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Symbolic iteration method based 
on computer algebra analysis 
for Kepler’s equation
Ruichen Zhang*, Shaofeng Bian & Houpu Li

The Kepler’s equation of elliptic orbits is one of the most significant fundamental physical equations 
in Satellite Geodesy. This paper demonstrates symbolic iteration method based on computer algebra 
analysis (SICAA) to solve the Kepler’s equation. The paper presents general symbolic formulas to 
compute the eccentric anomaly (E) without complex numerical iterative computation at run-time. 
This approach couples the Taylor series expansion with higher-order trigonometric function reductions 
during the symbolic iterative progress. Meanwhile, the relationship between our method and the 
traditional infinite series expansion solution is analyzed in this paper, obtaining a new truncation 
method of the series expansion solution for the Kepler’s equation. We performed substantial tests on 
a modest laptop computer. Solutions for 1,002,001 pairs of (e, M) has been conducted. Compared with 
numerical iterative methods, 99.93% of all absolute errors δE of eccentric anomaly (E) obtained by our 
method is lower than machine precision ǫ over the entire interval. The results show that the accuracy 
is almost one order of magnitude higher than that of those methods (double precision). Besides, the 
simple codes make our method well-suited for a wide range of algebraic programming languages and 
computer hardware (GPU and so on).

As one of the fundamental physical equations in Geoscience, the Kepler’s equation in elliptical orbits describes a 
relationship of the eccentric anomaly (E), the eccentricity (e), and the mean anomaly (M)1, in which M is related 
to the time. For elliptic orbits, it is shown as Eq. (1), and the contours of the Kepler’s equation with different 
eccentricities ( e = 0, 0.1, 0.5, 0.9, 1 ), are shown in Fig. 1. This paper focuses on the situation of nearly-circular 
motions ( e ≪ 1 ). We simplify the problem by limiting E and M within the range of [0,π]2, as shown in Eq. (2). 
General Solutions for (E,M) ∈ R× R can be easily calculated through (±E + 2nπ , ±M + 2nπ) , n ∈ Z.

Brouwer and Clemence3, and Danby4 have described the principles and applications of this equation for 
artificial Earth satellites and other celestial bodies in great detail. The enormous researches to solve the Kepler’s 
equation underline its significance in many fields of Satellite Geodesy (e.g. precise orbit determination, perturba-
tion theory and Earth model calculation), Geophysics and Trajectory Optimization5–11. As all the satellite orbits 
are nearly-circular, this paper focuses on the situation of nearly-circular motions, providing a symbolic iteration 
method based on computer algebra analysis for Kepler’s equation.

Many scientists have made considerable improvements with high accuracy and low time consumption of 
various algorithms to solve the equation. Nijenhuis and Albert1 combined the Mikkola’s starter algorithm with 
a higher-order Newton method, requiring only two trigonometric evaluations. Markley and Landis12 presented 
a non-iterative method with four transcendental function evaluations. Colwell13 systematically analyzed the 
traditional solutions for the Kepler’s equation, such as traditional power serious expansion based on Lagrange 
inversion theorem, and series solutions in Bessel functions of the first kind, which are still the most common 
methods for Kepler’s equation. Taff and Brennan14 explored an extensive starting values and solution techniques 
for iterative methods, giving the best and simplest starting value algorithm. Odell15 provided an iterative process 
that always gives 4th order convergence, with error less than 7 × 10−15 rad. Mikkola16 derived a high order iteration 
formula by adding an auxiliary variable, which could be used both for elliptical and hyperbolic orbits. Sengupta17 

(1)E = M + e sin E

(2)E,M ∈ [0,π], e ≪ 1
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presented the Lambert W method for the truncation of infinite Fourier–Bessel representations. Calvo and Elipe18 
compared the quality of starting algorithm for the iterative solution of elliptic Kepler’s equation, giving new 
optimal starters. Oltrogge and Daniel19 derived a solution via families of hybrid and table lookup techniques, 
achieving the accuracies to machine precision at 3 × 10−11. Zechmeister20 presented an algorithm to compute the 
eccentric anomaly without usage of transcendental functions. Tommasini and Olivieri21 provided a solution for 
the inverse of a function based on switching variables followed by spline interpolation.

