinction, correlates with the homestay H% . Many other 
studies also show similar findings6–8. However, the combined effect of people’s mobility restraints with nations’ 
vaccination percentages has not yet been understood enough through dynamical process modeling of COVID-
19 disease transmission.

Here we designed a simple study to predict the degree of population mobility restrictions needed to bring 
the R0 below one for countries, given the numbers of their fully vaccinated individuals. We used a system of 
time-dynamical equations, incorporating the effect of homestay percentages (H%) and cumulative number of 
individuals vaccinated (Vc) , fitting them with mobility data from Google10 and new case and death data from 
the University of Oxford11, to compute the net reproductive rate R0 in 124 nations. We modeled the data from 
ten island nations as a prototype to select the best alternative model-hypothesis among three nested models: 
(1) Model 1: MH : incorporating the homestay H% effect, (2) Model 2: MV : incorporating the effect of percent-
age vaccinations, Vc% and (3) Model 3: MHV : the effect of the combination of both the H% and the Vc% , on the 
disease dynamics.
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Results
The general case of H% and Vc% impact on R0 across nations.  Among the three alternative models 
fitted to the data of new cases, C(t), and deaths, D(t), from ten island nations as a prototype, Model 3 (MHV ) that 
combines the effects of both the homestay (H%) and the vaccinations (Vc%) , fitted the best, in general, as per the 
Akaike information criterion (AIC) (Table 1). In nations that had homestay regulations as the primary method 
of controlling the spread, the MH Model fitted equally well or slightly better than the MHV model, explaining the 
variations and the trends in the new case and the death data. Similarly, in nations that had vaccinations as the 
primary method of controlling the spread, the MV model fitted to the data equally well or better than the MHV 
model. This suggested that the MHV model represented the effect of both the homestay and the vaccinations, 
controlled via nations’ respective government and other regulations, on COVID-19 disease spread, as a general 
all-inclusive hypothesis, in understanding the R0 dynamics.

We extended the MHV model-fitting and the analyses to the world data of 124 countries (see Supplements S1, 
S2). The model MHV could explain the variations and the trends in the data of 106 countries well w.r.t. the trends 
in their respective residual distributions. Ninety five out of the 106 countries showed a calibratable functional 
relationship between the R0 and the H% (Fig. 1), given their respective percentages of the people vaccinated 
plus the number recovered, denoted by Vp% . Note that Vp% ≥ the percentage vaccinated, Vc% . The eleven out 
of the 106 countries did not show a marked variation in the R0 with respect to an increase in the H% because 

Table 1.   The projected percentages of homestay H% and vaccinations plus recovered, Vp% , required to 
bring R0 below 1, for the ten island nations (the prototype). The Akaike Information Criteria (AIC) values 
of the fitted alternative MH , MV and MHV models, and the critical values of H(R0 = 1)% and Vp(R0 = 1)% 
computed based on the all-representative MHV model are given (see graphs in Supplement S1 for all nations). 
The coefficient ν , a proxy for the vaccine effectiveness, was set at 0.8 in island estimations. Thus, the degrees of 
freedom df in both MH and MHV models become 4. NLL-Negative log likelihood of the model fits. Parameter 
values and their CI are given in the Supplement S2. The graphs of H(R0 = 1)% with respect to Vp% , and R0 
with respect to H% based on the MHV are given in the Supplement S1. The ap stands for ‘as at present’.

