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Unraveling hidden rules 
behind the wet‑to‑dry transition 
of bubble array by glass‑box 
physics rule learner
In Ho Cho1*, Sinchul Yeom2, Tanmoy Sarkar1 & Tae‑Sik Oh3*

A liquid–gas foam, here called bubble array, is a ubiquitous phenomenon widely observed in daily 
lives, food, pharmaceutical and cosmetic products, and even bio- and nano-technologies. This 
intriguing phenomenon has been often studied in a well-controlled environment in laboratories, 
computations, or analytical models. Still, real-world bubble undergoes complex nonlinear transitions 
from wet to dry conditions, which are hard to describe by unified rules as a whole. Here, we show that 
a few early-phase snapshots of bubble array can be learned by a glass-box physics rule learner (GPRL) 
leading to prediction rules of future bubble array. Unlike the black-box machine learning approach, 
the glass-box approach seeks to unravel expressive rules of the phenomenon that can evolve. Without 
known principles, GPRL identifies plausible rules of bubble prediction with an elongated bubble array 
data that transitions from wet to dry states. Then, the best-so-far GPRL-identified rule is applied to 
an independent circular bubble array, demonstrating the potential generality of the rule. We explain 
how GPRL uses the spatio-temporal convolved information of early bubbles to mimic the scientist’s 
perception of bubble sides, shapes, and inter-bubble influences. This research will help combine foam 
physics and machine learning to better understand and control bubbles.

Two-dimensional (2D) bubble rafts have been extensively studied since their experimental accessibility provides 
insights into naturally occurring cellular patterns1–6. The bubble assembly evolves over time to minimize the 
overall surface energy7–9. If the surface tension and boundary area solely determine the total energy, any reduc-
tion of the boundary area will lower the total energy. The bubble raft will therefore evolve towards a pattern with 
less boundary area. Given the infinite time, this surface energy minimization will bring the complete elimination 
of domains, leaving one 2D circular bubble filled with air. The structural evolution requires gas transport from 
the smaller bubbles to larger bubbles across the liquid films leading to the annihilation of the small bubbles and 
growth of the big ones10,11. For ideal dry 2D foams, von Neumann’s law is well known12: dAdt = K0(n− 6) where A 
is the area of a bubble under consideration ;K0 is a rate constant governed by the gas-solution physical chemistry, 
and n is the number of sides of the bubble. This law states that only bubbles with six sides will be stable, i.e., no 
area change in a six-sided bubble.

Since the 2D bubble raft was initially conceived as a model for grain growth in metals, the temporal change 
of average area and area distribution of the bubbles has been the focus of many experimental works2–6,13,14. 
The bubble behavior is often analyzed based on collected bubble array images over time. So far, most of the 
bubble coarsening experiments and simulations involved a large number of bubbles in probing the statistical 
behavior2,15–17. Only a few reports are available for small 2D bubble clusters11,18,19. For the small bubble array, the 
bubbles at the outer rim tend to have only 5 sides − 4 sides in contact with other bubbles and 1 side in contact 
with air − while inner bubbles prefer 6 sides as the wet foam dries.

When a bubble raft is trapped between two solid plates, the liquid will gradually evaporate from the peripheral 
bubbles exposed to air, converting the wet foam to dry foam. The distinction between the wet foam and the dry 
foam depends on the liquid content in the boundaries and vertices. Wet foams, in which liquid takes up 10% 
of the total volume, are widespread in food, cosmetics, fire extinguishers, and construction materials6. As the 
liquid content decrease, the average number of neighbors will approach six, pointing to the stable shape expected 
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from the von Neumann’s law. Due to this wet to dry transition, it is not straightforward to theoretically simulate 
the entire lifespan of the bubble raft from the deposition to the aged state. The deterministic modeling based on 
vertex movement or global energy minimization often assumes a simplified condition of fixed liquid content20–22. 
Going beyond the bubble growth mechanism study, we can apply the 2D bubble raft for materials patterning. 
Recently, micropost-based foam patterning has been demonstrated to fabricate a transparent conducting silver 
grid23. Through the design of the micropost templates, it was possible to generate foam patterns of the intended 
size and shape24–26. However, the fabrication of the micropost templates is a time and energy-consuming process. 
It is desired to find a way to print the foam-based grid patterns on a smooth surface without using any template.

