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Cross‑institutional outcome 
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Mohamed Mortada Elsharief3, Phuc Felix Nguyen‑Tan3, David Roberge3, Houda Bahig3 & 
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In radiation oncology, predicting patient risk stratification allows specialization of therapy 
intensification as well as selecting between systemic and regional treatments, all of which helps 
to improve patient outcome and quality of life. Deep learning offers an advantage over traditional 
radiomics for medical image processing by learning salient features from training data originating 
from multiple datasets. However, while their large capacity allows to combine high‑level medical 
imaging data for outcome prediction, they lack generalization to be used across institutions. In this 
work, a pseudo‑volumetric convolutional neural network with a deep preprocessor module and self‑
attention (PreSANet) is proposed for the prediction of distant metastasis, locoregional recurrence, 
and overall survival occurrence probabilities within the 10 year follow‑up time frame for head and 
neck cancer patients with squamous cell carcinoma. The model is capable of processing multi‑modal 
inputs of variable scan length, as well as integrating patient data in the prediction model. These 
proposed architectural features and additional modalities all serve to extract additional information 
from the available data when availability to additional samples is limited. This model was trained on 
the public Cancer Imaging Archive Head–Neck‑PET–CT dataset consisting of 298 patients undergoing 
curative radio/chemo‑radiotherapy and acquired from 4 different institutions. The model was further 
validated on an internal retrospective dataset with 371 patients acquired from one of the institutions 
in the training dataset. An extensive set of ablation experiments were performed to test the utility 
of the proposed model characteristics, achieving an AUROC of 80% , 80% and 82% for DM, LR and OS 
respectively on the public TCIA Head–Neck‑PET–CT dataset. External validation was performed on 
a retrospective dataset with 371 patients, achieving 69% AUROC in all outcomes. To test for model 
generalization across sites, a validation scheme consisting of single site‑holdout and cross‑validation 
combining both datasets was used. The mean accuracy across 4 institutions obtained was 72% , 70% 
and 71% for DM, LR and OS respectively. The proposed model demonstrates an effective method for 
tumor outcome prediction for multi‑site, multi‑modal combining both volumetric data and structured 
patient clinical data.

Radiation therapy as a primary cancer treatment method has gained significant importance within the last few 
decades and is now used to treat approximately 50% of all cancer  cases1–3 and 74% of head and neck (H&N) can-
cer  cases4. In medical imaging, tumor characterization to stratify risk has been at the forefront of research goals in 
order to help improve  prognosis5–13, including lowering the incidence of the following outcomes after treatment: 
locoregional recurrence (LR), distant metastasis (DM) and a second primary cancer following radiotherapy 
treatment. Both of these cancer progression outcomes can decrease probability of overall patient survival (OS). 
Furthermore, in selected H&N cancers, DM can be fatal to 50% of  patients14, despite radiotherapy controlling 
the original locoregional disease in 90% of  cases14. It thus remains imperative that early assessment of the tumor 
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risk be made available to clinicians, as this can help physicians stratify patients by risk categories, guiding their 
choice intensify or deintensify the treatment according to risk stratification, as well as deciding the amount of 
systemic versus locoregional therapy afforded to the patient.

Within the last decade, deep learning methods have seen an explosive surge in popularity and have proven 
effective for outcome prediction tasks, especially those focusing on training data sources with high dimensionality 
such as  text15,16,  images17,18,  videos19 and time-series20. In medical imaging, convolutional neural networks (CNN) 
have become the preferred approach for several radiological  tasks21. Unlike physicians who make assessments 
based on visually discernible features from the imaging data while taking into account demographic parameters, 
CNNs learn a hierarchical composition of features from training data in a completely automated manner. In the 
past decade, neural network approaches have gained traction in classification,  segmentation22,  registration23, 
domain translation tasks for treatment  planning24, image-guided interventions, and patient follow-up  care21,25.

The recent success of deep neural networks (DNN) has been driven in part by the availability of large train-
ing  datasets26. Indeed DNN models see performance improvement scaling with the size the training data. For 
this reason, the benchmark 14 million samples ImageNet  dataset27 has seen performance from CNNs exceeding 
human levels at classification tasks. While this remains impressive in a benchmarking setting, the reality is dif-
ferent in the medical imaging field. Due to the difficulty in acquiring patient scans for research, training data 
in medical imaging is much more scarce. Moreover, on top of the different modalities available to capture the 
same anatomy with all of the information trade offs they provide such as X-ray computed tomography (CT) and 
positron emission tomography (PET), scans will often present difficulty to discern differences due to conditions 
between institutions that are not reproducible; scanner manufacturer and models, reconstruction algorithm 
choice, and operator handling may all contribute to this effect. All of these variabilities compound the difficulty 
of modeling classification tasks on small training samples. For these reasons, it is important to assess the gener-
alizability of deep learning models across institutions.

