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Association of lipid rafts cholesterol 
with clinical profile in fragile X 
syndrome
Amanda Toupin1, Sérine Benachenhou1, Armita Abolghasemi1, Asma Laroui1, 
Luc Galarneau1, Thamàs Fülöp2,3, François Corbin1 & Artuela Çaku1*

Fragile X syndrome (FXS) is the most prevalent monogenic cause of intellectual disability and autism 
spectrum disorder (ASD). Affected individuals have a high prevalence of hypocholesterolemia, 
however, the underlying mechanisms and the clinical significance remains unknown. We hypothesized 
that decrease in the plasma cholesterol levels is associated with an alteration of cholesterol content 
within the lipid rafts (LRs) which ultimately affects the clinical profile of FXS individuals. The 
platelets LRs were isolated by ultracentrifugation on sucrose gradient from 27 FXS and 25 healthy 
controls, followed by measurements of proteins, cholesterol, and gangliosides content. Autistic and 
adaptive behaviour of affected individuals were respectively assessed by the Social Communication 
Questionnaire and Adaptive Behavior Assessment System. Our results suggest a decrease in the 
cholesterol content of LRs in FXS individuals as compared to controls. As opposed to controls, LR 
cholesterol was significantly associated with plasma total cholesterol (r = 0.47; p = 0.042) in the 
FXS group. Furthermore, the correlation between LRs cholesterol and the clinical profile showed 
a significant association with autistic traits (r = − 0.67; p < 0.001) and adaptative behavior (r = 0.70; 
p < 0.001). These results support the clinical significance of LR cholesterol alterations in FXS. Further 
studies are warranted to investigate the implication of LRs in FXS pathophysiology and ASD.

Fragile X Syndrome (FXS), an X-linked neurodevelopmental disorder, is the most prevalent monogenic cause of 
inherited intellectual disability (ID) and autism spectrum disorder (ASD)1. In most cases, the mutation results 
from a large expansion of CGG repetitions in the 5’ untranslated region of the fragile X mental retardation 1 
(FMR1) gene leading to a deficit of the Fragile X Mental Retardation Protein (FMRP), an ubiquitary RNA-
binding protein highly expressed in the  brain2,3. FMRP controls the translation of many mRNAs encoding the 
proteins critical for synaptic structure and  functions4. Studies in fmr1 knockout (KO) mice have shown that 
FMRP deficiency triggers: an upregulation of signaling pathways related to the group 1 metabotropic glutamate 
receptor (mGluR1 and mGluR5)  activation5,6; an excessive internalization of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR); and a reduction of N-methyl-D-aspartate receptors (NMDAR)7,8. 
All the mentioned factors contributes to exaggerated long-term depression (LTD), a hallmark of  FXS9,10.

Lipid rafts (LRs) are dynamic structures enriched in cholesterol, proteins, and gangliosides that transiently 
move within the plasma membrane in order to facilitate a cellular  response11. These platforms recruit impor-
tant synaptic receptors including mGluRs, NMDAR, and  AMPAR12. Indeed, LRs facilitate protein–protein and 
protein-lipid  interactions13. Moreover, LRs play crucial roles in the compartmentalization of signaling molecules 
on the cell membrane and intracellular  trafficking14–17. Studies in rat brain tissues have shown that cholesterol 
depletion alters the morphology of dendrites (reduce the number and increase the size of dendritic spines) and 
modulates the synaptic activity mediated by AMPAR and  NMDAR18,19. To the best of our knowledge, no previous 
study has investigated the implication and correlation of the LRs cholesterol content with the cognitive dysfunc-
tion and autistic traits of the FXS affected humans.

