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Characterization of exhaled 
e‑cigarette aerosols in a vape shop 
using a field‑portable holographic 
on‑chip microscope
Ege Çetintaş1,2,3, Yi Luo1,2,3, Charlene Nguyen4, Yuening Guo4, Liqiao Li4, Yifang Zhu4 & 
Aydogan Ozcan1,2,3,5*

The past decade marked a drastic increase in the usage of electronic cigarettes. The adverse health 
impact of secondhand exposure due to exhaled e‑cig particles has raised significant concerns, 
demanding further research on the characteristics of these particles. In this work, we report direct 
volatility measurements on exhaled e‑cig aerosols using a field‑portable device (termed c‑Air) enabled 
by deep learning and lens‑free holographic microscopy; for this analysis, we performed a series of 
field experiments in a vape shop where customers used/vaped their e‑cig products. During four days 
of experiments, we periodically sampled the indoor air with intervals of ~ 16 min and collected the 
exhaled particles with c‑Air. Time‑lapse inline holograms of the collected particles were recorded by 
c‑Air and reconstructed using a convolutional neural network yielding phase‑recovered microscopic 
images of the particles. Volumetric decay of individual particles due to evaporation was used as an 
indicator of the volatility of each aerosol. Volatility dynamics quantified through c‑Air experiments 
showed that indoor vaping increased the percentage of volatile and semi‑volatile particles in air. The 
reported methodology and findings can guide further studies on volatility characterization of indoor 
e‑cig emissions.

Electronic cigarettes (e-cigs) experienced widespread use in the past few years, with never-smoking adoles-
cents and young adults being the prominent consumer  base1,2. These small handheld devices generally vaporize 
e-cigarette liquids (e-liquids) that contain nicotine and flavorings dissolved in Propylene Glycol (PG) and Veg-
etable Glycerin (VG), with various volumetric ratios of these two  chemicals3. The usage of an e-cig (or ‘vaping’) 
produces a cloud of rapidly evaporating particles. The potential adverse health effects due to inhalation of these 
particles triggered numerous research  studies4. Laboratory-based studies revealed that the particle concentration, 
size and mass distribution and chemical composition of the emitted aerosols are linked to the e-liquid  type5–9, 
power ratings of the  vaporizer10–13 and environmental factors like room temperature and  humidity14–17. Earlier 
studies also quantified the dynamic changes of e-cig emissions by measuring particle volatility using different 
 methods18,19; for example, a portable computational imaging device, termed c-Air, demonstrated a direct, high-
throughput measurement  method20,21. The c-Air device collects e-cig emitted particles using an impactor-based 
sampler and a miniaturized pump. In-line  holograms22–24 of collected particles are recorded at a frame rate of 
2 fps (frames/sec) and these time-lapse holograms are further processed using a trained neural  network25,26 
that simultaneously performs auto-focusing and phase recovery. The recovered microscopic images are used to 
estimate each particle’s volume as a function of time thus enabling us to quantify the volatility of particles. These 
previous c-Air based studies were performed in laboratory settings (without any human vaping) and revealed 
that the volatility of e-cig particles changed as a function of the chemical composition of the e-liquids, such as 
the volumetric ratio of PG and VG, as well as the amount of nicotine found in the e-liquid20.

In addition to these laboratory-based experiments, several additional studies focused on the exhaled e-cig 
aerosols inside vape  shops27–31. Vape shops are retail establishments where e-cig products are sold and consumed. 
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Different from in-lab studies that focus on aerosols directly emitted from an e-cig device, e-cig aerosols found 
in vape shops are exhaled particles that went through human lungs (also known as secondhand e-cig aerosol). 
Compared to in-lab studies, the dynamics of e-cig aerosols in vape shops are much more complex due to human 
vaping, the usage of various e-cig products and the presence of non-homogenous air in the room. Additionally, 
less-controlled environmental variables such as the room temperature and humidity add other factors of com-
plexity to the dynamics of these aerosols. To provide a better understanding of e-cig dynamics, these experiments 
could be done in a setting where these environmental variables are monitored periodically.

In this work, we report direct volatility measurements on exhaled e-cig aerosols in a vape shop using the c-Air 
device (Fig. 1a). In a randomly selected vape shop in Los Angeles, USA, we performed periodic sampling of the 
indoor air quality every ~ 16 min, and analyzed the exhaled particles within the vape shop with c-Air device, 
which recorded time-lapse inline holograms of the detected aerosols. Using the phase information channel of 
the reconstructed holograms, the volumetric decay of each captured particle was measured as a function of time, 
inferring the volatility information of e-cig aerosols within the vape shop. Through these volatility dynamics 
measured with our c-Air device in the vape shop, we showed that indoor vaping resulted in an increase in the 
percentage of volatile and semi-volatile particles in air. Our results and analyses highlight the complex temporal 
dynamics of e-cig related particle emission within indoor spaces, and the presented method can be used to guide 
regulations on indoor vaping and secondhand e-cig aerosol.