Island Model

Parameters and metrics

H(R0 < 1)
@Vp% = ap

Vp(R0 < 1)
@H% = 0 df NLL AIC Working rank

United Kingdom

MH − − 4 1.47E3 2.95E3 3

MV − − 2 1.47E3 2.95E3 2

MHV > 20 > 68 4 1.46E3 2.93E3 1

Taiwan

MH − − 4 0.80E3 1.62E3 2

MV − − 2 0.94E3 1.88E3 3

MHV > 10 > 85 4 0.80E3 1.62E3 1

Sri Lanka

MH − − 4 1.29E3 2.59E3 3

MV − − 2 1.27E3 2.57E3 2

MHV > 30 > 60 4 1.22E3 2.46E3 1

Philippines

MH − − 4 1.13E3 2.26E3 1

MV − − 2 1.14E3 2.29E3 3

MHV > 22 > 85 4 1.13E2 2.27E3 2

Japan

MH − − 4 1.40E3 2.81E3 1

MV − − 2 1.40E3 2.81E3 3

MHV − > 50 4 1.40E2 2.81E3 2

Ireland

MH − − 4 0.81E3 1.63E3 1

MV − − 2 0.88E3 1.77E3 3

MHV > 12 > 60 4 0.83E3 1.67E3 2

Indonesia

MH − − 4 1.33E3 2.68E3 2

MV − − 2 1.35E3 2.71E3 3

MHV > 18 > 82 4 1.33E3 2.67E3 1

Haiti

MH − − 4 0.84E3 1.69E3 2

MV − − 2 0.86E3 1.72E3 3

MHV − > 50 4 0.84E3 1.69E3 1

Dominican Republic

MH − − 4 1.04E3 2.08E3 3

MV − − 2 0.99E3 1.99E3 2

MHV − > 35 4 0.99E3 1.98E3 1

Australia

MH − − 4  0.82E3 1.64E3 1

MV − − 2 0.84E3 1.68E3 3

MHV − > 50 4 0.84E3 1.68E3 2
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the variation in the H% data was not sufficient to capture such changes in the functional response of R0. That is, 
for those nations, the functional response of R0 with respect to H% , other than the values of R0 for their given 
Vp%, was non-calibratable.

When the H% is increased, the R0 decreased for nations depending on the percentages of individuals vac-
cinated plus recovered, Vp : 0%, 25%, and 50%, in the said 106 countries (Fig. 1). The model MHV indicated that 
93% of the nations, with both mobility regulations and effective vaccination programs, out of the 106, requires 
a minimum of 40% homestay above the pre-COVID normal to bring the R0 < 1 from the status quo (Fig. 1). 
This threshold of H% at R0 = 1 lowers with the increasing percentage of vaccinations. For example, with > 25% 
more vaccinated ( Vc% ) plus the recovered, the H% at R0 = 1 lowers down to 20% in 95% of the 106 countries. 
For countries with > 50%Vp , the H% requiring for R0 < 1 turns out to be about eight for about 92% of the 
106 nations (Fig. 1). Figure 2. shows how H% at R = 1 decreases with the increasing Vp% , i.e., the vaccinated 
plus recovered percentage. Overall, the R0, averaged over the last seven days, is negatively correlated with the 
percentage-vaccinated in the nations, with R2 = 0.41 and p < 0.01 (Fig. 65 in the Supplement S1). It indicates that 
> 80% of fully vaccinated individuals in a nation does not fully guarantee a R0 < 1 , with upper 95% confidence 

Figure 1.   The World data -The net reproductive rate R0 vs. the percentages of Home-stay H% at different 
percentages of the population vaccinated plus recovered, Vp% : The R0 decreases with the increasing H% at 
Vp = 0% , that is 0% is vaccinated plus recovered from the susceptible (Left panel), Vp = 25% , (Middle panel) 
and Vp = 50% (Right panel). Here, we plotted the 106 out of the 124 nations based on the estimated MHV 
model that explained the variation in the data of the respective nations. The 95 nations out of the 106 allowed 
enough variation in the degree of H% above the pre-COVID normal to make it possible to calibrate the R0 vs. 
H% functional relationship based on the model (Note that Vp >= Vc , where Vc is the vaccinated population 
percentage). The functional relationship: R0 = γ�(1− θ(H/100)k)− ε , where � is the susceptible population 
proportion, that is, the proportion of the total population N minus the effective number out of the vaccinated, 
νVc , minus the number recovered, assuming ν as the likelihood that a vaccinated individuals not re-infected, or 
as a proxy for the average efficacy or the effectiveness of the vaccines. The R0 < 1 indicates the threshold below 
which there is a tendency for the disease going extinct. (see Supplement S1 for country-specific graphs).
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Figure 2.   The World data- Homestay H% percentages vs. the vaccinated plus recovered population percentages: 
The homestay H% , required at R0 = 1 , given by the estimated MHV model, declines with the increase in 
the percentage Vp% , that is, the percentage vaccinated plus the recovered in the populations. The functional 
relationship: H(R0 = 1) = [(1/θ)(1− (1/(γ�))(1+ ε))](1/k) , where � = (1− Vp%/100) . The graph is drawn 
based on the MHV model that explained the variations in the data in 106 out of the 124 nations.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3554  | https://doi.org/10.1038/s41598-022-07371-5

www.nature.com/scientificreports/

interval crossing R0 = 1 is at 70% fully vaccinated. The detailed country-specific plots, parameter values and 
their confidence intervals are given in the Supplements S1 and S2.