However, limited by historical scientific conditions, these traditional methods usually contain numerical 
iterative calculations, such as the standard Newton–Raphson method2,4 and the Halley’s method2, which have 
to reset the initial values and iterate from the beginning every time the eccentricity e changes22. Meanwhile, 
some traditional numerical methods 4 contain tremendously complex functions, which costs too much time to 
compute. In these methods, the CPU time cost by transcendental functions accounts for a large part of the total 
CPU time consumption23. For instance, an iterative method to solve the Kepler’s equation usually requires two 
trig evaluations (sine and cosine) at every iterative step1; the CPU time cost increases exponentially with the num-
ber of iterations grows. As for the Intel i7 × 920 processor, the calling time of trigonometric functions occupies 
more than 80% of the total time consumption in measured unmanaged arithmetic19. Besides, some traditional 
formulas are given in the form of concrete numerical values, which lacks generality. Meanwhile, there were also 
some analytic solutions with a certain tolerance and maximum eccentricity. For example, Markley and Landis12 
provided a non-iterative method with errors better than 10−4 requiring four transcendental functions, contain-
ing square-root, cube-root and trigonometric operations. Nijenhuis1 further presented a non-iterative method 
that represented a gain obtained through a starter algorithm, which required two trigonometric evaluations. 
Although these methods are classic and efficient at that time, their performances are limited by the historical 
scientific conditions with a relatively poor accuracy.

The current research is mainly aimed at improving the iterative methods and expanding the scope of the 
application of algorithms. Meanwhile, since the solution for the Kepler’s equation is a traditional problem, the 
traditional iterative methods are relatively mature. Thus, entering into the new century, there are fewer studies 
specifically on this problem, letting alone specifically on the circumstances of nearly-circular motions. However, 
most of the two-body motions in the universe are nearly-circular motions, especially for all satellite motions. The 
accuracy of the eccentric anomaly (E) is the basis and the determinant for the accuracy of satellite orbit deter-
mination. Thus, in order to improve the accuracy of the eccentric anomaly (E) in the field of satellite geodesy, 
this paper proposes a solution for Kepler’s equation specifically for the nearly-circular orbits, which improves 
the accuracy to the order of 10−17. In this paper, based on the computer algebra system (Mathematica 12.1 and 
Python 3.8), we present an analytic method with a general symbolic formula to compute the eccentric anomaly 
(E) without complex numerical iterative computation at run-time for nearly-circular motions. This non-iterative 
method only requires two trigonometric functions during the whole computation process. Compared with the 
traditional analytic methods, our analytic method is easy to understand with a higher accuracy and simpler codes; 
compared with the commonly used traditional iterative methods, our method has higher accuracy and stability; 

Figure 1.   Contours of the Kepler’s equation with different eccentricities ( e = 0, 0.1, 0.5, 0.9, 1).
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compared with modern solutions for Kepler’s equation, on the basis of retaining the accuracy of the algorithm, 
our method takes into account the advantages of analytical methods and the simplicity of codes.

©
Basic scheme.  The SICAA method is to symbolically iterate the Kepler’s equation in the form of Taylor 
series expansion without concrete numerical values. Due to the limitation of the computer platform precision, 
we could control the error εE = En+1 − En when the residual εM = Mn+1 −Mn is within the accuracy. None-
theless, the cancellation problem is hard to avoid for the Kepler’s equation when the limits of platform precision 
are pushed. As for this problem, we use the Taylor series expansion for every symbolic operational step, as shown 
in Eq. (5). The starter of E is shown in Eq. (3). If the variable e in Eq. (4) is regarded as an argument of the func-
tion E(e) , the variable M is regarded as the parameter. We suppose e ≪ 1 , so En+1(e) is expanded at e = 0 by 
Taylor Series expansion, and then Eq. (4) can be expanded as Eq. (5).

where n = 0, 1, 2, . . . k = 0, 1, 2, . . . 18.
The final analytic formula to calculate the eccentric anomaly obtained by our SICAA method is shown in 

Eq. (6), where series is extended to infinitely small quantity O[e]18 . The specific coefficients of sin nM are shown 
in supplementary material S.4.

It can be found that our analytic solution is really intuitive, and the process of the SICAA method is easy to 
conduct and simple to understand.

Convergence criteria and convergence domain.  According to the convergence rule, we need to dis-
cuss the convergence of Eq. (4). Thus, we rearrange Eq. (4). The function f1(E) is defined as f1(E) = E . The 
function f2(E) is defined as f2(E) = M + e sin E . When e < 1 , for ∃Ea ∈ [0,π], ∃Eb ∈ [0,π] , so |cosEb| ≤ 1 and 
eventually we can get the Eq. (7).

The above iterative equation converges at E ∈ [0,π] and e < 1 . The convergence rate (also called error disap-
pearance rate) is equivalent to αn . The specific formula of α is shown in Eq. (8).