Results and discussion
The field experiments were conducted in a vape shop that was randomly selected (refer to the Methods section 
for details). This vape shop occupies a single room with an employee-only area on one side of the room. Approxi-
mately two meters away from where customers and employees vaped (Fig. 1b), the c-Air device was placed on 
the display countertop to capture e-cig generated aerosols. In addition to the c-Air device used within the vape 
shop, an Aerodynamic Particle Sizer (APS) was configured to take samples every two minutes to provide an 
independent measurement of the particle size distribution within the vape shop. The measured mean particle 
diameters are reported in Supplementary Fig. S1. Note that the particle sizing resolution of the APS device is 
< 500 nm. Therefore, the relatively large variations of the mean particle diameter shown in Supplementary Fig. S1 
reflect the complexity and rapid changes of the indoor environment dynamics.

During these field experiments, c-Air was controlled by our team to collect air samples, with additional, 
on-demand measurements done upon the observation of vaping activities. The time between two consecutive 
c-Air measurements �Tk was kept between 5 and 30 min (Fig. 1c) with an average of ~ 16 min. Measurements 
were also done when no vaping was observed to ensure that �Tk was smaller than 30 min. Occasionally, multiple 
customer vaping events (e.g., continuous e-cig puffing in short periods of time) occurred between two consecu-
tive c-Air measurements and these time instances were marked for further analysis. During each measurement 
step, c-Air sampled the indoor air for 60 s (sampling ~ 13L of air) and simultaneously recorded time-lapse inline 
holograms of the collected particles at 2 fps. After the initial 60-s time window, the vacuum pump stopped and 
the hologram recording continued for an additional 30 s, totaling 90 s of imaging time at 2 fps. A deep neural 
 network20,25 was designed to reconstruct the captured time-lapse holograms (Fig. 2a), providing 180 complex-
valued reconstructed images, each with independent amplitude and phase channels. At each time frame, the 
individual particles were detected via thresholding of both the amplitude and phase channels with an adaptive 
threshold of five standard deviations above the mean value of each image. The union of these binary spatial masks 

Figure 1.  The c-Air device and the field experiments in a vape shop for aerosol volatility measurements. (a) A 
photograph of the c-Air device and the mobile phone application to interface with the device. The schematic 
of the c-Air device. (b) Floor plan of the vape shop, marking the measurement devices and e-cig users. (c) A 
schematic timing diagram of vaping events and c-Air measurements.
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Figure 2.  Calculation of the volatility of each detected aerosol: from raw holograms to volume decay rate. (a) 
A full field-of-view raw inline hologram and some example reconstructions showing the phase and amplitude 
channels separately. (b) An example aerosol image and the evolution of its holographic phase and amplitude 
channels at time points 0, τ/2 and τ, where τ is the exponential time constant (see Eq. (3)). (c) The plot of the 
active pixels in the amplitude channel as a function of time (left) and the exponential decay of the particle 
volume (right).
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from both the amplitude and the phase channels provides an approximate boundary for each detected particle’s 
region-of-interest (ROI) at each time point. Having detected a collection of ROIs for all the captured aerosols, 
the particle volume at any time point t (see e.g., Supplementary Videos 1–3) was estimated by integrating the 
phase values ( φ ) within each one of these ROIs, i.e.,

where we assumed a refractive index difference of �n = 0.4 with respect to air/vacuum; this is a reasonable 
assumption as it reflects the typical refractive index value for PG and  VG32,33. The phase values were unwrapped 
and the majority of the particles had phase values between [0, 2 π ]. In this equation, � is the illumination wave-
length (850 nm) and I is the reconstructed complex image of each particle within the ROI. The summation in 
Eq. (1) is carried over a set of lateral pixels {i,j} defined by an additional spatial mask generated specifically for the 
particles of interest. These binary masks were created by taking the pixels that are at least one standard deviation 
above the mean value of all the pixels in the ROI.

Based on Eq. (1), the volume decay of each aerosol was approximated using an exponential fit:

In Eq. (2), the exponential term was optimized to fit the volume decay of the particle, whereas the second term 
was optimized to match any time-invariant term, representing some of the particles that do not fully evaporate 
(see e.g., Supplementary Videos 2 and 3). The lifetime of the particle, τ , is further defined as:

To a first-order approximation, the retrieved κ value does not depend on the initial particle size and volume, 
and therefore can be considered a figure of merit for the volatility of an evaporating particle.