Each individual with FXS is unique and displays variable degrees of ID, adaptive and aberrant  behaviors20. 
The clinical profile of the FXS affected individuals is frequently associated with hypocholesterolemia, a condition 
characterized by plasma cholesterol lower than the 5th centile of a normalized population. Specifically, 90% of 
FXS individuals have plasma cholesterol below the 50th centile of the normalized population and up to 30% fulfill 
the criteria of  hypocholesterolemia21. Our recent report suggested a decrease of proprotein convertase subtilisin/
kexin type 9 (PCSK9) activity linked to an alteration of serine-phosphorylation as an underlying mechanism of 
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FXS associated  hypocholesterolemia22. Indeed, PCSK9 is implicated in the degradation of low-density lipoprotein 
(LDL) receptors, and therefore a decrease in PCSK9 activity is associated with low plasma cholesterol. Moreover, 
our results suggest a negative correlation between plasma cholesterol and aberrant behavior as evaluated by the 
Aberrant Behavior Checklist-Community (ABC-C) total  score21. Since cholesterol is essential for cell membrane 
integrity, synaptic development and neurotransmitter release, a decrease of plasma cholesterol could alter the 
content in cholesterol of LRs and potentially contribute to the FXS  physiopathology23,24.

In humans, brain tissue is barely accessible. Platelets have been described as a plausible surrogate to study 
neurons integrity in living animals and  humans25. Platelets express many receptors and markers that are also 
found in neurons and thus may recapitulate the defects observed in FXS neurons, such as glutamate signaling 
 pathways25–28. Moreover, FMRP levels quantified in the platelets of the FXS affected individuals are lower than 
those observed in the healthy controls and significantly correlate with cognitive  functions29.

Perturbations of plasma cholesterol have been reported in several cognitive disorders such as  Alzheimer30,31, 
Smith-Lemli-Opitz-Syndrome32,  Parkinson33, and  Huntington31,34. Moreover, perturbation of the cholesterol 
content of LRs in platelets has been revealed in neurodevelopmental and neurocognitive  diseases35–37. However, 
the implication of LRs in the FXS human pathophysiology remains unclear. This study thus aims to explore the 
lipid content of LRs in platelets of FXS individuals as compared to healthy individuals. We also investigated the 
relation of LRs cholesterol with lipid profile and cognitive functions in FXS.

Materials and methods
Study design and population. The design and population of the LipidX study have been described 
 previously21. Characteristics of FXS and control participants are shown in Supplementary Table 1. Briefly, 27 
FXS individuals and 25 healthy individuals were recruited at Centre de Recherche du Centre Hospitalier Uni-
versitaire de Sherbrooke (CHUS), between January and June 2015. Individuals with acute conditions, disorders 
affecting lipid metabolism, or treated with lipid-lowering drugs were excluded. The LipidX study was approved 
by the Scientific and Ethics Board of the local research center. All participants provided informed consent prior 
to participation in the study or by the tutor/caregiver on behalf of the mentally disabled minors and adults with 
FXS. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the 
Institutional Review Board of Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke (protocol 
code 2015-946, 14-220 and date of approval January 28th 2015).

Clinical and metabolic evaluations. Medical history and anthropometric measures including weight, 
height, body mass index (BMI) were obtained for each participant. The clinical profile of each FXS participant 
was assessed by the following questionnaires and completed by their caregiver: (1) age-adjusted Adaptive Behav-
ior Assessment System – Second Edition (ABAS-II); (2) Aberrant Behavior Checklist-Community (ABC-C); (3) 
Social Communication Questionnaire (SCQ) and (4) Anxiety, Depression, and Mood Scale (ADAMS). Fasting 
blood samples were collected in acid citrate dextrose (ACD) (BD vacutainer) from all participants to perform 
plasma lipid analyses and platelet isolation. Specifically, the following tests were performed at the clinical bio-
chemistry laboratory of the CIUSSS de l’Estrie-CHUS: plasma total cholesterol (TC), triglycerides (TG), C-HDL 
were measured by enzymatic methods (Modular Roche P800); C-LDL was calculated using the Friedewald for-
mula; apolipoprotein B (ApoB) and apolipoprotein A (ApoA) were determined by immunoturbidimetric assays 
(Roche Diagnostics, Cobas 501 analyser). FMRP quantitation was performed on platelets by Western Blot as 
previously  described29.

Lipid rafts preparation. Platelet isolation. Platelets were isolated from the whole blood as previously 
 described29. Briefly, the platelet-rich plasma (PRP) was separated from whole blood after a 10 min centrifu-
gation at 300 xg at room temperature and collected without disturbing the buffy coat. The platelet count was 
then performed on a flow cytometer analyzer (DXH-9000, Beckman Coulter®). After a 15 min centrifugation at 
2,400 xg, the platelet pellet was isolated and then washed twice in phosphate-buffered saline (PBS) containing 
EDTA 5 mM (Invitrogen by Thermo Fisher Scientific).