The relationship between the SICAA method and the Bessel function.  The traditional series 
expansion of the eccentric anomaly9,13 is shown as the Eqs. (24) and (25) in “Mathematics essence of our method 
and relationship with traditional Fourier–bessel series” section. By comparing the coefficients of our method 
(SICAA) and those of Fourier–Bessel series expansion of the eccentric anomaly, the relationship between SICAA 
and the Bessel function are shown in Eqs. (9) and (10).

where ⌈∗⌉ is the Ceiling function. From the Eqs. (9) and (10), we can see that the coefficients of the SICAA method 
are the truncation ( ⌈kmax − k + 1⌉ ) of the first kind infinite Bessel function.

Variants and refinements
As mentioned above, the code of SICAA method is simple and easy to implement with strong expansibility. We 
also present some generalized types of our SICAA method.

The Newton‑like SICAA method.  The convergence of the Eq. (4) is linear. Based on Newton numerical 
iterative theory, the convergence of the Eq. (11) is quadratic. Our algorithm can serve derivatives and starters at 

(3)E0 ≈ M (e ≪ 1)
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any stage in a symbolic way. The quadratic convergence could get the accuracy from, for example, 10−6 down to 
10−8, costing mainly one division. It would be preferred over the optimization mentioned in “Symbolic iteration 
method based on computer algebra analysis (SICAA)” section. The starter of E is shown in Eq. (3). We modify 
Eq. (4) into the symbolic form of the standard Newton–Raphson method, as shown in Eq. (12). The function 
En+1(e,M) in Eq.  (12) is expanded at e = 0 by Taylor Series expansion in every operational step, shown in 
Eq. (13). The main schemes of the Newton-like SICAA method are shown in Eqs. (12) and (13).

where n = 0, 1, 2, . . . k = 0, 1, 2, . . . , 18.

The Halley‑like SICAA method.  The Halley’s numerical iterative method has a cubic convergence, as 
shown in Eq.  (14), while it is more sensitive to the starters. The starter of E is shown in Eq.  (3). We modify 
Eq. (4) into the symbolic form of the Halley’s method, as shown in Eq. (15). The function En+1(e,M) in Eq. (15) 
is expanded at e = 0 by Taylor Series expansion in every step, shown in Eq. (16). The main scheme of the Halley-
like SICAA method is shown in Eqs. (15) and (16).

where n = 0, 1, 2, . . . k = 0, 1, 2, . . . , 18.
When the coefficients of sin iM are the same between two symbolic iterations, which means En+1 = En , then 

En+1 is regarded as the final analytic formula calculated by our SICAA methods. Figure 2 shows the number 
of symbolic iterations through three SICAA methods (double precision). As we can see, the standard SICAA 
method needs 19 steps to get the precision of e18 series expansion, while the Newton-like SICAA method and the 
Halley-like SICAA method only need 5 steps and 4 steps, respectively. Although the final coefficients of sin iM 
calculated by any of these SICAA methods are the same, the Newton-like SICAA method has the advantages of 
both fewer symbolic operational steps than the standard SICAA method and simpler in symbolic form than the 
Halley-like one. Thus, we use the Newton-like SICAA method to get the final analytic formula.

(11)En+1 = En −
f (En)
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, n = 0, 1, 2, . . .
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Figure 2.   Number of iterations through standard SICAA method, Newton-like SICAA method and Halley-like 
SICAA method (double precision), until the ith iterative coefficients of en (n = 1, 2, . . . , 18) and the (i − 1) th 
iterative coefficients of en (n = 1, 2, . . . , 18) are the same.
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Analysis and comparison
Accuracy and performance analysis.  Analytic accuracy.  After symbolic operation process, we change 
the implicit expression f1(M,E) = 0 into the explicit expression E = f2(M) , as shown in Eq. (6), thus obtaining 
the analytic solution of the Kepler’s equation when e ≪ 1 to directly study the relationship between E and M , as 
shown in Fig. 3.

It is convenient to study the characteristics of the solution by explicit expression Eq. (6). To analyze the error 
properties, the error expression δanalysis is defined, as shown in Eq. (17). The parameter M in Eq. (17) is calcu-
lated by the Eq. (18). After injecting Eqs. (6) and (18) into Eq. (17), the specific form of error δanalysis is shown 
in Eq. (19), and the coefficient of si is the same with that of the Eq. (6). Figure 4 shows the error distribution 
lines of the Eq. (19) over Etrue ∈ [0,π] for the cases of eccentricity e = 0.01, 0.05, 0.1 . As we can see in Fig. 4, the 
theoretical prediction of error δanalysis for Eq. (6) is no more than 2.5 × 10−17 (shown by the blue line). Obviously, 
owing to the computer machine precision limits and truncation errors caused in every step, the numerical errors 
distribution will be slightly different with what are shown in Fig. 4, which will be discussed in the following part.