Descriptive or governing rules of the aforementioned bubble phenomena in a variety of applications have been 
often studied in the well-controlled environment in laboratories, computations, or analytical models. Still, real-
world bubble undergoes complex nonlinear transitions from wet to dry conditions, which are hard to describe 
by unified rules as a whole. Here, we show that a few early-phase snapshots of bubble array can be learned by 
a glass-box physics rule learner (GPRL)27 to unravel hidden rules of future bubble array. Figure 1 illustrates 
the overall architecture of the adopted GPRL framework for unraveling bubble’s wet-to-dry transition rule. As 
opposed to the so-called “black-box” machine learning approach, the glass-box approach pursues expressive 
rules of the phenomenon and their transparent interpretability, and smooth evolutions. Without resorting to 
complex principles of foam physics, GPRL identifies plausible rules of bubble prediction with an elongated bub-
ble array data that transitions from wet to dry states. Then, the best-so-far GPRL-identified rule is applied to an 
independent circular shape bubble array, demonstrating the potential generality of the rule. We also explain how 
GPRL uses the spatio-temporal convolved information of early bubbles to help mimic the scientist’s perception 
of bubble sides, shapes, and inter-bubble influences.

Results
Bubble growth image collection.  To collect real-time bubble growth images, we deposited 2D bubble 
rafts on a glass slide using commercial foaming soap (Dial Complete). Another glass slide of the same size 
covered the bubbles such that only the bubbles at the edges meet air. All inner bubbles touch the two top and 
bottom glass slides (z-direction) and are surrounded by other bubbles (x-, y-direction). Right before the bubble 
raft immobilization between the two glass slides, the glass slides were cleaned with water. After washing, the 
access water was wiped out. The height of the vertical water film was fixed by four same-thickness spacers at the 
corners of the rectangular glass slides. The 2D bubble raft aged at room temperature. The bubble array images 
were collected by a USB digital microscope (Mustcam). The transmitted light coming from the bottom was col-
lected from the top for the optical imaging. The time interval between images was fixed at 30 s. For reference, 
supplementary movies present how the elongated and circular bubble arrays continuously transition from wet 
to dry states over time.

Convolved information index by infusing scientists’ knowledge into bubble observations.  The 
number and perimeter sizes of bubbles are constantly evolving by a combination of merging, growing, and slow 
migrations of centroids. To describe the spatially and temporally evolving bubble growth, we define a fixed Eule-
rian uniform grid system, the set of reference volumes (Fig.  2c). Unlike the Lagrangian frame, the adopted 
Eulerian frame is fixed in time to ease the bubble tracking (Fig. 2g). One reference volume may represent multi-
ple bubbles if they are small and reside within the reference volume. The position vector of the centroid of ith 
reference volume V(i) is defined by ξ(i) ∈ R

3 (Fig.  2e). We introduce local information index (denoted as 
II ∈ R[0, 1] ; Fig. 2d) which physically implies (at least indirectly) the mean of surface energy associated with a 
reference volume: E
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Figure 1.   Overall architecture of the glass-box physics rule learner (GPRL) for identifying hidden rules of 
bubble array (adapted from 27): (a) Generate local information index with raw bubble data and infused basic 
physics; (b) Externalized information convolution to generate spatio-temporal convolved information index; (c) 
Rule learning core using flexible link functions, a combination of Bayesian update and evolutionary algorithm, 
and scientist-in-the-loop for infusing scientists’ knowledge into fitness (error) measures; (d) Remember the 
best-so-far expressions of identified rules and smooth knowledge inheritance with new bubble data. Shareable 
data sets are marked by green cylinders.
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where tth is the mean bubble thickness (i.e., the fixed distance 0.25 mm between the two plates); γse is the soap 
water surface energy. In reality, γse is changing over time since water evaporation changes the concentration of 
the soap water. However, this temporal change does not impact II

(

ξ(i)
)

 since it is normalized by the total surface 
energy of the bubble assembly as in Eq. (1). Still, the bubbles near outer edges could have surface energy that 

(1)II
(

ξ(i)
)

=

∑

∀x(j)∈V(i)
γsetthP

(

x(j)

)

γsetthP(�)
=

∑

∀x(j)∈V(i)
P
(

x(j)

)

P(�)