Lipid rafts isolation. Lipid rafts were isolated according to previously described  protocols38,39. Briefly, the plate-
let pellet was disrupted in lysis buffer (PIPES 0.05 M, EDTA 0.025 M, NaCl 0.75 M, Protease inhibitor P8340, 
Triton X-100 1%) for 30 min and homogenized using a syringe and needle 27G (Terumo). The platelet lysate was 
mixed with 2 mL of 80% sucrose followed by two 4 mL layers containing respectively 30% and 5% sucrose to 
allow a gradient formation during the centrifugation. The lysate was centrifuged at 37,000 RPM for 18 h at 4 °C 
(Beckman Optima LE-80 K, Beckman Coulter, Fullerton, CA with the rotor SW40, Beckman Coulter). After the 
centrifugation, 12 fractions of 1 mL were gently collected from the top (F1) through to the bottom layer (F12). 
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The enriched LR fractions were identified by monitoring the elution of flotillin-1 by Western Blot. Briefly, 10 µL 
of each fraction were separated on a 4–10% gradient SDS polyacrylamide gel and proteins were transferred on 
nitrocellulose. Membranes were blocked in 5% non-fat dry milk, incubated with anti-flotillin-1 (1:1,000) fol-
lowed by anti-rabbit IgG coupled to Alexa FluorVR 680 (1:10,000). Fluorescence was revealed using an Odyssey 
Infrared Imaging System (LI-COR Biosciences). Semi-quantification of flotillin-1 was performed with Image-J 
software (Fig. 1, Supplementary Figs. 1A and 2)40,41. Since LRs are enriched in flotillin-1 and ganglioside GM1, 
the overlap in flotillin-1 expression and ganglioside GM1 abundance was used as the criteria to identify LR frac-
tions (Supplementary Figs. 1–3). The LR fractions were kept frozen at –80 °C before further analyses.

Lipid raft components measurement. Cholesterol measurement was performed using the Amplex® Red Cho-
lesterol Assay Kit (Life Technologies). LRs fractions were diluted 4 times in the reaction buffer and 50 µL were 
used for the assay. Fifty microliters of working solution (300 µM Amplex Red reagent, 2 U/mL HRP, 2 U/mL 
cholesterol oxidase, 0.2 U/mL cholesterol esterase) was added to the samples. After an incubation of 30 min, at 
37 °C in the dark, the fluorescence was measured at 560 nm in a microplate reader (PR 3100 TSC, Bio-Rad). Dot-
blot was used to measure gangliosides: 200 µL of the standards Ganglioside GM1, Asialo (Santa Cruz) (0.000; 
0.313; 0.625; 1.250; 2.500; 5.000 ng/mL) and samples (diluted 5 times) were loaded on nitrocellulose. Each dot 
was washed three times with PBS, blocked with 5% non-fat dry milk in PBS for 1 h at room temperature, washed 
twice with PBST (PBS with 0.05% Tween 20) and incubated overnight at 4 °C on a shaker with 1 µg/mL chol-
era toxin B/horseradish peroxidase conjugate (HRP-CTB) (Molecular Probes, Thermo Fisher) in 5% non-fat 
milk. The following day, membranes were washed twice with PBST and once with PBS then revealed using an 
enhanced chemiluminescence (ECL) detection kit on a ChemiDoc system (Bio-Rad) (Supplementary Fig. 1B 
and 3)38. Protein concentration was determined using the Micro BCA assay kit as described by the manufacturer 
(Pierce 2020).

Statistical analyses. Descriptive analyses were performed on demographic variables. Depending on the 
normality distribution assessed by the Shapiro–Wilk test, the Mann–Whitney U test was used for the compari-
son between the two groups. The Pearson correlation coefficient (r), univariate linear, and multiple regressions 
were respectively performed to investigate the association and to predict clinical profile. Statistical significance 
was established at an alpha level of rejection of 0.05. Multiple testing correction was performed using FDR 
(Benjamini and Hochberg). Outliers were removed from the analyses according to the ROUT method (Q = 1%) 
in Graphpad Prism software version 9 (La Jolla, CA, USA)42. Other statistical analyses and graphics were per-
formed in R (version 4.0.5, CRAN).