(17)δanalysis =
∣∣Etrue − f2(e,M)

∣∣

(18)M = Etrue − e sin Etrue

Figure 3.   Explicit expression E = f2(M) of the SICAA method applied to the function 
f1(M,E) = E −M − 0.1 sin E over the domain M ∈ [0,π] (top right), matching nearly-circular orbit of 
eccentricity 0.1. The implicit function contour (top left) of the Kepler’s equation is shown for comparison.

Figure 4.   Analytic formula of the error distributions given by δanalysis =
∣∣Etrue − f (Etrue − e sin Etrue)

∣∣ over the 
domain E ∈ [0,π] , matching nearly-circular orbits of eccentricity 0.01, 0.05, 0.1.
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where si = sin (iEtrue − ie sin Etrue).

Numerical accuracy.  To prove if the SICAA method can achieve double precision practically, we pre-calculated 
1001 × 1001pairs of (E − e sin E,E) uniformly sampled over (e,E) ∈ [0, 0.1]×[0,π] . The eccentric anomaly E is 
regarded as true values. Then, the M(E) = E − e sin E and e are the input of our algorithm, outputting the inverse 
function Esymbol(M) as the solution of the Kepler’s equation. Differences between the true eccentric anomalies 
and the re-calculated ones  δE =

∣∣Esymbol(M)− E
∣∣ are shown in Fig. 5 for each case e = 0.01, 0.03, 0.05, 0.07, 0.09 . 

To better present the changing trends of the error δE with the increase of M and e, a waterfall picture of the error 
δE has been drawn in Fig. 5. With the increase of M, the errors increase and then decrease gradually, except for 
two outliers. With the increase of e, the errors increase slightly. Hence, the change of e has less influences on the 
precision in the SICAA method, while the accuracy of the SICAA solution is more sensitive to M.

For M ∈ [0,π] and e ∈ [0, 0.1] , most of the deviations δE are no more than machine precision 
ǫ = 2.220446049250313× 10−16 as indicated by the grey line in Fig. 6. As shown in Fig. 6, when e = 0.1 , there 
are only two points higher than the machine accuracy ǫ ; when e = 0.01 and 0.05, all the errors are no more than 
the machine accuracy ǫ ; there are many errors even close to 0.

(19)
δanalysis = −e sin Etrue + a1s1 + a2s2 + a3s3 + a4s4 + a5s5 + a6s6 + a7s7 + a8s8 + a9s9 + a10s10

+ a11s11 + a12s12 + a13s13 + a14s14 + a15s15 + a16s16 + a17s17

Figure 5.   Numerical result of the SICAA method over M ∈ [0,π] , matching nearly-circular orbits of 
eccentricity 0.01, 0.03, 0.05, 0.07, 0.09. The SICAA method is shown for 1001 × 5 grid points within the accuracy 
for O(e)18 , together with the evaluation of the numerical error: δE =

∣∣Esymbol(M)− E
∣∣ , where the error is 

computed by the method mentioned above.

Figure 6.   Accuracy of the SICAA method δE =
∣∣Esymbol(M)− E

∣∣ as mentioned before over M ∈ [0,π] for the 
cases e = 0.01, 0.05, 0.1 with machine precision ǫ = 2.220446049250313× 10−16 by the grey line.
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After Esymbol(M) has been solved, we recomputed Mre by Mre = Esymbol − e sin
(
Esymbol

)
 . Then, the con-

tour plot of errors δM = |M −Mre| =
∣∣M −

(
Esymbol − e sin

(
Esymbol

))∣∣ (left) (are shown in Fig.  7 over 
(M, e) ∈ [0,π]× [0, 0.1] . It can be found from Fig. 7 (left) that as M becomes closer to π2  , the contour lines 
become more and more dense, which means the error δM increases; with the increase of e , the color of contour 
lines changes from dark blue to light blue, which means the error δM increases slightly. That is matched perfectly 
with Fig. 5. As can be seen from Fig. 7 (right), the error value δE is symmetrically distributed with M ≈ π

2  ; the 
more inclined it is to π2  , the greater the error δE is. With the increase of e , the error also increases slightly. However, 
the errors are almost all under 10−17.

Numerical errors (shown in Figs.  5, 6 and 7) almost match the analytic error distribution (shown 
in Fig.  4), with 99.93% of all numerical errors computed lower than machine precision ǫ , and all 
δE =

∣∣Esymbol(M)− E
∣∣ ≤ 4.4409× 10−16 over the entire interval.