Figure 2.   Time-lapsed snapshots of 2D bubble arrays and explanation of the derivation of convolved 
information index (II): (a) Circular bubble array in 9 mm × 9 mm domain and (b) elongated bubble array in 
16 mm × 6 mm domain. Both specimens are placed between two glass plates and the gap is 0.25 mm thick. 
The time interval between two images is 30 s; (c–g) Derivation of convolved II and reference volume with 
a fixed Eulerian uniform grid frame; (c) snapshot of a bubble experiment and extraction of perimeters and 
position vectors; (d) local II at the areal centroid of each bubble; (e) reference volume (centroid ξ ) and spatial 
convolution; (f) spatially convolved II with sign being positive to indicate potential bubble growth and negative 
to indicate a potential bubble shrinking; (g) 2D view of the Eulerian uniform grid system to define reference 
volumes (i.e., fixed in time unlike the Lagrangian frame).
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differs from the rest due to water evaporation from the air–liquid contact surface. For simplicity, we assumed 
that this will not change the evolution of the overall bubble array for this study. Such a spatial γse variation in 
II
(

ξ(i)
)

 calculation shall be a future extension topic.
P(x(j))≡ P(j) means the perimeter of j-th bubble of which centroid position vector is x(j) , and P(�) is the 

normalization-purpose perimeter of the total domain � (1,000 mm is used for all simulations herein). There is 
no restriction of P(�) as long as it can guarantee the output range, II ∈ R[0, 1] . For instance, the initial total sum 
of perimeters of all bubbles of the circular and elongated bubble array specimens of this study is about 200 mm 
and 310 mm, respectively.

Next, we seek to infuse basic physics knowledge that a smaller bubble is likely merged into adjacent larger 
bubbles. To infuse this knowledge into quantifiable values, we leverage the information integration power of 
convolution to give rise to the convolved II (denoted by II(t) ∈ R[−1, 1] ; Fig. 2f) at the current time t ,

where � means the total domain and ζ is the position vectors of the other reference volume while ξ(i) is the posi-
tion vector of i-th reference volume. ω is the Gaussian weight function with influence range L(l), (l = 1, . . . , nl) 

given by ω
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Isign(ζ, ξ(i)) is the indication function meaning relative difference between two physics quantities (here, 
perimeters) Isign

(

ζ, ξ(i)
)

= 1 if P(ζ) ≤ P
(

ξ(i)
)

 while Isign
(
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)

= −1 if P(ζ) > P
(
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)

 . Physically, Isign quanti-
fies bubbles’ competition to grow or shrink in view of observational knowledge that the larger surface energy of 
a bubble, the more likely it tends to grow by absorbing small ones nearby. The adopted Gaussian function’s role 
is to give a proximity-proportionate weights, and there is ample room to use another weighting function such as 
a bell-shape or a simple linear weight function. This study prefers the Gaussian function due to its mathemati-
cal smoothness and well-proven performance in integrating physical quantities in computational mechanics or 
nano physics27,29,31.

So far, the convolved II can incorporate spatial interactions of bubbles. But, our concern is temporal evolution 
of bubble growth and thus temporal information about bubbles’ expansion and shrinking is also important. 
Therefore, we conduct temporal convolution with one-dimensional Gaussian weight function over half temporal 
space – i.e., “half ” is for realizing that only past information affects future bubble, not vice versa. We introduce 
the spatio-temporal convolved II (denoted by II(t)ST ∈ R[−1, 1] )  at the current time t  as 
II
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Supplementary Fig. 1 shows an example plot of convolved spatio-temporal information index by using four 
different spatial and temporal influence ranges.

Link functions for the hidden rule of bubble growth rate.  The rate of how fast a bubble at a reference 
volume will grow or shrink over �t is an unknown physical quantity, of which rule is one of the learning targets 
of GPRL. In essence, we are not aware of the ground-truth rule of the bubble growth rate (denoted as V (t)

G

(

ξ(i)
)

 
meaning bubble growth rate at time t  at reference volume centered at ξ(i) ). GPRL uses additive combination of 
nl × nT link functions, each of which unknown free parameters are denoted by θ(l,k):

From the previous works (e.g.,14), the general growth rates appear to follow linear or smooth nonlinear forms, 
and thus we chose two-parameter exponential form for link functions as

where H(s) is the heaviside step function meaning H(s) = 1 if s ≥ 0 and 0 otherwise, and 
θ(l,k) =

{
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}

 . As seen in Eq. (4), the LF is a combination of two exponential forms, in the 
positive and negative regimes, respectively. This allows separate rules for how fast bubbles tend to grow or shrink. 
They may correlate or behave independently, which may be identified by GPRL. Supplementary Fig. 2 shows the 
possible shapes of the adopted exponential LF, including convex, concave, linear, or near-constant curve.