Results
Distribution of the lipid rafts components. The average distribution of LRs components including 
cholesterol, proteins, and gangliosides GM1, all adjusted to obtain concentrations expressed in one million 
platelets are shown in Fig. 1. The same pattern of distribution is obtained for both controls and FXS supporting 
technical consistency in the preparation. Specifically, cholesterol concentration has a bimodal distribution with 
the first peak in fractions F3 to F5 (Fig. 1B) and the second peak in bottom fractions, F8 to F12 (Fig. 1A). The 
proteins are more concentrated in bottom fractions F8 to F12. (Fig. 1C), while gangliosides GM1 showing a peak 
in top fractions F3 to F6 (Fig. 1D). The combined fractions 2 to 6 were referred as LRs according to the overlap of 
flotillin-1 enrichment and high gangliosides GM1 content (Fig. 1E). LRs fractions were associated with the first 
peak of cholesterol distribution (Supplementary Figs. 1–3).

Overall, FXS individuals have lower LRs cholesterol and ganglioside GM1 as compared to controls: 0.005 
vs 0.007 (µg/mL)/million platelets, and 0.013 vs 0.019 (ng/mL)/million platelets, respectively, although the dif-
ferences are not statistically significant (Fig. 1). Total cellular protein, cholesterol and ganglioside GM1 content 
obtained from all fractions summed together do not show a significant difference between FXS and controls.
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Lipid raft cholesterol and clinical profile. LRs cholesterol levels of FXS affected individuals positively 
correlate with ABAS total score (r = 0.70; p < 0.001) (Fig. 2A) as well as with three ABAS subdomains: conceptual 
(r = 0.67; p < 0.001), social (r = 0.66; p = 0.001) and practical (r = 0.62; p = 0.004). Furthermore, LRs cholesterol 
significantly correlates with SCQ score (r = − 0.67; p = 0.002) (Fig. 2B). Specifically, individuals with lower cho-
lesterol have lower adaptative functions as shown by ABAS scores and more ASD symptoms as shown by SCQ 
score. We also performed multiple linear regressions adjusting for age, body mass index, and FMRP (absence 
or presence) to explore the effect of LRs cholesterol on ABAS and SCQ scores. The results are still significant for 
ABAS total score, ABAS conceptual and social subscales as well as SCQ score (Supplementary Table 2). However, 
LRs cholesterol is not associated with ADAMS and ABC-C scores.

Associations between lipid rafts cholesterol and lipid profile. Associations between LRs choles-
terol and lipid profile are shown in Fig. 3. In the FXS cohort, LRs cholesterol positively correlates with plasma 
total cholesterol (r = 0.47, p = 0.042), LDL-C (r = 0.49, p = 0.039), ApoB (r = 0.47, p = 0.048), and ApoA1 (r = 0.53, 
p = 0.015). Meanwhile, no significant correlations between these parameters are observed in the control cohort. 

Figure 2.  Association of LRs cholesterol with (A) ABAS total score and (B) SCQ score. r: Pearson correlation 
coefficient.

Figure 1.  Distribution of LRs and non-LRs components in FXS and controls. Lysates of platelets extracted 
from controls (gray) and FXS (black) were separated on a sucrose gradient and monitored for: (A) cholesterol; 
(B) cholesterol from (A) from F1 to F6; (C) proteins; (D) gangliosides GM1; (E) Flotillin-1. All parameters are 
normalized by millions of platelets.
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In addition, no significant correlation is obtained between total cell cholesterol (sum of all fractions) and plasma 
total cholesterol, in neither FXS affected individuals, nor in control healthy individuals.

Discussion
Lipid rafts are plasma membrane microdomains rich in cholesterol that are important for signal transduction. In 
neurons, LRs serve as ordered platforms that coordinate signaling molecules through membrane receptors and 
are involved in synaptic transmission. LRs from human platelets have been investigated in cognitive disorders 
such Alzheimer  disease43. Indeed, platelets have been used as a surrogate to study neuron function of human 
brain in several neurocognitive and neurodevelopmental disorders including Alzheimer disease or  ASD43,44. The 
present study reports the first investigation of LRs from platelets of FXS participants as compared to healthy 
controls.