Discussion of truncation error.  The deviations δE and δM become larger in the corner 
(
e → 0.1,M → π

2

)
 of the 

plane (M, e) . That is because the Eq. (6) is expanded by Taylor series expansion at e = 0 , also called Maclaurin 
series expansion. The principle of Maclaurin series expansion is that the equation is only available in the neigh-
borhood of the expansion point e = 0 , which is why when e goes far away from 0, the errors become larger. 
Figure  8 shows the contour plot of the analytic errors δanalysis =

∣∣Etrue − f2(Etrue − e sin Etrue)
∣∣ (as shown in 

Eq. (17)) on the plane (e,E) ∈ [0, 0.2]× [0,π] . In Fig. 8, the error δanalysis increases significantly when e = 0.2 
(strong elliptic), but it performs perfectly when e ∈ [0, 0.1] , meeting most needs of geoscience applications (most 
Earth satellites’ orbits are nearly-circular at e = 10−2 ∼ 10−3).

To analyze the error distribution, we rearrange Eq. (6) as Eq. (20). The coefficients of ei(i = 1, 2, . . . , 18) are 
expressed as bi(M) . Table 1 represents the extremum value Max(bi) and the corresponding extremum point 
Max(M) of the coefficient bi(M) over the domain M ∈ [0,π] . Apparently, the coefficients of the en are expressed 
in the polynomial function forms of sin iM . Consequently, the larger the bi is, the larger the coefficients of e are, 
and the greater the errors of e accumulate, resulting in the larger final deviations. Therefore, when M → π

2  and 
e → 1 , the error accumulated. The analytic error distribution δanalysis is shown in Fig. 8. In spite of that, the errors 
shown in Fig. 8 are almost under 5× 10−16.

The plot of truncation driving errors are manifested in Fig. 9. The dashed-blue line pictures the errors δanalysis 
when the series ceases at kmax = 16 , which is lower than the machine precision ǫ . With an additional term 
( kmax = 17 ), the errors δanalysis are cut down to almost one order of magnitude lower than the ones at kmax = 16 , 
portrayed by solid line. Then setting the termination at 18 ( kmax = 18 ), represented by the dashed-green line, 
the errors δanalysis are almost identical to the ones at kmax = 17 , much lower than the standard double float accu-
racy, where we can get the tolerance of 2 × 10−17. Therefore, we use the Eq. (6) at kmax = 17 to run the numerical 
computation in the next section.

Comparisons with traditional numerical iterative methods.  In this section, error comparisons are 
conducted between our SICAA method and two traditional Newton iterative methods to deal with the Kepler’s 
equation. All methods were executed in the Python programming language, counting on numerical and alge-
braic libraries in the system. The details of the comparisons among our SICAA method, the standard Newton–
Raphson method and the Halley’s method are as follows.

(20)
E(e,M) = M + b1e + b2e

2 + b3e
3 + b4e

4 + b5e
5 + b6e

6 + b7e
7 + b8e

8 + b9e
9 + b10e

10

+ b11e
11 + b12e

12 + b13e
13 + b14e

14 + b15e
15 + b16e

16 + b17e
17 + b18e

18

Figure 7.   Contour plots of the errors δM =
∣∣M −

(
Esymbol − e sin

(
Esymbol

))∣∣ (left plot) and 
δE =

∣∣Esymbol(M)− E
∣∣ (right plot) over the domain (M, e) ∈ [0,π]× [0, 0.1].
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Hardware:	� Comparisons conducted on a modest laptop computer (Intel i7-8550U x64 CPU @ 1.8GHz 
2GHz, RAM 8GB, and with the Windows operating system with 10.0.18362.1139 kernel).

Data preparation:	� Forward-calculating Mi,j = Ei − ej sin Ei , using 1001 × 1001 
(
Ei , ej

)
 pairs uniformly sampled 

by the equation Ei = i
1000π and ej = 0.1×

j
1000 , ( i, j = 0, 1, . . . , 1000 ). Then, the Mi,j and ej 

are the input of our algorithm, outputting the inverse function Êi,j
(
Mi,j , ej

)
.

Precision:	� Average eccentric anomaly errors δE
(
ej
)
 are computed by the Eq. (21), where δEi,j

(
Mi,j , ej

)
 

denotes the error obtained in one computation, as shown in Eq. (22). The average CPU time 
(units: second) is computed by the Eq. (23), where ti,j

(
Mi,j , ej

)
 denotes the CPU time cost 

in one computation. Starters: E0 = Mi,j , as mentioned in “Symbolic iteration method based 
on computer algebra analysis (SICAA)” section.

Figure 8.   Contour plot of the errors δanalysis =
∣∣Etrue − f (Etrue − e sin Etrue)

∣∣ on the plane 
(e,E) ∈ [0, 0.2]× [0,π] . For visibility, the gray line shows the case e = 0.1.