GPRL‑identified prediction rules.  As a preliminary attempt, a short-term prediction rule uses 4 observed 
snapshots, each separated by �t = 5 minutes (i.e., 10 time steps apart), to predict the bubble perimeter distri-
bution at 5 min later. This short-term prediction training is used to confirm the overall performance of the 
GPRL. In the preliminary investigation, it is found that a simple linear rate (i.e., linear velocity) form appears to 
successfully describe the short-term prediction rule. The time gap �t = 5 minutes (i.e., 10 time steps) among 
the four observed snapshots is the same as the gap between the last observed snapshot and the target. Thus, the 
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short-term prediction rule is simply given as II(t+�t)
ST ≈ II

(t)
ST +�t × V

(t)
G

(

ξ(i)
)

 . Supplementary Fig. 3 shows the 
short-term 5-min prediction result generated by the best-so-far rule of GPRL with the elongated bubble array.

Contrarily, the long-term prediction training uses the shorter 4 observed snapshots, i.e., each separated by 
�t = 2 minutes (i.e., 4 time steps apart), to predict the bubble perimeter distribution at 30 min later. In the long-
term prediction a simple linear rate rule may not hold since the gap �t = 2 minutes (i.e., 4 time steps) among the 
four observed snapshots is much smaller than the gap between the last observed snapshot and the target, 30 min 
(60 time steps). GPRL seeks to learn an additional rule about the impact of the long-term time lapse between 
the last observed snapshot and the future target by replacing �t with a new LF LLP as

where tLP is the long-term future target’s global time measured from the onset of the initial observation; the 
a d d i t i on a l  u n k n ow n  l i n k  f u n c t i on  o f  l on g - t e r m  pre d i c t i on  r u l e  i s  g i v e n  by 
LLP(tLP; θLP) = exp

(

aLP × (tLP/ttotal)
bLP

)

− 1.0. Here, ttotal = 600 time steps (i.e., 5 h) is used for normaliza-
tion; the additional free parameters θLP = (aLP , bLP) are added to the global free parameters as 
� =
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}
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 , we notice that the linear increase term (i.e., �tV
(t)
G ) is generalized by a non-

linear term (i.e., LLPV
(t)
G  ). In the short-time period, the bubble growth may be assumed linearly dependent on 

a time increment �t , but for a long-time period it is more reasonable to allow a complex nonlinear growth. This 
is the physical rationale behind nonlinear exponential form of LLP , which can sufficiently span the convex and 
concave nonlinearties as shown in Supplementary Fig. 2. Supplementary Fig. 4 illustrates the smooth evolution 
over the long-term training epochs.

Finally, GPRL predicts a future perimeter at the ith reference volume by PGPRL
(
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)

= P(�)II
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)

 where 
P(�) is the normalized constant in Eq. (1) and II(tLP)ST  from Eq. (5). The sum of observed real perimeters at the 
ith reference volume is PReal
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. Thus, the mean absolute error (MAE) is defined as 
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 where n� is the number of total reference 
volumes.

Figure 3 summarizes the long-term prediction by the best-so-far rules from GPRL with elongated bubble 
array. MAE = 0.221856 for the target epoch 10,080 (t = 40 min; Fig. 3b) and MAE = 0.20493 for the target epoch 
10,085 (Fig. 3f–g). MAE gradually decreases from 0.288474 to 0.20493 for the target epochs 10,072 through 
10,085, and the entire MAEs for 14 target epochs are summarized in Supplementary Table 1 where E(MAE) , 
Var(MAE), and Stdev(MAE) are the mean, variance, and standard deviation of the MAE, respectively, calculated 
from all organisms (i.e., all alternative rules; here 100,000 organisms) of the best-so-far generation of the Bayes-
ian evolutionary algorithm. All statistics of E(MAE) , Var(MAE), and Stdev(MAE) in Supplementary Table 1 
gradually decrease, indicating that GPRL-identified rules gradually evolve and Bayesian update works as desired 
despite some intermediate fluctuations that are typical due to stochastic nature. The error within 20% ~ 29% is 
relatively large because the wet-to-dry transition is a complex phenomenon and the training data are small. Still, 
the result demonstrates the potential of GPRL’s rule learning capability notably with just a few early snapshots 
and smooth evolution with increasing data. Supplementary Fig. 5 visually illustrates how the best-so-far GPRL 
rule uses the early 4 snapshopts to predict long-term bubble perimeters.

