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AI‑assisted reliability assessment 
for gravure offset printing system
Anton Nailevich Gafurov 1,2, Thanh Huy Phung 1, Inyoung Kim 1,2* & Taik‑Min Lee 1,2*

In printed electronics, flawless printing quality is crucial for electronic device fabrication. While 
printing defects may reduce the performance or even cause a failure in the electronic device, there 
is a challenge in quality evaluation using conventional computer vision tools for printing defect 
recognition. This study proposed the computer vision approach based on artificial intelligence (AI) 
and deep convolutional neural networks. First, the data set with printed line images was collected 
and labeled. Second, the overall printing quality classification model was trained and evaluated using 
the Grad‑CAM visualization technique. Third and last, the pretrained object detection model YOLOv3 
was fine‑tuned for local printing defect detection. Before fine‑tuning, ground truth bounding boxes 
were analyzed, and anchor box sizes were chosen using the k‑means clustering algorithm. The overall 
printing quality and local defect detection AI models were integrated with the roll‑based gravure 
offset system. This AI approach is also expected to complement more accurate printing reliability 
analysis firmly.

Flexible or hybrid  electronics1 are the current trends in the electronics production industry. They reduce cost 
by saving raw materials and increasing output while using thinner polymer substrates and adapting roll-to-roll 
techniques. The roll-to-roll technique is especially advantageous when combined with printing  processes2, which 
allow for the selective application of functional materials and the possibility to pipeline the whole fabrication 
process into a single workflow for multilayer device fabrication, further reducing the cost.

The gravure offset is one of the printing techniques used for manufacturing various electronics, such as sil-
ver grid transparent  electrodes3, pressure  sensors4, and planar  inductors5, mainly through fine line patterning, 
because of the following reasons. First, the plate-making process allows for fabricating the gravure printing roll 
or printing plate with much finer resolution down to several  micrometers6,7, unlike other conventional printing 
techniques, such as widespread screen printing, which has at least one order of magnitude lower resolution. 
Second, as gravure offset printing evolved from the so-called pad printing suitable for printing electronics onto 
nonplanar surfaces, such as electroluminescent displays (ELDs)8,9 and radio-frequency identification (RFID) 
 antennas10, it inherited its main feature: the pad-like blanket made of silicone polymer and wrapped around a cyl-
inder. This blanket cylinder allows for printing on rigid substrates and improves ink transfer and printing quality.

The gravure offset printing process consists of three steps: ink filling and doctoring, as well as the off and 
set processes, as shown in Fig. 1. First, the ink is filled into the recessed printing elements of a gravure print-
ing cylinder or a printing plate and then doctored with a sharp doctor blade made of ceramic or stainless steel. 
Second, the ink is transferred from the gravure cylinder or plate to the offset blanket, which is the off process. 
Third and last, the ink is transferred from the blanket to the substrate, called the set process. This transferring 
mechanism (Fig. 2) is carried out through applied pressure and is a key factor of printing quality, which may 
cause the following defects to form: printed line width gain, bulge outs, and bad surface roughness. These 
defects occur for several reasons. The ink is most likely split in half during both the off and set steps, leaving the 
blanket contaminated by excess ink after the set step. Because the printing process is continuously repeated, the 
residual ink on the blanket can interfere with new printing and form a printing defect. Huang et al.11 modeled 
the amount of ink left on the blanket from the previous print based on the balance between the cohesive and 
adhesive forces of the ink concerning the blanket, substrate, and gravure plate. When the contact angle of the 
blanket is increased or reduced of its free surface energy, the ink residuals also become minimal. Kang et al.12 
proved these simulations and investigated the experimental methods of adjusting the blanket and substrate ink 
wettability through various physical and chemical approaches. The most crucial step is to achieve 100% transfer 
during the set stage, which can be ensured when both the cohesive force within the ink and its adhesive strength 
to the substrate are higher than its adhesion to the blanket.
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Figure 1.  The gravure offset printing process: (a, b) ink filling the gravure plate and (c) ink doctoring, (d, e, f) 
off step when ink is transferred from the gravure plate to the blanket roll, (g, h) set step when ink is transferred 
from the blanket roll to the substrate.