Table 1.   The Extremum values and the corresponding extremum point of the coefficients.

bi b1 b2 B3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17

Max(bi) 1 0.5 0.5 0.46 0.5 0.59 0.7 0.89 1.18 1.47 2.0 2.56 3.54 4.66 6.51 7.25 12.30

Max(M) π
2

0.8 π
2

1.14 π
2

1.27 π
2

1.34 π
2

1.75 π
2

1.42 π
2

1.44 π
2

1.23 π
2

Figure 9.   Errors δanalysis =
∣∣Etrue − f (Etrue − e sin Etrue)

∣∣ for the cases if the series is terminated at kmax = 16 
(dashed-blue), kmax = 17 (solid), and kmax = 18 (dashed-green), respectively.
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Figure 10 shows numerical comparisons among our SICAA method, the standard Newton–Raphson method 
and the Halley’s method. The SICAA method (Green line) has a higher precision than the traditional iterative 
methods when e ≪ 1 , with all errors under 4.5 × 10 − 16, less than machine precision ǫ . As for CPU time cost, the 
SICAA method’ s time cost is close to the Halley’s method (cubic-Newton method, the blue line) at 10−5order 
of magnitude (units: second). Therefore, compared with traditional iterative methods, the SICAA method is 
available to solve the Kepler’ equation for nearly-circular orbits, by one order of magnitude more in precision 
with time cost at around 0.00005 s. The precision of our method is stable.

Compared with our analytic solution, Fig. 11 shows average numbers of iteration of two traditional New-
ton iterative methods. Our method only needs to solve one analytic formula to get the final results. With the 
increase of e , the iteration numbers of traditional methods increase rapidly, and the total computation numbers 
of transcendental functions will increase exponentially as iteration numbers grow. Meanwhile, iteration numbers 
are greatly affected by the iterative starters. When the quality of starters is poor, the performance of traditional 
iterative methods will be significantly degraded. Many studies18 focus on the starting algorithms of the traditional 
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Figure 10.   Numerical comparisons among our SICAA method, the standard Newton–Raphson method 
and the Halley’s method to solve the Kepler’s equation. Errors (left) and CPU times (right, units: second) are 
averaged with respect to M ∈ [0,π].

Figure 11.   Compared with SICAA analytic solution, average numbers of iteration of standard Newton–
Raphson method and Halley’s method, which are averaged with respect to M ∈ [0,π] , respectively.
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iterative methods to solve the Kepler’s equation. As for nearly-circular orbits, the starter E0 = M is a simple form 
of starter with relatively small computational cost. However, compared with our method, there is still a certain 
gap in accuracy, mainly due to the limits of truncation caused by machine precision ǫ in each iterative step.

As can be seen from Fig. 6, 99.93% of the all errors computed by our SICAA method are lower than machine 
precision ǫ = 2.220446049250313× 10−16 . The maximum errors are 4.4409 × 10−16 accounting for 0.07%, while 
minimum errors are 0 accounting for 96.42%, over the entire interval, showing that the accuracy is almost one 
order of magnitude higher than that of traditional Newton iterative methods (double precision). In this case, our 
method, to some extent, has a better accuracy with acceptable time consumption to solve the Kepler’s equation 
for nearly-circular motions than the traditional Newton iterative methods.

Comparisons with traditional non‑iterative methods.  There are also many classic non-iterative solu-
tions. For example, the method proposed by American scholar Nijenhuis1 in 1991 combines the Mikkola’s idea 
and higher-order Newton’s method. Besides, the method proposed by NASA researcher Markley12 in 1995 is 
based on higher-order processing of cubic algebraic equations. At that time, those methods could effectively 
solve the Kepler’s equation, by reducing the calculation numbers of the transitional functions and providing 
non-iterative solutions, which optimizes the algorithms, compared with the Newton iterative methods. How-
ever, due to the limitations of computer science at that time, these methods could not balance the accuracy with 
CPU time consumption. With the rapid development of computer science, although their ideas still shine with 
wisdom, the algorithms themselves are difficult to meet the current requirements of accuracy.

Discussions and applications
Mathematics essence of our method and relationship with traditional Fourier–bessel 
series.  The traditional series expansion of the eccentric anomaly is provided by scientists Colwell13 and 
Battin9, as shown in Eqs. (24) and (25).

The Eq. (24) contains two infinite series, which cannot be directly solved by numerical methods. The scientists 
have studied the truncation methods of infinite Fourier–Bessel representations, for example, the method based 
on the Lambert W function17 (referred to as the Lambert W method), as shown in Eqs. (26) and (27). Moreover, 
the kth-order Bessel function also need to be truncated, as shown in Eq. (28), where jmax = s is obtained by the 
Eqs. (29) and (30).

In Eq. (27), c1 , c2 , c3 are parameters related to the basic inequality of kth-order Bessel function24 and the 
Lambert W function17.