Since GPRL-identified rules generate images of bubble array, it is informative to compare the image similarity 
between the real observed image and the GPRL-reproduced image. Indeed, as shown in Fig. 3, it is not straight-
forward to confirm the GPRL’s performance with bare eyes. To quantitatively answer this question, we adopted 
the structural similarity index measure (SSIM)32. Based on three major characteristics of images—luminance, 
contrast, and structural, SSIM can quantify the similarity between two images; SSIM = 1 means identical two 
images (see details in Methods). Figure 3l summarizes the evolution of global SSIM confirming that GPRL 
gradually improves through the Bayesian evolutionary algorithm over the 14 target epochs. For instance, Fig. 3j 
shows local SSIM map of target epoch 10,073 with global SSIM of 0.96394 which contrasts with Fig. 3k target 
epoch 10,083 with SSIM = 0.97136. Albeit slightly, dark black areas in the 10,073 epoch’s SSIM map (Fig. 3j) are 
replaced by brighter areas (Fig. 3k). A brighter SSIM map means similar two images than a darker SSIM map. 
This quantitatively confirms that GPRL predictions improve by generating more similar images of bubble arrays 
as evolution occurs.

To confirm the applicability and potential generality of the rules identified by GPRL, the best-so-far rules 
obtained from the elongated bubble array are applied to an independent circular bubble array. As summarized 
in Fig. 4, the best-so-far GPRL rule appears to reasonably predict the 30-min future behavior of circular bubble 
array. The mean absolute error MAE = 0.0506 is calculated from the best-so-far GPRL predictions and observed 
perimeters of 900 reference volumes. The relatively small MAE of ~ 5% of the circular bubble array may be attrib-
uted to the simple shape and arrange of the circular bubble formation compared to the elongated bubble array 
(Fig. 3). Supplementary Fig. 7 shows the SSIM map (global SSIM = 0.97802) between the real observed image 
and the GPRL-predicted image of the circular bubble array, confirming the promising prediction performance 
of the GPRL-identified rules.

Supplementary Table 3 summarizes the entire steps of the future bubble prediction using the GPRL-identified 
rule expressions. It is important to note that unlike ML methods, GPRL seeks to unravel “expression” and asso-
ciated free parameters, not merely outcomes. Also, as explained in Supplementary Table 3, GPRL can obtain 
expression at each prediction step (like the individual layer of deep learning). Such a layered set of expressions 
offer GPRL with transparency and modularity, which will help researchers interpret each layer’s disparate physics 
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Figure 3.   Long-term prediction by the best-so-far rules from GPRL with elongated bubble array: (a) shows 
four real bubble arrays fed into training by GPRL. Only four observed snapshots 2 min apart are needed for 
training of GPRL; (b) Snapshot of the 30 min later target; (c) Simulated perimeter distribution of bubble array 
at the target time step predicted by the best-so-far rule of GPRL (MAE = 0.221856); (d) and (e) are real bubble 
arrays from bird’s-eye view and plan view, respectively; (f) and (g) are simulated bubble arrays (MAE = 0.20493); 
(h) Best-so-far bubble growth rate; (i) Snapshot of the real bubble array of the elongated specimen at the time 
step 85. The GPRL predictions during all training require four observed snapshots 2 min apart to predict bubble 
30 min later; (j–k) Local structural similarity (SSIM) index map of target epoch 10,073 (j) and 10,083 (k) in 
which white-colored pixel indicates perfect similarity between real and predicted bubble images whereas black 
color indicates difference; (l) Gradual improvement of global SSIM approaching 1.0 (i.e., identical images) as the 
Bayesian evolution takes place over 14 target epochs.
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and rationally replace the previous rule with a better rule. Indeed, via the proposed approach, data-learning, 
prediction, and improvement can take place in a clear “glass box” not a black box.

Discussion
The qualitative comparison between the proposed GPRL and the generalized bubble coarsening equation is 
noteworthy. From the well-proven studies5,30, von Neumann’s law has been generalized to cover nonlinear wet 
bubble behavior as

where K0 is a rate constant governed by the physical chemistry of the surfactant solution and gas; r is the average 
radius of curvature of the bottom and top surface Plateau borders; H is the height of the 2D bubble; ℓ is the width 
of thin films between two adjacent bubbles; n is the number of sides of the bubble. C = A1/2π−1/2n

−1
(
∑n

i κi) 
is the “circularity” of the bubble with κi being the curvature of its side i. Unlike the original von Neumann’s law, 
this generalization accounts for bubble’s shape and size as well as complex gas diffusion, thereby capable of well 
explaining nonlinear bubble coarsening for various cases of  n = 6 and n  = 6.