Model‑selection based on the island data ‑the prototype.  The four nations presented in Figs. 3 
and 4, among the ten island nations in the prototype analysis: Australia, Taiwan, Sri Lanka, and the UK, repre-
sent contrasting levels of H% vs Vc% . Three of them, namely, Taiwan, Sri Lanka, and the UK showed a significant 
reduction in R0, except for the Australia. For Taiwan, the decline was due to an increased mobility restriction 
forcing a hike in H% , but not due to vaccinations, while in the UK, it was due to escalating vaccinations but not 
by marked mobility restrictions (Fig. 3). In Sri Lanka, the control was driven by both the vaccinations and the 
mobility restrictions. The R0, in almost all islands in the analysis except for Australia, was less than one, indicat-
ing that their disease spread was under control. There was not enough variation in H% in the case of Australia 
to calibrate how R0 functionally responds to the changes in H% . All four islands showed a concave-up func-
tional relationships with respect to the increase in H% . Sri Lanka shows the lowest sensitivity of R0 to the change 
in H% , thus, needing a significant change of H% in reducing a unit of R0 compared to any other nation. The 
estimated values and AICs of the three alternative models MH , MV and MHV for the ten island nations are given 
in Table 1 (Supplement S2 gives estimated parameter values and their CI’s). The graphs of the model MHV , fitted 
to new cases and deaths, plus other functional relationship of R0 vs. H% and Vc% are given in the Supplement S1 
for all nations, with estimated parameter values given in Supplement S2.

The R0(H, V) vs. H% on the second row top panels in Fig. 4 shows the effect of the fully vaccinated percent-
ages, Vc(t)% , in pulling down the R0 curve stretched towards R0 = 1 or lower. The simulation results of the 
cumulative number of individuals infected vs time of the four island nations show the level of H% needed for 
R0 < 1, indicating that the disease can be forced to extinct, i.e., R0(H) < 1 , from the status quo (i.e., on top of 
the already administered Vc% of the respective countries plus recovered) with an enforcement of a continuous 
homestay of H% > 20 from the pre-Covid normal. This is the same case for many other nations among the 
analyzed 106 nations given in the Supplement S1. The R0 vs. H% in the bottom panels in Fig. 4 shows that the 
percentage of vaccination, Vc% , brings the required critical H% to meet the R0(H) = 1 threshold further down, 
yielding a complementary effect on the reduction in the R0 forced by H% . The analyses of the 106 nations in the 
Supplement S1 also show similar trends that we discussed here on the four island nations.

Furthermore, the average infection fatality rate, IFR, estimated from the model across 106 nations was 0.49% 
[0.37%, 0.61%]. The country-specific estimates are given in the Supplement S3. The mean incubation period 
across nations was estimated at 4.26 [4.01, 4.52] days, on average, and the length of infectiousness was at 8.12 
[7.82, 8.42] days, on average, with 95% confidence intervals. The start of the death-window was estimated at 6.86 
[6.53, 7.19] days, on average, from the day of the infection identification as new cases, and the average time-length 
of the death window was estimated at 15.89 [15.22, 16.55] days, on average, with 95% confidence intervals. The 
parameter of vaccination effectiveness ν after two doses, with the time-lag of 14 days, given the mixed variants 
in the populations, yielded 62% [28%, 67%] on average, while the identification probability of new cases from 
the infected individuals, ε , was estimated at 32% [30%, 35%] on average, with 95% confidence intervals. The 
country-specific parameter estimates are given in the Supplement S2.

Discussion
There is escalating uncertainty regarding the complexity behind the building up of new infection waves of 
COVID-19, both among the vaccinated and the non-vaccinated nations, in the presence of the ever-evolving 
new variants. Studies are inconclusive as to how the recommended, and approved vaccinations, respond to the 
new variants. Hence, it is imperative that we explore it in depth using models as to how the disease transmission 
responds to regulations on mobility along with the on-going vaccination efforts.

We show how the net reproductive rate, R0, functionally relates to the effect of homestay ( H% ) and the per-
centage of individuals fully vaccinated ( VC% ). The regulations on people’s mobility, confining them to stay at 
homes > 20% more than the pre-COVID scenario (except for > 40% for three countries), have a grip on flattening 
the infection curve, and controlling the spread markedly, at about 75% of the people remaining susceptible, and 
> 8% at about 50% of the population remaining susceptible. Here, the susceptibility is a function of the number 
vaccinated, infected and died as at present. Nouvellet et al.4 indicate that 73% or more mobility restrictions 
from the pre-COVID normal baseline is required to reduce the R0 less than 1, based on a model which has not 
regarded the effect of vaccinations, analyzing the data for 52 countries. We show how V-forcing initiatives com-
plement the H-forcing initiatives, flattening the infection curve further down lowering the R0 when the effect of 
vaccinations are taken into consideration. Studying, which policies and regulations of mobility restrictions that 
correlate with the Google mobility indices, will be country-specific, and will need ground-truthing. It will be 
more informative to model the same dynamics spatially explicitly in countries such as Japan and other, where 
the regional data on new cases, deaths, and mobility are available.