To be able to quantify particles with different sizes, the initial volume of a particle, V(t0) , right after it lands 
on the collection substrate of c-Air is divided by its corresponding lifetime τ:

giving us the volume decay rate �Vτ (µm3/sec) (see Fig. 2b, c).
During the four days of c-Air experiments in the vape shop, we conducted a total of 115 different measure-

ments, whereas the APS sampled the air at a much faster rate of one sample per two minutes. The particle emis-
sion due to human vaping is depicted by the sharp rises in particle concentration measured by APS (see the red 
bars in Fig. 3). To reveal the dynamic changes of all the collected particles (usually on the order of hundreds 
to thousands of particles per c-Air measurement), the average volume decay rate of each measurement was 
calculated and plotted in Fig. 3, blue dotted lines. Fourteen of these measurements were taken when there was 
no vaping observed, and these pre-vaping points were marked using solid dots in the plots. The volume decay 
rate (μm3/sec) quantifies a particle’s evaporation speed, and therefore higher volume decay rates indicate faster 
evaporation and higher volatility. The correlation that is observed in Fig. 3 between the dynamics of the mean 
volume decay rate and the APS measurements reports a link between the e-cig emissions of vapers and aerosol 
volatility (Fig. 3). Also, note that the majority of local minimums and maximums of the c-Air measured volume 
decay rates reported in Fig. 3 for different measurement days match the corresponding local extreme points in our 
APS measurements. The mismatch between APS measurements and our c-Air analysis results might be due to the 
nonhomogeneous air circulation within the room, since these devices were placed at different spatial locations.

Given the complex chemical composition of the captured e-cig aerosols (from various e-liquids), we defined 
three categories of aerosols according to the volumetric evolution of the imaged particles: volatile, semi-volatile 
and non-volatile particles (see Fig. 4 and Supplementary Videos 1–4). A particle is defined to be volatile if it fully 
evaporates (i.e., its volume gets smaller than an empirical threshold of 0.1 μm3 before the end of each measure-
ment) and its volume exhibits a smooth exponential decay (see e.g., Supplementary Video 1). Since the c-Air 
device records an additional set of 60 frames after the air sampling is complete, all the volatile particles that were 
captured by c-Air fully evaporated within our observation time window. The mean and standard deviation of the 
volume decay rates of all the volatile particles captured in 115 measurements were used to further differentiate the 
remaining particles, forming an empirical definition for semi-volatile particles, i.e., they exhibit an initial volume 
decay, followed by a second phase where they remain larger than 0.1 μm3 in volume. Semi-volatile particles can 
be coagulated particles or particles with solid  cores10,34 (see e.g., Supplementary Videos 2 and 3). The remain-
ing particles that did not exhibit detectable evaporation were defined as non-volatile particles. These particles 
exhibited a very small volume decay rate which was empirically found to be less than 0.05 μm3/sec. For these 
non-volatile particles, the subtle changes in their measured volumes as a function of time might be related to the 
deformation of the sampling pad after the particle’s impaction (see Supplementary Video 4). Also, the changes 
in moisture, especially with humectants like PG and VG, might also result in subtle differences in the measured 
volumes. For each c-Air measurement point, the percentage of volatile and semi-volatile particles combined is 
color-coded and shown in Fig. 3. The change in the ratio of the volatile particles to other detected particles was 
observed to be similar to the time dynamics of the volume decay rate that we measured using c-Air (see the 
colorbar in Fig. 3 for each measurement day). This indicates that the percentage of the volatile particles within 
the detected aerosols can be used as an indirect measure of aerosol volatility and volume decay rate.

To further expand our analysis, we compared the statistical distribution of the volume decay rate of the par-
ticles captured post-vaping and pre-vaping by applying a Wilcoxon rank-sum  test35, as shown in Supplementary 
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Fig. S2, which tests the null hypothesis that the volume decay rates are sampled from continuous distributions 
with equal medians. A statistically significant increase in the volume decay rate of post-vaping aerosol measure-
ments was observed with p < 0.05. As part of this analysis, we focused on three pre-vaping measurements, i.e., 
a, b and c marked in Fig. 3, that were conducted while no human vaping was observed in the vape shop. Given 
the dynamic indoor environmental conditions throughout a day, in terms of e.g., temperature, humidity and 
opening/closing of the outside door, these vape-free measurements within the vape shop can be considered as 
a background state for comparison purposes. An increase in aerosol volatility and volatile particle ratio can be 
clearly seen in the following three subsequent measurements points a’, b’ and c’ (see Fig. 3) during which the 
customers in the shop vaped, significantly increasing the e-cig generated aerosols. Note that these time spots 
were not the only vaping events observed in our field testing. Furthermore, dense and rapid vaping events within 
the vape shop also increased the aerosol volatility that we measured. For example, a continuous burst of vaping 
was observed close to our c-Air device on March 9th, at around 14:30 PM (Fig. 3). As a result of this continuous 
vaping within the shop, a sharp rise in  PM10 emission, particle volatility, as well as volatile particle ratio, is clearly 
observed in Fig. 3. In this case, c-Air measurements revealed that > 95% of the particles fell in the category of 
volatile particles and the measured volume decay rates were also notably higher compared to other measure-
ment points within the same day, which shows how dense, successive vaping events can significantly increase 
the aerosol volatility within a room.