As our method can reach the accuracy of 10−17 (given in “Analysis and comparison” section), we compare the 
truncation of infinite series expansion based on the Lambert W function (the Lambert W method) at the same 
accuracy of 10−17. For e = 0.1 and 10−Ntol = 10−17 , the max order obtained through the Eq. (27) 17 is kmax = 17 . 
To reach the accuracy of 10−17 for a second-order Newton–Raphson solution, we use k = kmax = 17 , and e = 0.1 
in the Eq. (28) and the Eq. (29); the order needed in J17(17e) is s = 1 . Figure 12 shows numerical comparisons 
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between the SICAA method and the Lambert W method. The SICAA method (Green line) has a higher preci-
sion than the Lambert W method. As for CPU time cost, the SICAA method’s time cost is shorter than that of 
the Lambert W method except for a few outliers. Therefore, compared with the traditional truncation of series 
expansion method, our method presents better truncation combinations of the two infinite series expansion for 
solving the Kepler’s equation when the orbit is nearly-circular.

In conclusion, based on the Eq. (9) and the Eq. (10), the mathematics essence of our method is a new effec-
tive and accurate truncation method of Fourier–Bessel representations for the Kepler’s equation, which could 
achieve the accuracy of E at 10−17 , with higher accuracy than traditional truncation method of Lambert W’s.

The performance and the application of the SICAA method.  At present, most of the solutions for 
the Kepler’s equation focus on refining the iterative methods. Relying on high-speed computer hardware, by 
optimizing the iterative algorithms and their starters, iterative methods25 are often more efficient to solve tran-
scendental functions than complex analytic solutions, not to mention that there are still many transcendental 
functions that could not be solved analytically. For example, in 2019, the fast switch and spline scheme21 pro-
posed by Spanish scholar Daniele Tomasini is used to solve the Kepler’s equation with a faster speed than that 
of the standard Newton–Raphson method. The CORDIC-like iterative method20 proposed by German scholar 
Zechmeister can be applied for both elliptic orbits and hyperbolic orbits, and consumes less CPU time than the 
Newton iterative methods. However, If only nearly-circle orbits are considered, our method could get accuracy 
at 10−17 , the accuracy of which is higher than CORDIC-like iterative method.

Conclusion
This paper presents a new efficient and accurate truncation method of the infinite Fourier–Bessel representation, 
symbolic iteration method based on computer algebra analysis, taking Kepler’s equation as an example. Based 
on the computer algebra system, it eventually provides an analytical formula to compute the eccentric anomaly 
without complex iterative computation at run-time. Compared with traditional truncation method (Lambert 
W), our method has higher accuracy and shorter CPU consumption; compared with commonly used iterative 
methods (the standard Newton–Raphson method and the Halley’s method), our method has higher accuracy 
and stronger robustness; compared with high-performance iterative algorithms proposed in the new century, on 
the basis of retaining the accuracy of the algorithm, our method takes into account the advantages of analytical 
methods and the simplicity of codes. Further, the simple codes make our method well-suited for various satellite 
orbit determination algorithms, semi-analytic satellite orbit propagators form low fidelity to high fidelity, and 
other geoscience fields.

Code availability
Name of code: “CASI Mthod.py” and “numerical CASI.py”; Developer: Ruichen Zhang; Year first available: 
2020.11; Hardware required: Win 10; Software required: Mathematica 11.2; Python 3.8; Program language: 
Mathematica, python; Program size: 4 KB, 1 KB; The source code are available for download at GitHub: https://​
github.​com/​chur-​614/​CSI_​chur.

Received: 26 August 2021; Accepted: 11 February 2022

References
	 1.	 Nijenhuis, A. Solving Kepler’s equation with high efficiency and accuracy. Celest. Mech. Dyn. Astron. 51(4), 319–330 (1991).

Figure 12.   Numerical comparisons among the SICAA method and the Lambert W method to solve the 
Kepler’s equation. Errors (left) and CPU times (right, units: second) are averaged with respect to M ∈ [0,π] over 
the domain e ∈ [0, 0.1].

https://github.com/chur-614/CSI_chur
https://github.com/chur-614/CSI_chur


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2957  | https://doi.org/10.1038/s41598-022-07050-5

www.nature.com/scientificreports/

	 2.	 Ng, E. W. A general algorithm for the solution of Kepler’s equation for elliptic orbits. Celest. Mech. Dyn. Astron. 20(3), 243–249 
(1979).