A meta-analysis by Meyerowitz-Katz et al.12 has yielded infection mortality rate, IFR, an average of 0.68% 
[0.53%, 0.82%] with 95% CI. Similar results have been reported: a locality specific average of 0.48% [0.32%, 52%] 
estimated by Radon et al.13, and a range of 0.02% − 0.86% estimated by Ioannidis14 in a meta analysis. These 
results of IFR of COVID-19 are comparable with our estimates yielding 0.49% [0.37%, 0.61%] for the data across 
106 nations with mixed variants. Moreover the mean incubation period of 4.26 (± 1.33) days that our model 
estimated for the data from mixed variants across 106 nations is comparable with the studies done by Kang et al.15 
and Wang et al.16 who estimated the same for the Delta variant at 4–5.8 days, and 4–6 days, respectively. Rai et al.17 
have reported an estimation of 5.76 [5.18%, 6.30%] days for earlier variants. Garcia-Garcia et al.18 have estimated 
the probability distribution of the incubation period as a log-normal distribution yielding a mean of 5.6 days 
and a median of 5 days. Moreover, the length of infectiousness, 8.12 (± 1.58) days estimated by our model for the 
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Figure 3.   The MHV model hypothesis, incorporating forcing by homestay H% and percentage vaccinations 
Vc% on disease spread dynamics, fitted to the data in four regulatory-wise contrasting island nations: Top 
row panel: Daily homestay H(t)% and the percentage vaccinations Vc(t)% over time: Australia: No major 
V-forcing nor H-forcing: Taiwan: No major V-forcing but high H-forcing, Sri Lanka: Major increase in both 
V-forcing and H-forcing, United Kingdom: Major increase in V-forcing and no H-forcing. Second and third row 
panels: The model MHV fitted to new case, C(t), and death, D(t), data, and the resulting net reproductive rate, 
R0(H(t),Vc(t)) , over time, given in the Bottom row panel. The R0 < 1 indicates a tendency towards decease-
extinction. The values of the model selection criterion AIC are given in Table 1. The model fitted to all 124 
countries are given in the Supplement S1, with parameter values and their CI’s given in the Supplement S2.
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Figure 4.   Functional responses of R0 vs. H% and Vc% for management forecasting: Top row panel The 
homestay percentage H(t)% and the percentage vaccinations Vc(t)% in four contrasting island nations: 
Australia: showing No major V-forcing nor H-forcing: Taiwan: No major V-forcing but high H-forcing, Sri 
Lanka: Major increase in both V-forcing and H-forcing, United Kingdom Major increase in V-forcing and 
no H-forcing. Second row panel Functional relationships between the infection rate β vs. H% , and the net 
reproductive rate R0 vs. H% . The concave-up or-down relation is determined by the parameter k, depending on 
if k <> 1 in the H-forcing function, which is β = γ (1− θ(H/100)k) . The k = 1 yields the linear relationship. 
The curve may turn up or down depending on the quality and the strictness of the mobility controls. The 
Vc% pulls the R0(H)%) curve down forcing it towards R0 = 1 or lower. Here, the effect Ef = θ(H/100)k , s.t. 
β = γ (1− Ef ) . Third row panel: Simulation forecasts based on the calibrated MHV model indicate how many 
more get infected from the status quo (i.e., as of today) for a choice of management scenarios of daily H(t)% 
and V(t) administered or done none. Bottom row panel The simulations further show how an increase in the 
percentage vaccinated plus recovered, Vp% , forces the R0 to shift lower with respect to H% . The graphs of all 124 
countries are given in Supplement S1 with parameter estimates and their CI’s in Supplement S2.
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mixed variant data across 106 nations, was comparable with Xiang et al.19, who reported 2–10.2 days for earlier 
variants. Our model yielded a mean time-length of 15.89 (± 3.48) days for the death-window, with the starting day 
of deaths of the window estimated at 6.86 (± 1.75) days , on average, since the day of individuals were identified 
as new cases. The mean deaths, estimated at 14.5 days with a median 23.2 days since individuals showed illness, 
has been shown by Garcia-Garcia et al.18 based on a log-normal distribution. Furthermore, a recent study by Liu 
et al.20,21 has estimated the pooled vaccine effectiveness, after two doses, at 85% [80%, 91%] for the prevention of 
Alpha variant of SARS-CoV-2 infections, 75% [71%, 79%] for the Beta variant, 54% [35%, 74%] for the Gamma 
variant, and 74% [62%, 85%] for the Delta variant. Our model, given the data from mixed variants, estimated 
the vaccine effectiveness at 63% (± 24%) on average across the 106 nations. Bernal et al.’s21 have shown large 
confidence intervals 30–95% for the same for various variants. Overall, our estimations for the data with mixed 
variants are comparable with the existing estimation ranges in the literature given for various variants.