Figure 2.  Ink transfer mechanism in gravure offset printing: (a) off step, (b) set step.
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Despite the use of polydimethylsiloxane (PDMS) with low free energy as a blanket, as well as the activation of 
the substrate to promote adhesion, the major sources of defects are the properties of the printing ink. The ink’s 
main property is viscosity, which directly affects the cohesive forces inside the printing layer and, thus, should 
be controlled during printing. In gravure offset printing, the ink should easily fill in and be released from the 
engraved cells, achievable with very low viscous inks but compromised by the weakening of its cohesive forces. 
Shen et al.13 investigated the temperature effect and solvent content of the ink that, as known, affect viscosity. 
Pudas et al.14 also proposed the composition of ink with higher viscosity and achieved 100% ink transfer from 
the blanket while it could still be released from the gravure cells. In addition, Lee et al.15 studied gravure offset 
printing under various printing conditions that revealed the primary aspect of the gravure offset printing reli-
ability—printed line width to the ink solvent absorption by the PDMS blanket. First, this absorption amount 
depends on how long the PDMS blanket is in contact with the ink during ink transferring, thus determining the 
contact angle between the two. This change in contact angle, in turn, determines the width of the printed lines. 
Second, while ink transferring, the blanket partially absorbs the ink solvent, increasing viscosity. However, dur-
ing the print run, the PDMS blanket becomes saturated by the ink solvent, which causes its absorbing ability to 
decrease, and the viscosity of the following ink portion is not being tailored anymore. This leads the ink to be 
split in half during the set process, and its residuals are left on the blanket, causing bulges and roughness with 
local defects in the subsequent prints (Fig. 3). Kim et al.16 adopted the PDMS blanket swelling control technique 
with an air blowing unit with humidity- and temperature-controlled airflow, thereby facilitating the evaporation 
of the solvent from the PDMS blanket. These actions enhanced the gravure offset printing reliability, which was 
evaluated through the line width measured using a digital camera. However, if the line width is within tolerance 
during consecutive printing but other defects are present, the failure regime of the printing should be detected, 
which becomes tricky when using the conventional  tools17,18 of computer vision.

The modern computer vision approach involves artificial intelligence (AI) that includes deep neural networks 
(DNNs). With a combination of convolutional  layers19 and skip  connections20, it became possible to train extreme 
DNNs that can resolve highly nonlinear tasks, such as image classification or object detection. These approaches 
may help with reliability investigation by estimating the printed pattern either qualitatively by classifying whether 
the whole image satisfies the excellent quality criteria or quantitatively by detecting the number of local printing 
defects categorized by class. Ultimately, the qualitative approach aims to define the reliability failure in a binary 
manner, and as a stand-alone system, it might not be informative enough. When it is complemented by local 
defect detection, the reliability can be expressed numerically.

Various AI approaches were used for quality inspection for electronics production in the fields of printed 
circuit boards (PCBs)21,22 and solar cell  fabrication23,24. Adibhatla et al.21 adopted a transfer learning technique 
to train YOLOv2 object detection for PCB defect recognition. Wei et al. 22 developed the convolutional neural 
network (CNN) model to compare a manufactured PCB with a reference. Meanwhile, Chen et al. 23 proposed 
a multispectral CNN approach for solar cell surface inspection, and Zhang et al.24 developed a surface defect 
detector.

The present study aims to develop a printing quality evaluation system for printing reliability based on 
contemporary AI computer vision techniques. The data set composed of images with conductive lines printed 
using gravure offset was created. A Visual Geometry Group (VGG)–like classification DNN model with skip 
connections was trained to classify the overall printing quality. Then, a pretrained YOLOv3 object detection 
model was fine-tuned using transfer learning to detect local printing defects.

Figure 3.  Images of printed lines captured by the camera: (a) printed lines without defects, (b) with defects.
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Experimental setup. The roll-based gravure offset machine was used, as described in the previously pub-
lished  paper25. It was designed as an on-table device and included the following parts: the unwinder, offset roller 
with two load cells, cup-type doctoring blade, gravure plate, stage, furnace, rewinder, and charge-coupled device 
(CCD) camera. During printing, the stage with the gravure plate, unwinder, rewinder, and furnace move later-
ally, while the offset roller is kept stationary and rotates synchronously with the stage movement. The printing 
pressure is controlled by positioning the offset roller vertically and measuring the pressure by two load cells. 
After each printing, the images of the printed pattern are captured by the camera with a resolution of 2.41 µm/
pixel while fixed by vacuum to the stage surface. Then, these images are processed using conventional machine 
vision techniques for line width measuring and saved into the report file. The printing ink is composed of spheri-
cal silver particles with 0.3–1.0 µm, and the composition consists of 85.5% silver particles, 7.3% polymer, 6.7% 
solvent, and 0.5% inorganic adhesion promoter. In addition, the PDMS offset blanket XR-3003 (Dow Corning 
Korea Ltd.) was used. The printing conditions are summarized in Table 1.

Developed AI models described in this paper has been combined with this gravure-offset printing machine 
for predictions. Both overall printing quality classification and local printing defect detection AI models were 
integrated through Ethernet connection. The scheme of the AI model integration is shown in Fig. 4. First, the 
gravure offset PC (part 1) acquires the images from cameras (parts 1.1 and 1.2) and saves them to the designated 
folder onto the network drive (part 2). Second, the PC with a running AI script (part 3) reads the images, sends 
them through the AI models for processing, and saves the generated predictions as .csv files (part 2.1) and report 
images (part 2.2) onto the network drive hosted by the PC with an AI script. Third and last, the gravure offset 
PC reads the .csv report files stored in the network drive and compiles them into the final report, also stored in 
the network drive.