Several limitations of the presented research might affect its generalizability. First, the chemical composi-
tion of secondhand e-cig aerosols remained unknown during the field testing (involving unknown, random 

Figure 3.  The change of the mean volume decay rate and the percentage of volatile aerosols throughout 
different days of experiments. Solid points refer to the pre-vaping measurements. a , b and c mark the data 
points where there was no observation of a vaping event prior to c-Air sampling, whereas, a’, b’ and c’ mark the 
measurement points where vaping was observed in the vape shop.
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customers/vapors), and the environmental variables such as the room temperature and humidity were not 
measured/controlled. Second, the devices we used (APS and c-Air) were placed at different spatial locations. 
Without sufficient ventilation, the measurement results of the two devices might not be exactly comparable. 
Third, the sampling using c-Air device was manually controlled, providing variable time intervals between 
vapes and measurements. Finally, the interactions between the droplets and the sampling substrate remained 
uncontrolled; liquid diffusion inside the sampling pad might generate some uncertainty on our estimation of 
volatility. Further improvements of the c-Air device and more controlled experiments (without impacting the 
cost-effectiveness and the field-portability of the measurement system) can be used to provide more insightful 
information regarding indoor vaping.

In conclusion, we conducted field experiments in a vape shop to characterize the volatility of e-cig emission 
using a field-portable, high-throughput device which can sample aerosols at a rate of 13 L/min and continuously 
image the collected particles on an impaction-based sampler. These field experiments were carried out in a vape 
shop where the customers and employees vaped their own e-cigs, resulting in the vaporization of e-liquids with 
different chemical constituents. The c-Air device enabled us to image these microscale particles generated by 
e-cigs during their evaporation lifetimes, allowing us to quantify their numbers, size and volatility. These field 
experiments revealed that vaping in the vape shop resulted in an increase in the percentage of volatile and semi-
volatile aerosols during the successive post exhalation time.

Methods
Vape shop selection. The vape shop was randomly selected from 67 candidate vape shops in Los Angeles 
County, USA. The candidate list was generated by a Yelp search of ‘vape shop’, while only keeping the stores that 
provide solely e-cigs. This selected vape shop, located in Santa Clarita, California (USA), has a total store volume 
of 205  m3 and is in a multi-unit plaza with a central ventilation that was not in use during our experiments.

Portable holographic microscope for aerosol collection and quantification. The c-Air device 
captures the aerosols in the vape shop and records time-lapse inline holograms of the collected aerosols. A 
miniaturized vacuum pump inside the c-Air device creates an air stream at a flow rate of 13 L/min towards a 
disposable impactor (Air-O-Cell Sampling Cassette, Zefon International, Inc.), providing a cut-off diameter of 
2 µm. A portion of the aerosols in the air stream are collected on the sticky transparent coverslip due to iner-
tial  impaction21. The collected particles are illuminated using a vertical-cavity surface-emitting laser (VCSEL) 
diode (OPV300, TT Electronics, �peak = 850 nm ) to create in-line holograms of the deposited aerosols on the 
transparent substrate. The holograms are digitally recorded at 2 fps using a complementary metal–oxide–semi-
conductor (CMOS) image sensor chip (Sony IMX219PQ, pixel pitch 1.12 µm). A Raspberry Pi Zero W single-
board computer within c-Air is used for interfacing with the CMOS image sensor, the illumination source and 
the vacuum pump.

PM10 mass concentration estimation. An Aerodynamic Particle Sizer (APS 3321, TSI Inc.) was also 
used in our field tests to provide real-time measurements of particulate matter mass concentration. The APS 
device provides a measurement of the particle size distribution, covering the particles ranging from 0.5 to 
19.8 µm.  PM10 (i.e., particulate matter with an aerodynamic diameter of ≤ 10 µm) mass concentration was esti-
mated using APS data in the size range of 0.5–10 µm by assuming spherical particles with a density of 1.1 g/
cm336,37.

Figure 4.  Characteristic volume changes of a (a) volatile, (b) semi-volatile and (c) non-volatile particle, 
sampled within the vape shop.
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Data availability
The deep-learning models reported in this work used standard libraries and scripts that are publicly available in 
TensorFlow. All the data and methods needed to evaluate the conclusions of this work are present in the main 
text and supplementary information. Additional data can be requested from the corresponding author (A.O.).
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