Amongst many terms in Eq. (6), the number of sides n and the circularity C are of central importance and 
determined by surrounding bubbles. Researchers identified them through prudent observations and statistical 
investigations. Without measuring these specific terms for each bubble, GPRL appears to capture and quantify 
such an inter-bubble information (i.e., surrounding bubbles, sides, and thus shapes) via convolved information 
index (II). As illustrated in Fig. 5, GPRL uses spatial convolution that takes into account surrounding bubbles 
and indirectly considers the number of sides (n) and the shape of the bubble (circularity C). In particular, the 
generalized von Neumann’s law (Eq. (6)) states that a bubble with more than 6 sides and with a circular shape 
tends to grow. To use Eq. (6), researchers need to measure n and calculate C from high-precision visual inspec-
tions. On contrary, the proposed GPRL conduct a convolution of spatially distributed bubbles (Fig. 5b) to obtain 
the growth tendancy in a quantified value, i.e., the convolved II (Fig. 5c). Positive values of convolved II (yellow 
peaks in Fig. 5c) lead to bubble growth whereas negative values (dark blue in Fig. 5c) result in bubble shrinking. 
As a quantitative example, a seemingly six-sided, circular bubble (marked in yellow box in Fig. 5a) is traced, 
and the resultant convolved II is confirmed to have a positive peak in Fig. 5c. Another non-circular shape bub-
ble with less sides (n < 6) is marked in green box in Fig. 5a and traced, which is confirmed to have a negative 
convolved II as shown in Fig. 5c. These quantitative tracings assert that without measuring individual terms of 
Eq. (6), GPRL-generated convolved II appears to distinguish the circular bubble with more than 6 sides from a 
non-circular bubble with less than 6 sides.

(6)
dA

dt
= K0

(

1−
2r

H
+

π
√
rℓ

H

)

(

(n− 6)+
6nCr
√
3πA

)

Figure 4.   Independent prediction test with the best-so-far long-term prediction rules from GPRL. The GPRL-
identified rule is applied to the independent “circular” shape bubble array: (a) and (b) are real bubble arrays 
from bird’s-eye view and plan view, respectively; (c) and (d) are simulated bubble arrays (MAE = 0.0506); (e) 
Best-so-far bubble growth rate; (f) Snapshot of the real bubble array of the elongated specimen at the target time 
step 72 (i.e., t = 36 min). Prediction gap = 30 min. The GPRL prediction requires four observed snapshots at t = 0, 
2, 4, and 6 min to predict bubble at t = 36 min.
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Nonlinear evolution of bubble growth rate.  In summary, the best-so-far 30-min bubble prediction 
rule identified by GPRL can be re-written by Eq.  (3) and Eq.  (5) where the best-so-far free parameters 
�∗ =

{

θ∗(l,k), (l, k = 1, 2); a∗LP , b∗LP
}

 and the best-so-far hyper-parameters (i.e., pre-defined parameters associ-
ated with GPRL’s global settings) are presented in supplementary Table 2.