Data set. During printing, images of the printed lines were captured. These images were evaluated and 
labeled based on their overall quality and the presence of local defects (Fig. 3). Aside from line width gain, the 
following defects were present in the captured images: bulge outs and nonuniform line roughness, which, as dis-
cussed earlier, originated from blanket contamination and were inherent to the liquid ink transferring. There are 
299 images in total, which were divided into 2 classes: 225 with satisfactory quality and 74 with defects (Table 2). 

Table 1.  Gravure offset printing conditions.

Ink Silver nanoparticle ink with 0.3–1.0 µm particle size

Blanket XR-3003, Dow Corning Korea Ltd

Printing pressure 5.5–6.0 kgf

Printing speed 50 mm/s

1. PC 
(Gravure printer)

1.1 Camera 1

1.2 Camera 2

3. PC 
(AI model)

2. Network Drive

2.1 Report .csv file

2.2 Report images

images
report

images
predictions

Figure 4.  The scheme of AI model integration with the gravure offset system.

Table 2.  Image data set distribution for both image classification and object detection tasks.

Category

No. of images for image classification No. of images for object detection

Total With defects Without defects With defects

Training data set 209 50 159 59

Validation data set 90 24 66 15

Total 74 225 74
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For local defect detection, all 74 images with distinctive local defects were chosen and labeled using the Labe-
lImg tool for object detection. For validation purposes, 25% of the data set for classification and 20% for object 
detection performance were designated.

AI model for overall printing quality classification. For the image classification task, the DNN model 
with skip connections, as shown in Fig. 5, was built and trained from scratch using the data set, described in 
Sect. 3. Augmentation was performed on each batch, including random brightness, contrast, zoom, rotation aug-
mentation layers, and random horizontal and vertical flip, to enlarge the data set. Since the data set is imbalanced 
considering number of images per class, class weights were applied to categorical loss. The model parameters 
are summarized in Table 3, and the programming was done using TensorFlow and Keras frameworks in Python.

The training process is shown in Fig. 6. It was done for 400 epochs, and the model weights, which showed 
the best validation accuracy results, were used for predictions.

The model was evaluated using the validation data set, and the results were represented as a confusion matrix, 
as shown in Fig. 7. In reinsuring the model performance, the Grad-CAM26 approach was utilized to visualize the 
trained model performance. In this algorithm, using the last convolutional layer inputs (“add 5” layer) concerning 
model predictions, it is possible to know which parts of the image triggered this decision. Then, the results were 
represented in a heat map of 30 × 40 pixels (width × height) and superimposed with the original image (Fig. 8a,b). 
Figure 8c,d shows the overall printing quality model’s attention regions involved in the corresponding class 
assignment. It shows that the model pays attention to the lines rather than to the substrate, and for the defective 
images, the actual defects areas are of the highest interest to the model when assigning the corresponding class.
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Figure 5.  DNN model for image classification: VGG-16 like structure with skip connections.

Table 3.  Summary of the image classification model parameters.

Kernel initializer He normal

Activation CNN layers and dense layer – ReLU
Output layer – Softmax

Optimizer Adam (learning rate = 0.0005)

Batch size 32

Loss function Categorical cross-entropy with class weights

Data augmentation

Image brightness  + 40 – + 70

Image contrast 1.0–1.5

Image flip Horizontal and vertical

Zoom in 0.0–0.2

Rotation  ± 90° Filling mode: constant (255)

Figure 6.  The training process of the image classification model: training and validation accuracy, and training 
and validation loss.
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AI model for local printing defects detection. The fine-tuning approach was applied to retrain the 
YOLOv3  mode27 with pretrained weights. This model is designed to predict objects’ position by proposing 
bounding boxes position in 416 × 416 pixel images. This model has several features. First, unlike models based 
on region-proposed algorithms, the predictions are made in one step, increasing detection speed. Second, the 
predictions are computed based on three feature maps from different layers, which increases model accuracy. 
Third and last, the training process includes predefining anchor boxes, which indicate to the model the expected 
object size in the analyzed image. After obtaining the best epoch weights, the model was used to predict defects 
present in the newly captured images.

Figure 7.  Confusion matrix for overall printing quality validation data set.