Eighteen countries, out of 124, showing miss-fits to the model, may indicate that either the vaccinations do 
not respond to the disease spread as expected due to new variants, or the data are not representative enough 
of the true situations. There are a dearth of complaints regarding the miss-appropriate handling of the data by 
authorities in countries for political gains. Hence, the data can be biased and sparsed as well, not consistently 
reported, being unsuitable to model the reality.

The Google mobility data10 that we used as a surrogate for quantifying people’s homestay percentages can be 
under-representative of the true mobility of the people. This is because, not all people are using mobile phones 
in underdeveloped countries unlike those in the developed world. There had been no ground-truthing done to 
calibrate the correspondence between the Google mobility data10 versus the true mobility of the people. Also, 
the heterogeneity of population density over space may have a large effect on the variability of the disease spread, 
which is not accounted explicitly in our model. Our model can be improved to understand the effect of mobility, 
localized lockdowns, and vaccinations, spatially explicitly, where the data are available. Furthermore, peoples’ 
moving in and out of the country, the fluxes, can violate our model assumptions of systems being closed. The 
demographic factors such as age, sex, ethnicity, and also peoples’ walks of lives can impact the predictability 
of the true dynamics. To incorporate such, one may need a structurally more advanced model, together with 
demographic data to parameterize such. Besides, to tease apart the detailed effects, one may need drastically 
varying temporal state variables. Furthermore, when modeling disease-outbreaks, considering a country-wide 
population as one statistical unit may underestimate the true infection rates in large countries at the beginning of 
the disease spreads. Analysis of localized spread may be more suitable to grasp a better picture at the initial stages. 
Hence, our model may predict better when the countries are smaller and the populations are homogeneously 
distributed, and the case occurrences are randomly distributed, spatially. Ours captures the average dynamics 
within and across nations, generalizing the effect of mobility and vaccinations on the disease spread, represent-
ing more of a phenomenological perspective in the disease dynamics. That is, our study may answer the general 
nature of the impact of mobility and vaccinations in full on disease spread within nations.

The effect of restrictions on quantitative and qualitative H are country specific, depending on the nature of 
people’s responses against the nature of regulations, such as semi vs. full lock-downs in local vs. country-wide 
scenarios, together with other provisions—these need to be further studied specific to the given countries and 
localities. However, our study shows how the net reproductive rate responds to H-forcing and V-forcing, giving 
concave-up vs concave-down functional responses, along with V-forcing, beginning to turn R0 < 1 in many 
nations. The apparent in-elasticity in R0 w.r.t. H in Sri Lanka may suggest that there may be mixed-effects in 
people’s adhering to regulations. In contrast, countries such as Taiwan are more elastic, thus showing the firmness 
and the strength in controlling the wave drastically. What regulations attribute to the elasticity in the degree of 
H% needs a country-specific analyses.

Our findings may be useful as a tool for decision-support in controlling the disease spread and deaths in 
nations, when the effect of vaccines on forcing down the transmission is either weak, given the new variants, or 
not administered, or less affordable to nations.

Methods
We obtained COVID-19 related daily new cases C(t), deaths D(t) and vaccinations V(t) data of 127 countries 
from Oxford University COVID-19 database11 for which Google’s homestay ( H% ) metrics were available (Note: 
t is time). The country specific homestay ( H% ) proxy metrics from Google10 is a surrogate for the percentage 
increase in people’s homestay with respect to their pre-COVID normal. The effect of various mobility restrictions 
enforced by governments are reflected upon their respective Google’s homestay metric H% (see Adams et al.6; 
Hakim et al.7). Our objective was to model the effect of H(t)% and the number of individuals fully vaccinated over 
time, Vc(t) , that is, with two doses for most vaccines, in a country, on the disease’s spread, in terms of the net 
reproductive rate metric R0(t) (Lui et al.19).