Figure 3.  Association of LRs cholesterol with (A) plasma total cholesterol in FXS; (B) plasma total cholesterol 
in controls; (C) ApoB in FXS; (D) ApoB in controls; (E) ApoA1 in FXS and (F) ApoA1 in controls. r: Pearson 
correlation coefficient.
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Our data show a slight reduction of LRs cholesterol in FXS as compared to healthy controls. Although the 
difference was not statistically significant, the direct correlation of LRs cholesterol with adaptative functions 
suggests clinical importance. Specifically, LRs cholesterol correlated positively with adaptative behavior as evalu-
ated by ABAS: FXS participants with lower LRs cholesterol displayed a lower degree of three adaptive domains 
including practical (r = 0.62), social (r = 0.66), and conceptual skills (r = 0.67). In a previous study, we reported a 
positive link between plasma cholesterol and ABAS practical domain  (rs = 0.49)21, while the present study reports 
a stronger association between LRs cholesterol and all adaptive domains. In addition, lower LRs cholesterol was 
associated with a higher score of autistic traits as evaluated by the SCQ questionnaire. These data agree with 
our previous report in ASD population that showed an increase of cognitive impairment risk when the plasma 
cholesterol is below the 10th centile of normalized  population45. Taken together, these findings suggest a poten-
tial mechanistic implication of low cholesterol in cognitive dysfunction of FXS individuals probably through 
disruption of cholesterol content in LRs.

In neurons, LRs are implicated in synapse morphology and  functions18. Particularly, LRs cholesterol is impor-
tant for receptor trafficking and interaction of signaling molecules with their  receptors18. A study in fmr1 KO 
mice showed a reduction of mGluR1 internalization (by caveolin-mediated pathway) after cholesterol depletion 
of LRs, followed by a higher expression of mGluR1 in hippocampus  neurons46. Another study showed that cho-
lesterol depletion of LRs resulted in a significant reduction of NMDA receptors in cultured wild rat  neurons47. 
Importantly, the excessive signaling of mGluR1 is a hallmark of FXS and a recent report suggests an associa-
tion with NMDA receptor  hypofunction7. Similarly, in vitro research suggests an alteration of platelet function 
following cholesterol depletion of  LRs48. We thus hypothesize that LRs from platelets are a study model of LRs 
from neurons. Indeed, a reduction of cholesterol content in LRs might contribute to FXS pathophysiology and 
ultimately to clinical profile.

Considering the high prevalence of hypocholesterolemia in FXS and ASD as well as the reported link of 
plasma cholesterol with clinical profile, we explored whether plasma level of cholesterol is associated with cho-
lesterol content in  LRs21,45. Our results show a significant direct association between the plasma total cholesterol 
(including ApoB and ApoA1 containing lipoproteins) and LRs cholesterol only in the FXS group. In contrast, 
no significant association is obtained between plasma total cholesterol and total cell cholesterol in neither FXS 
nor control group. We believe thus that abnormal distribution of membrane cholesterol into lipid rafts might be 
the underlying cause of low cholesterol content in LR, observed in FXS. Indeed, cell cholesterol is determined 
not only by in situ synthesis but also by cellular influx and efflux mediated by LDL and HDL  respectively49. 
ApoB represents lipoproteins (mainly LDL) delivering hepatic cholesterol to the peripheral tissues, while ApoA1 
(mainly HDL) mediates the reverse transport of cholesterol from peripheral cells to the  liver49–52. The cholesterol 
distribution into lipid rafts is regulated by Apolipoprotein A-I binding protein (AIBP)53. The association of AIBP 
with ApoA1 or HDL-C allows a rapid and effective efflux of cholesterol through an interaction with ATP-binding 
cassette transporter type A1 (ABCA1) or through cytoskeleton  changes54. In vitro and in vivo animal studies 
suggest that high HDL levels are associated with low LRs cholesterol content. However, AIBP does not promote 
cholesterol efflux in the absence of ApoA1 or  HDL53. The finding that FXS had significantly lower HDL-C 
compared to healthy controls might explain the direct link observed between ApoA1 and LR cholesterol in FXS 
group, whereas correlation results in our control group did not corroborate with previous in vitro  findings55. The 
limited number of participants or the cellular model used in the present study (platelets) might account for this 
discrepancy. However, this different interaction of cholesterol pools in FXS as compared as controls highlight 
the possibility of an impairment of cholesterol regulation in LRs. Further studies with labeling technics are war-
ranted in FXS to validate the hypothesis that an alteration of control mechanisms of cholesterol influx and efflux 
alters the distribution of cholesterol into  LRs56.