Figure 8.  Grad-CAM images. The original images of printed lines (a) without and (b) with defects and 
superimposed with the Grad-CAM heat map’s original images for (c) printed lines without defects and (d) 
printed lines with defects.
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K‑means clustering. To maximize the accuracy of proposing bounding boxes, the data set ground through 
bounding boxes were analyzed using the standard unsupervised learning technique k-means clustering, with 
intersection over union (IoU) metrics. A total of 814 ground truth bounding boxes were analyzed (Fig. 9a), and 
their widths and heights were normalized based on the image resolution (Fig. 9b). Then, k-means clustering was 
performed, and the IoU was calculated between corresponding centroids and data points for each cluster. As the 
number of clusters increases (Fig. 9c), the IoU also increases, showing a plateau effect, which means the number 
of clusters should be chosen wisely. Higher IoU is better for accuracy; however, when more anchor boxes are 
used, the number of convolutions in detection layers increases along with the YOLO model size and computa-
tional cost. For future training, six clusters with bounding anchor boxes were chosen, as shown in Table 4. The 
clustered data set into six clusters is shown in Fig. 9d.

Training and validation. The training was performed using the Darknet framework to build the YOLOv3 
model structure with customized layers. First, the customized model was constructed, and model weights pre-
trained on the COCO image data set were loaded. Second, training was conducted for 4,000 iterations using the 
training data set, as described in Sect. 2. While the loss was converging to the minimum, the mean average preci-
sion (mAP) was calculated every 100 epochs starting from 1000 epoch showing the model’s ability to perform on 
validation data set, which is illustrated in Fig. 10. Third and last, the best weights with the highest mAP during 

Figure 9.  K-means clustering for YOLOv3 anchor boxes: widths and heights of ground truth bounding boxes 
(a) in µm and (b) normalized to the image size; (c) IoU for different numbers of clusters; (d) k-means clustered 
data set into six clusters.

Table 4.  Anchor box sizes chosen by k-means clustering.

Cluster no Normalized centroid for each cluster (w × h)
416 × 416 pixel resolution anchor box size (w × h), 
pixels

640 × 480 pixel resolution anchor box size (w × h), 
pixels

1 0.0513 × 0.0937 21 × 39 33 × 45

2 0.0665 × 0.0930 28 × 39 43 × 45

3 0.0816 × 0.0956 34 × 40 52 × 46

4 0.0979 × 0.0969 41 × 40 63 × 47

5 0.1167 × 0.0960 49 × 40 75 × 46

6 0.1448 × 0.0999 60 × 42 93 × 48
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the training were saved, and the TensorFlow implementation model was built for predictions using the YOLOv3 
configuration file. Figure 11 shows the flowchart of this process.

Printing results defect detection. As a result, the printing defect detector could predict printing defects 
within the captured image, as shown in Fig.  12. It is possible to decide whether the observed image of the 
printed pattern is of satisfactory quality or not after obtaining information about defects. In particular, the most 
straightforward way of doing this is to count the number of defects regardless of their position or size. Figure 13 
shows the printing results based on line width measuring, which were augmented with the number of local 
defects detected by the AI model. It is seen that as the line width increases, the defects start to appear. Thus, the 
failure regime may be detected more reliably. The inference time of the model is critical when integrated with 
higher yield production lines. When the model was run by the PC (Core i7-6700 3.4 GHz processor and NVidia 
GeForce GTX 750 Ti 1 Gb RAM graphics card), 356 ± 18 ms were taken for inference of each image.

Conclusion
During printed electronics production, printing consistency is of crucial importance. The instability of the mate-
rials’ properties affects printing process reliability and causes printing defects. Aside from preventive measures, 
tools for monitoring the actual state should be in place, and the most common method is measuring line width 
increases that may indicate unacceptable printing quality. However, while measured line width gain is acceptable, 
other defects may be obscured from the conventional computer vision system unless its complexity significantly 
increases. This issue can be addressed to the vision system assisted by AI computer vision tools, namely, overall 
printing quality and defect detection based on AI DNNs, as promulgated in this paper. It took 356 ± 18 ms to infer 
each image. We hope that the proposed method will help for printing reliability assessment through detecting 

Figure 10.  YOLOv3 object detection model training process.

Darknet framework

Google Colab YOLOv3 model 
fine-tuning 

Save model configuration and 
trained model weights

Converting model weights into 
Tensorflow 2.x format

Tensorflow implementation of 
YOLOv3 model in python 

Predictions

Custom 
data set

Labeling
tool

YOLOv3 custom model build 
(classes = 1 , anchor boxes = 6)

Pretrained
weights

Figure 11.  Flowchart of the YOLOv3 object detection model fine-tuning and predictions.
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defective prints and later can be merged with the printing control algorithms or be used as an archiving tool for 
quality certification purposes.

Data availability
Image data set for this study can be found at: https:// data. mende ley. com/ datas ets/ fpf2j v378d/ draft?a= 8ef6e 4c8- 
c3f4- 40c5- b948- e73db 1f0e7 c2.

Received: 26 October 2021; Accepted: 9 February 2022
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