The original von Neumann law suggests that a dry bubble’s area does not change when the number of bubble 
side ( n ) is equal to 6 whereas a bubble’s area grows when n > 6 and shrinks n < 6. As revealed by14, wet bubble’s 
area undergoes a complex growth rate depending upon a variety of factors of size, shape, and film height, thereby 
suggesting a generalized rule in terms of K0,C(t),A(t),H , ℓ in addition to n (see Eq. 6). Naturally, if a bubble’s 
state straddles over wet to dry, the underlying bubble growth rate may be complex nonlinear. This paper deals 
with real-world bubble and its transition from wet to dry states, which imply the growth rates also exhibit a 
complex nonlinear behavior. Since its onset of learning, GPRL learns and evolves the long-term bubble growth 
rule with training epochs proceed. Each panel of Fig. 6a–f shows the GPRL-identified rule of the long-term 
bubble growth at 30 min later. The initially identified rule (Fig. 6a) appears to predict the weak growth of bubble 
at a few peaks. According to the training error (see supplementary Fig. 5), the first, thus pre-mature, 30-min 
growth rule appears to have a large error although the genetic algorithm has sufficient searching conditions 
(100,000 organisms over 30 generations). As GPRL continues to train via the combination of Bayesian update and 
genetic algorithm, the GPRL-identified rules appear to capture widespread bubble shrinking (negative growth 
rate; Fig. 6b–d). As time proceeds, GPRL appears to identify a growth rule that allows “coexistence” of bubble 
expansion (i.e., positive growth rate) and shrinking (Fig. 6e–f). These GPRL-identified rules at later times (e.g., 
Fig. 6c,f) appear to be reliable, best-so-far rule as supported by the nearly converged learning curve (see the 
near plateau after the 5th training epoch in supplementary Fig. 5). This result suggests that GPRL may be useful 
in capturing the nonlinear transition of the complex bubble growth rate evolution and that the bubble growth 
rates may have a staged-pattern, i.e., widespread shrinking over a certain time period and the coexistence of 
expanding and shrinking over a later time period. The GPRL’s ability to transparently cover the relatively long 
process from the wet bubble deposition to the dry state appears to provide a unique predictive capability that 
will aid the practical foam-based line patterning.

Figures 6g–k shows the summary of the best-so-far bubble growth rate in terms of four decomposed LFs with 
different spatio-temporal influence ranges (Figs. 6g–j) and the final form of the growth rate (Fig. 6k). Comparing 
Fig. 6g through Fig. 6j, some interesting tendencies are found. The negative bubble shrinking regime (left half of 
Fig. 6g) shows a relatively strong tendency to shrinking among the spatiotemporally close bubbles (i.e., L(1) and 
T(1) ). This strong bubble shrinking tendency appears to gradually reverse to a strong expansion tendency as the 
convolved II covers a broader spatial ranges and longer times (Fig. 6j using L(2) and T(2) ). Ultimately, these four 
LFs are combined to give rise to a final best-so-far bubble growth rate rule which takes asymmetric nonlinear 
curves (Fig. 6k). It is noteworthy that all these intriguing tendencies are based on data and the best-performing 
rules identified by GPRL, not by a pre-defined first principle regarding foam physics. Also, this rule is a best-so-
far, not a fixed ground-truth rule. Rather, this rule should evolve with different experimental data and observa-
tions. Also, in the future extension, adoption of the Lagrangian frame and inclusion of moving velocity of the 
reference volume may improve the prediction accuracy, which are feasible in light of the clear interpretability of 
GPRL. The proposed GPRL approach adds a new dimension to the existing research efforts to help better under-
stand and control complex 2D bubble array during their real-world transition process from wet to dry states.

Figure 5.   Inter-bubble information extracted by the convolved information index (II): (a) Enlarged snapshot 
at time step 2 of the left part of the elongated bubble array. Yellow hexagon marks the circular shape (i.e., convex 
bubble C > 1 ; see a nearly circular shape in inlet) with nearly over six sides ( n ≥ 6) whereas green triangle 
marks the concave bubble ( C < 1 ; see a nearly rectangular shape in inlet) with less than six sides ( n < 6) . 
White numbers in inlet stand for each bubble’s processed values that mean the bubble index, (pixel perimeter)2/
(pixel area):(pixel area of the fitted eclipse)/(pixel area), pixel area, and real scaled area, respectively; (b) Local 
II of each bubble by perimeter-proportional scatter plot. Yellow and green shaded regions illustrate the spatial 
convolution ( L = 0.437 mm) centered at the hexagon- and triangle-marked bubbles, respectively; (c) GPRL-
generated convolved spatio-temporal II distribution with the local maximum near the yellow hexagon and local 
minimum near the green triangle.
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Methods
Reference volumes of the elongated and circular bubble arrays.  The elongated bubble array is 
confined by 15.306 mm 15.306 mm square domain with thickness of 0.25 mm. This global domain is divided by 
constant thickness reference volumes (0.437 mm ×  0.437 mm) resulting in 1225 (i.e., 352) reference volumes. 
This long digit value is due to the conversion process of the bubble images from pixels to actual lengths, and 
there is no specific restriction. Inside a reference volume, there may be more than one small bubble which may 
be combined to generate one local information index as explained in Fig. 2. The circular bubble array is confined 
by 13.119 mm × 13.119 mm square domain with thickness of 0.25 mm. This global domain is divided by constant 
thickness reference volumes (0.437 mm × 0.437 mm) resulting in 900 (i.e., 302) reference volumes.