It is noteworthy to mention brain cholesterol is synthesized in situ and is independent from peripheral cho-
lesterol  metabolism57. Although two pools are separated by hematoencephalic barrier, the same genes are impli-
cated in cholesterol metabolism and thus similar lipid alterations might be present in both, brain and peripheral 
circulation. Several studies in neurodevelopmental and neurodegenerative conditions reported associations 
between plasma cholesterol and cognitive or behavioral  functions57–60. We hypothesize that brain cholesterol 
levels are also decreased in FXS and might trigger to some extend the clinical profile. Since FMRP regulates the 
expression of many cytoplasmic proteins; it might be involved in lipid synthesis and transport and its absence 
might dysregulate lipid rafts properties. However, further studies are needed to fully understand the interplay 
between FMRP and cholesterol metabolism, particularly if it regulates sterol regulatory element binding proteins.

Few study trials of lovastatin have been performed on FXS individuals, specifically short-term treatment 
periods showing discrepancy results of phenotype  improvement61,62. It has been shown that lovastatin inhibits 
the ERK pathway in FXS resulting in a normalization of protein  synthesis28,63. On the other hand, lovastatin is 
a cholesterol-lowering agent that inhibits 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the 
rate-controlling enzyme of cell cholesterol  biosynthesis64. It has been shown that lovastatin decreases cholesterol 
content in LR of dendrites of cultured hippocampal neurons and cholesterol depletion following statin treat-
ment leads to a gradual loss of  synapses18. In FXS, there is an abnormally high density of dendritic spines that 
are usually long and  immature65,66. In the light of our results, we can hypothesize that lovastatin might lead to 
a decrease in the number of these abnormal spines through depletion of cholesterol content in LR. This might 
justify short-term treatments with lovastatin in FXS. However, we should be careful when considering long-term 
treatment periods with statins in these individuals, especially those with hypocholesterolemia.

Some limitations should be considered in the present study. First, although, we used platelet as a model to 
investigate neurons LRs, we agree that biopsies of neuronal tissue such as motor endplates or peripheral nerves 
might strengthen the conclusions. However, considering the invasive procedure, it would be difficult to justify 
of human biopsies beyond clinical necessity. As an alternative, the implication of cholesterol content in LRs in 
FXS pathogenesis might be further investigated in fmr1 KO mice neurons. Second, the small sample size of each 
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group limited us to conclude significant differences between LRs components from FXS and controls. Moreover, 
the small number of FXS females, limited our conclusion about the reflection of sex effect in our results. The 
sample size was primarily calculated to detect a difference in plasma cholesterol of the FXS population (LipidX 
study)21. A larger study of FXS individuals is warranted to validate the correlations of LRs components with lipid 
and clinical profiles. Third, since lipid rafts are enriched in other lipids, such as, sphingolipids or saturated fatty 
acids, a deeper lipidomic analysis would have improved the interpretation of our  findings67. Fourth, since we 
did not have controls affected by hypocholesterolemia, it remains unclear whether our results are caused by the 
pathogenesis of FXS or is a consequence of hypocholesterolemia in FXS individuals for instance, demyelination 
due to the lack of cholesterol and leading to clinical manifestations.

In summary, this study was a first attempt to investigate composition of LRs from platelets of FXS partici-
pants, specifically the association of LRs cholesterol with cognitive functions of FXS such as adaptative behavior 
and autistic profile. Our results support the use of platelets as a surrogate model for the neuron to study the 
implication of LRs alteration in FXS. However, larger studies including lipidomic analysis of LRs are warranted 
to validate our results not only on FXS, but also in other neurodevelopmental disorders such as ASD. Moreover, 
bioinformatic studies investigating the link between fmr1 and genes involved in the lipid metabolism might 
further elucidate the implication of FMRP in hypocholesterolemia pathogenesis.

Data availability
All data generated or analyzed during this study are included in this article. If any additional information is 
required, it may be obtained by request from the corresponding author.
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