Taking Sri Lanka as a reference, we modeled the data from April 15, 2021 as a starting point of a new infection 
wave as a new surge of deaths began around that time. We used a system of discrete time-dynamical equations 
to model the decease transmission processes over time, incorporating the effects of H(t)% on decreasing the 
infection rate β , and V(t) on decreasing the number of susceptible S(t) in the population over time. This allowed 
us to compute the net reproductive rate R0(t) of the disease in each country, and analyze how it responds to 
various levels of H(t)% and the number of individuals in the country fully vaccinated Vc(t) by time t, to support 
in management decision making (Note that our objective here is not to model the effect of government specific 
regulations and restrictions on H(t)% . It may require detailed country specific studies).

Firstly, we took ten island nations (listed in Table 1) greater than 25,000 to 8.0E6 km2 in land area, ranging 
from Haiti to Australia with countries’ populations ranging from 10 to 270 million to test our prototype disease 
dynamical model. We tested three alternative nested model hypotheses: (1) MH incorporating only the effect of 
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H% , (2) MV incorporating only the effect of Vc%, i.e., the percentage vaccinated, and (3) MHV incorporating the 
effects of both the H% and the Vc% . We used the all-representative best-fitted model for the general analyses of 
the disease dynamics across all 127 nations using Akaike information criteria.

Modeling R0 as a function of H(t) and Vc(t).  We take S(t) as the number of susceptible individuals to 
the disease in a total population of, N, and I(t) as the number of newly infected individuals on day t. Per the 
mass-action law, we write the number of daily new infections as a linear function of S(t), normalized with respect 
to N, with a time-integral of I(t) of the infected individuals who are not quarantined or hospitalized, hence 
available for spreading the disease during the past period from t = (t − tIs) to t = (t − tIe) days through which 
the infection is transferable to others after staying an incubation period of tIe days by each. Thus, we write the 
number of new infections on day t as β(S(t)/N)Ir(t) , where β is the infection rate per day, and Ir(t) is an integral 
given by Ir =

∫ t=t−tIs
t=t−tIe

I(t) normalized dividing by the infectious period (tIe − tIs).
Rai et al.17 reported the mean incubation period of COVID-19 at 5.67 [5.12, 6.30] days with 95% CI, during 

early-mid 2021, whereas a study by Elias et al.22 indicated a higher value of 6.38 days. The Delta variant has an 
incubation period of 4–5.8 (Kang et al.15) and 4–6 days (Wang et al.16). Garcia-Garcia et al.18 have estimated 
the probability distribution of the incubation period suggesting a log-normal distribution with mean 5.6 and 
median 5 days. We assume that the incubation periods in our data come from a mixture distributions due to 
various variants, including Delta, dominating in various countries. Hence, to minimize our uncertainties in 
variant mixtures in different populations, we estimated the infectiousness period (tIs − tIe) , with the incubation 
period given by tIs , as parameters, from the data for each country using the full dynamical model. In doing so, 
we make a step-functional approximation to the infectious-window showing a hump-shaped curve (see illus-
tration in Fig. 1a in Supplement S4), suggested by the proportion of individuals who are infectious today from 
those who were infected t days ago. A review on epidemic models of COVID-19 by Xiang et al.19 has suggested 
that the infectious period persists for 2.3–10 days on average. Thus, we used initial values ranging [3–6] days, 
on average, for the incubation period, and values ranging [6–10] days, on average, for the infectious period for 
a country, for estimating the infectious-window parameters. Furthermore, we assumed that the recovered indi-
viduals never get re-infected during the modeling time, which is 144 days since the beginning of the new COVID 
wave. Thus, at the beginning of the process, we can write S(t = 0) = N −

∫ t=0−tIe
− inf

[I(t)+ C(t)] −
∫ t=0

− inf
D(t) 

for the non-vaccinated scenario, where D(t) are the number of deaths on day t, and C(t) are those quarantined 
or hospitalized after being identified as infected on day t. As the total number of individuals already infected is 
unknowable at the beginning of model-fitting for the computation of the remaining susceptible in the popula-
tions, we calibrated it as a parameter.