	 3.	 Brouwer, D. & Clemence, G. M. Methods of Celestial Mechanics (Elsevier, 1961).
	 4.	 Danby, J. M. & Teichmann, T. Fundamentals of celestial mechanics. Phys. Today. 16, 63 (1963).
	 5.	 Kaula, W. Theory of Satellite Geodesy (Blaisdell Publishing Company, 1966).
	 6.	 Xu, G. & Xu, J. Orbits—2nd Order Singularity-Free Solutions (Springer, 1964).
	 7.	 Ashby, N. & Spilker, J. J. Introduction to relativisitic effects on the global positioning system. In Global Positioning System: Theory 

and Applicaions Vol. I, Chapter 18 (eds Parkinson, B. W. & Spiller, J. J.) (AIAA, 1996).
	 8.	 Aarseth, S. J. Gravitational N-Body Simulations Tools and Algorithms (Cambridge University Press, 2003).
	 9.	 Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics, Revised Version (AIAA, 1999).
	10.	 Karslioglu, M. O. An interactive program for GPS-based dynamic orbit determination of small satellites. Comput. Geosci. 31(3), 

309–317 (2005).
	11.	 Tenzer, R. et al. Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput. Geosci. 16, 193–207 (2012).
	12.	 Markley, F. L. Kepler equation solver. Celest. Mech. Dyn. Astron. 63(1), 101–111 (1995).
	13.	 Colwell, E. Solving Kepler’s Equation Over Three Centuries (Willman-Bell, 1993).
	14.	 Taff, L. G. & Brennan, T. A. On solving Kepler’s equation. Celest. Mech. Dyn. Astron. 46, 163–176 (1989).
	15.	 Odell, A. W. & Gooding, R. H. Procedures for solving Kepler’s equation. Celest. Mech. 38, 307–334 (1986).
	16.	 Mikkola, S. A cubic approximation for Kepler’s equation. Celest. Mech. 40, 329–334 (1987).
	17.	 Sengupta, P. The Lambert W function and solutions to Kepler’s equation. Celest. Mech. Dyn. Astron. 99(1), 13–22 (2007).
	18.	 Calvo, M. et al. Optimal starters for solving the elliptic Kepler’s equation. Celest. Mech. Dyn. Astron. 115(2), 143–160 (2013).
	19.	 Oltrogge, D. L. Efficient solutions of Kepler’s equation via hybrid and digital approaches. J. Astronaut. Sci. 62(4), 271–297 (2015).
	20.	 Zechmeister, M. CORDIC-like method for solving Kepler’s equation. Astron. Astrophys. 619, A128 (2018).
	21.	 Tommasini, D. & Olivieri, D. N. Fast switch and spline scheme for accurate inversion of nonlinear functions: The new first choice 

solution to Kepler’s equation. Appl. Math. Comput. 364, 124677 (2020).
	22.	 Traub, J. Iterative Methods for the Solution of Equations (Prentice-Hall, 1964).
	23.	 Fukushima, T. A method solving Kepler’s equation without transcendental function evaluations. Celest. Mech. Dyn. Astron. 66(3), 

309–319 (1997).
	24.	 Watson, G. N. A Treatise on the Theory of Bessel Functions 2nd edn. (Cambridge University Press, 1966).
	25.	 Evensen, G. Analysis of iterative ensemble smoothers for solving inverse problems. Comput. Geosci. 22, 885–908 (2018).

Author contributions
Author Contributions: Conceptualization, R.Z. and S.B.; methodology, R.Z.; software, R.Z.; validation, R.Z., S.B. 
and H.L.; formal analysis, R.Z.; investigation, R.Z.; resources, S.B.; data curation, H.L.; writing—original draft 
preparation, R.Z.; writing—review and ed-iting, R.Z.; visualization, R.Z.; supervision, S.B.; project administra-
tion, S.B.; funding acquisition, S.B. and H.L.. All authors have read and agreed to the published version of the 
manuscript.

Funding
[National Natural Science Foundation of China] Grant Number [42074010, 41971416], [National Science Foun-
dation for Outstanding Young Scholars] Grant Number [42122025] and [Natural Science Foundation for Dis-
tinguished Young Scholars of Hubei Province of China] Grant Number [2019CFA086].

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​07050-5.

Correspondence and requests for materials should be addressed to R.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-07050-5
https://doi.org/10.1038/s41598-022-07050-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Symbolic iteration method based on computer algebra analysis for Kepler’s equation
	©
	Basic scheme. 
	Convergence criteria and convergence domain. 
	The relationship between the SICAA method and the Bessel function. 

	Variants and refinements
	The Newton-like SICAA method. 
	The Halley-like SICAA method. 

	Analysis and comparison
	Accuracy and performance analysis. 
	Analytic accuracy. 
	Numerical accuracy. 
	Discussion of truncation error. 

	Comparisons with traditional numerical iterative methods. 
	Comparisons with traditional non-iterative methods. 

	Discussions and applications
	Mathematics essence of our method and relationship with traditional Fourier–bessel series. 
	The performance and the application of the SICAA method. 

	Conclusion
	References