Convert graphical bubble growth data into ML‑friendly data.  The microscopic images of bubbles 
were post-processed by a python script utilizing the OpenCV python library. Outside blank regions of the origi-
nal images were removed, and the cropped images were enlarged three times to easily identify the edges of the 
bubbles. The OpenCV’s median blur effect was applied to make edges smoother and the images were converted 
to black/white images with a threshold value of 127. Then, the contours of the images were identified and non-
bubbles were filtered out by our empirical conditions. The centers of mass and arc lengths were calculated from 

Figure 6.   Evolution of the GPRL-identified bubble growth rate at each target 30 min later: (a) First GPRL-
generated growth rate at target time 36 min using initial four observations (t = 0, 2, 4, 6 min) showing weak a 
few peaks; (b) Second GPRL-generated growth rate at target 36.5 min using four observations (t = 0.5, 2.5, 4.5, 
6.5 min) revealing widespread bubble shrinking rates (rate < 0); (c,d) GPRL-generated growth rate at target 37.5 
and 39 min both resembling the widespread bubble shrinking rates as (b); (e–f) Coexistence of bubble growth 
(rate > 0) and shrinking (rate < 0) revealed by GPRL. (g–k) Best-so-far bubble growth rate rules identified by 
GPRL with the 30-min prediction of elongated bubble array: (g–j) Decomposed four link functions (LFs) with 
different spatial and temporal influence ranges. The spatial ranges are [mm] and temporal ranges are [minutes]; 
(k) final bubble growth rate showing asymmetric growth rates in expansion and shrinking regimes.
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polygons fitted to the bubble contours, and both values were used as positions and perimeters of the bubbles, 
respectively. The source code of the Python script will be shared upon request to the authors.

Smooth evolution by a combination of Bayesian update and genetic algorithm.  To realize the 
smooth evolution of the rule-learning of GPRL, this paper adopts the successful combination of the fitness-pro-
portionate probability (FPP) rule of the genetic algorithm28 and the Bayesian update scheme as introduced in29. 
The key concept of the smooth evolution of the rule-learning is summarized here and a schematic illustration is 
shown in supplementary Fig. 4. According to FPP rule, The probability that an organism s (i.e., a candidate for 
the hidden rules’ free parameters � ) in the current generation is selected as a new parent for next generation is 
proportional to the fitness score ( F  ), i.e., p

(

parenti|s
)

∝ F(s), (i = 1, 2). The Bayes theorem inherits the prior 
knowledge. Given a training (i.e., a certain training epoch of bubble array data set), performing a full genetic 
algorithm leads to the “best-so-far” generation containing the best organism with the largest fitness score. The 
prior best generation’s fitness scores are denoted by F∗(s) , and S∗(�) denotes the set of � s of the prior best 
generation. F∗(s) is combined with the current fitness scores F(s; S∗(�)) according to the Bayes theorem where 
F(s; S∗(�)) means the new fitness scores obtained from the new training epoch using the prior best param-
eter set S∗(�) . With s being a unique realization of � , s and � are interchangeable, and from the FPP rule, 
p(s) ∝ F(s) or equivalently p(�) ∝ F(s). This leads to the Bayesian fitness score of an individual new organism 
( FB(s) ) as

Then, the probability that an organism s is selected as a new parent for next generation is proportional to the 
Bayesian fitness scores p

(

parenti|s
)

∝ FB(s), (i = 1, 2) . The recorded fitness scores are reused by the Bayesian 
update scheme to inherit the prior knowledge. In this fashion, all the identified LFs (i.e., � ) can smoothly evolve 
with new experimental data.

Structural similarity (SSIM) index.  To quantitatively compare the GPRL-generated image of bubble 
array to the real observed image, SSIM32 is adopted by this study. SSIM assesses the visual impact of three image 
characteristics, i.e., structure, contrast, and luminance, each of which is denoted by s

(

x, y
)

, c
(

x, y
)

, and l(x, y) , 
respectively; Here, x and y denote two images. In a multiplicative combination of these three terms, SSIM of two 
images x and y is given by

where µi is the local mean and σi is the standard deviation of image i; σxy is the cross-covariance for two images 
x and y . For identical images, SSIM becomes 1. This study utilized the built-in function “ssim” of Matlab.
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