For the vaccinated scenario, we deduct S(t = 0) by the cumulative number of individuals fully vaccinated, 
Vc , up to tv days backwards in time from day t = 0 , assuming that it takes about tv = 14 days for an individual 
to be fully immune after receiving the full dose (two doses in most vaccines) as per the recommendations, 
thus, writing the the likelihood of those vaccinated being non-reinfecting, or removed from the susceptible as, 
νV(t − tv) , with ν being the vaccine effectiveness, s.t., 0 < ν < 1 . Note that thus Vc data, accounted at time t, are 
those only fully vaccinated 14 days before the day t, considering their immunity was coming to full effect only 
after a two week time-interval). Shapiro et al.23 have indicated that the efficacy of COVID-19 vaccines against the 
known variants was at 84% on average, and while those vaccinated get infected, their likelihood of transmission 
of the disease to others estimated at 54%. We assume ν to be a conservative, fixed at 0.8 with fully vaccinated, in 
initial prototypical model-parameterization of the ten nations for model-comparison, and between 0.4 and 0.9 
as bounds when parameterizing the models for all nations. This wide range allows lowering the effectiveness of 
the vaccine in scenarios such as in the emergent of new variants.

We consider the observed, or the identified new cases, C(t), are immediately self-quarantined or hospitalized 
in the case of COVID-19, such that, they are isolated from being able to infect other individuals in the com-
munity, that is, being removed from the Ir(t) , not being considered for the mass-action effect in contributing to 
further disease spread. We take the probability of identification of the infected from the currently infectious indi-
viduals as ε , allowing its range to be between a conservative, 0.15 to 0.6 bounds, in parameter estimations. It is 
known that symptomatic percentage was 13–18%24 in COVID-19. Thus, we further allowed a provision for being 
some identified in random checking.

 Study by Garcia-Garcia et al.18 has indicated that the probability of death at time (day) since an individual 
showed illness is a log-normal probability distribution. We assumed that the probability of death at time (day) 
since an individual was identified as a new case has a similar distribution, and hence, a step-function distribu-
tion approximation to the death-window for simplicity as illustrated in Fig. 1b in Supplement S4. Thus, we 
model daily deaths D(t) as a fraction of those individuals identified and quarantined, or hospitalized cases, C(t), 
accumulated between the tDs and tDe time window into the past, such that, the daily deaths are give by µ1Id , s.t., 
Id =

∫ t=t−tDs
t=t−tDe

C(t) averaged over the interval (tDe − tDs) , s.t., 0 < µ1 < 1 . Here, we estimate the average death-
period (tDe − tDs) since identification as new cases, including tDe , as parameters.

Contou et al.25 have reported that median survival time, of 73 out of 153 patients admitted to ICU’s being 
critically ill due to refractory respiratory failure, shock with multiorgan failure, cardiac death, and neurological 
death, was 14 days. Geetha et al.26 have shown that the average time to peak the severity of symptoms, since 
the symptoms began, was 7 days on average. Garcia-Garcia et al.’s18 estimations of the probability distribution 
of death since illness yielded a mean of 14.5 days and a median of 13.2 days. As our data come from different 
mixtures of variants from different countries, we estimated the parameters of death-window using the full model, 
with starting day at tDe for the initial values ranging [5–9] days, with death-window time-period (tDe − tDs) for 
initial values ranging [12–20] days.
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To directly estimate the infection fatality rate IFR’s, which is defined as the rate of the number of associated 
deaths per the total number of infections (Staerk et al.27) over time windows, presented as a percentage, from the 
model, we assumed that daily deaths D(t) are a function of the total infected population, that is, proportion to 
Id =

∫ t=t−tDs
t=t−tDe

[I(t)+ C(t)] averaged over the interval (tDe − tDs) , s.t., 0 < µ2 < 1 . Thus, it yields IFR = 100µ2%.
Thus, a discrete time-dynamical community COVID-19 infection model can be written as

where, �t = 1 is 1 day in our study.
To model the effect of homestay H(t)% percentage on reducing the infection rate β , we take β as, 

β = γ (1− θ(H(t)/100)k) . Note that this functional formulation allows β to decrease as a concave-up or -down 
function with increasing H% , capturing the effectiveness of mobility regulations on H% reflecting on the rate of 
infection. We assume that countries having firm restriction on people’s mobility may produce a concave-down 
relationships, vice versa. Furthermore, k = 1 yields the linearity in the relationship, and θ = 0 yields the Null 
model, in which the H% has no impact on the dynamics yielding β = γ . Note that the effect of daily H(t)% must 
have an immediate impact on the disease transmissibility without a time-delay.

Thus, the three alternative model-hypotheses we considered are give as below:

Model 1 (MH) : Given by setting ν = 0.
Model 2 (MV ) : Given by setting θ = 0.
Model 3 (MHV ) : The Full model.

From the above system of equations, we can write the number gets newly infected at day t +�t as 
I(t +�t) = β(S(t)/N)Ir(t)− εIr(t) . Hence, it yields the proportion I(t +�t)/Ir(t) = (β�(t)− ε) , where 
�(t) = S(f (Vc(t − tv))/N between 0 and 1, s.t., Vc =

∫ t=t−tv
t=−inf V(t) , i.e., the cumulative number of individuals 

vaccinated by time point (t − tv) . Note that when the 
∫
I(t +�t)/

∫
Ir(t) > 1 over an infectious window, the 

number infected in the community inclines, whereas, when it is < 1 , the number infected in the community 
declines. Incorporating the H-forcing, s.t., β = γ (1− θ(H(t)/100)k) , thus, we can write,

This is a metric of net reproductive rate R0 of the infection written as function of H- and V-forcing over time.

Fitting alternative model‑hypotheses to the data and running simulations.  We fitted the dis-
crete system of time-dynamical equations to daily C(t) and D(t) data using the Matlab non-linear least-squares 
optimization function lsqcurvefit to estimate the model parameters. We used the nlparci function to derive the 
confidence intervals of the estimations from the resulting residuals, together with the Jacobian. Furthermore, 
we computed the Arkaike information criteria (AIC), of which the smallest value suggests the best among the 
competing alternative model hypotheses, after penalizing for the degrees of freedom of the models in explaining 
the variations in the dynamical data. Using the model that best-explained the data, we computed the net repro-
ductive rate R0(H(t), V(t)) and β(H(t)) and their functional relationships with H- and V-forcing for further 
analyses. In fitting the data to models, we did not smooth data, but let the models capture the moving averages 
by themselves.

We simulated forecast of the model dynamics based on the general MHV model for the following different 
scenario: H(t)% = [0, 10, 20], and V(t) = [0, 5E+5] per day. It also allowed comparing the threshold values of 
H(R0 = 1) which the mathematical theory suggested.

Analysis of the World data from 124 countries.  We fitted the generalized model MHV to the data from 
124 countries (listed in the Supplement S2). We also (1) tracked R0(t) and β(t) over time t with their confidence 
intervals, (2) computed the functional responses of R0 and β w.r.t. H% , (3) change of R0 w.r.t. vaccinated per-
centage Vc% , and (4) R0 w.r.t. H% and Vc% simultaneously, for each individual nation. We summarize the func-
tional relationships between the (1) current R0 (averaged over the last 7 days) and the percentage vaccinations 
Vc% for all nations, (2) H(R0 = 1) vs. Vp% , the proportion non-susceptible, and (3) R0 vs. H% for all nations. 
Here, the functional relationships used for the above were: R0 = γ�(1− θ(H/100)k)− ε , where � is the sus-
ceptible population proportion which is a function of Vc% , and H(R0 = 1) = [(1/θ)(1− (1/(γ�))(1+ ε))]1/k.

Data
The study was carried out following PRISMA 2020 guidelines and regulations. Publicly available data-sets used: 
(1) The Google mobility data10: https://​www.​google.​com/​covid​19/​mobil​ity/. (2) Daily new cases and deaths 
data from Oxford University11: https://​github.​com/​owid/​covid-​19-​data/​blob/​master/​public/​data/​README.​md.

The copies of the COVID-19 new cases, deaths and vaccination data obtained from the Oxford University11 
and the community mobility reports for the same from Google10, of the 127 nations, plus the Matlab program 
coding developed for model-fitting and data analyses needing to reproduce the results of all graphs, tables, and 

S(t +�t) = S(t)− β(S(t)/N)Ir(t)�t − νV(t − tv)�t,

I(t +�t) = β(S(t)/N)Ir(t)�t − εIr(t)�t,

C(t +�t) = εIr(t)�t,

D(t +�t) = µId(t)�t,

R0(H(t)) = γ�(t)(1− θ(H(t)/100)k)− ε.

https://www.google.com/covid19/mobility/
https://github.com/owid/covid-19-data/blob/master/public/data/README.md
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estimations are stored at the online repository https://​github.​com/​SOMAb​urr/​dynam​ical-​regul​ations-​on-​mobil​
ity-​and-​vacci​natio​ns-​for-​contr​olling-​COVID-​19-​spread.​git.
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