This work builds on the 2017 “Head–Neck-PET–CT”28 dataset, released as part of the Cancer Imaging Archive 
(TCIA)29, for multi-institution outcome prediction of head and neck cancer cases. This dataset contained 298 
cases of H&N cancer undergoing radiation therapy or chemoradiation therapy. Each patient data included 
fluorodeoxyglucose (FDG) PET–CT image data along with segmentation annotations and clinical data. This 
dataset is also useful to benchmark multi-domain medical imaging processing tasks, given that it contains 
patient data from 4 different institutions in Québec Canada: the Centre Hospitalier de l’Université de Montréal 
(CHUM), the Centre Hospitalier Universitaire de Sherbrooke (CHUS), the Jewish General Hospital (HGJ) and 
the Maisonneuve-Rosemont Hospital (HMR). Initial work used a radiomics approach combined with a random 
forest classifier for tumor risk  assessment30. Methods exploited the multi-modal nature of the dataset by incor-
porating features from both PET and CT volumes, as well as clinical data coming from patient demographics. 
Diamant et al.31 explored the use of deep learning techniques for H&N cancer outcome predictions, using a CNN 
model. Their custom-made CNN was composed of 3 convolutional and 2 fully-connected layers, a considerably 
simpler architecture than modern CNN approaches for image  processing32. Compared with the previous random 
forest approach trained and validated on the same dataset, it was limited to using CT only, exploiting a single 
slice containing the largest gross tumor volume (GTV) surface area. Furthermore, the image itself was masked 
to contain only information within the tumor contour.

We propose PreSANet (pseudo-volumetric neural network with deep preprocessor module and self-attention 
layers), an end-to-end trainable framework for H&N PET–CT classification of radio/chemo-radiotherapy treat-
ment response using a multi-branch CNN taking both medical images and clinical data as inputs. The method 
is designed to extract as much information from the available dataset as possible via various state-of-the-art 
deep learning techniques. Both CT and PET data are processed in parallel as separate channels at the input of 
the model, allowing complementary structural and functional information to be integrated during the learning 
process. To exploit the three-dimensional nature of the images, a novel pseudo-volumetric technique is used 
in which a weight-shared convolutional sub-module is used on each slice before having all latent mapping 
being combined into a single representation via a pair of length independent statistics. Based on the works of 
Havaei et al.33, our method is a trade-off between the computationally expensive full 3D and the lossy 2D CNNs 
architectures. Furthermore, it presents a unique way of making the model robust to the variable depth nature 
of medical images, for which bounding boxes or the random patch technique are traditionally used. Compared 
with previous CNN based approaches, the proposed model incorporates various state-of-the-art deep learning 
techniques to account for the inter-patient and inter-institutional variabilities. To normalize differences in input 
images across multiple institutions in the training dataset, a deep convolutional image-to-image preprocessor 
sub-module based on the work of Drozdzal et al.34 is integrated end-to-end with the prediction network. Previ-
ous work demonstrated that the initial fully-convolutional network (FCN) component of their segmentation 
model acted as a domain normalizer on medical images, yielding state-of-the-art performance on liver lesion 
segmentation. We hypothesize that the inclusion of this FCN as a first component of the classification approach 
would also yield improved predictive performance on a multi-institutional dataset. Following this, the building 
blocks of the CNN are augmented with aggregated residual connections, a technique that allows passing high-
level features to downstream  layers35, which was shown to improve convergence by preventing the vanishing 
gradient problem. Each convolutional block is succeeded by a global context (GC) block based on the work of 
Cao et al.36. This self-attention mechanism allows the model to spatially re-focus on the salient inter-patient 
features extracted in the previous step.

The aim of this work is to demonstrate the predictive capability of the PreSANet architecture on both a public 
and internal datasets for tumor outcome prediction. Furthermore, we demonstrate the generalization capabilities 
of PreSANet by validating across both available datasets. The novel contributions are fourfold, and are presented 
as a series of three different categories of experiments:
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• We evaluate the performance gains of the various components of the proposed model in an ablation study. 
These include the preprocessor module, the self-attention layers and the pseudo-volumetric approach based 
on  HeMIS33, as well as the addition of paired PET images and clinical data to supplement the planning CT 
input.

• A comparison in accuracy is performed on the “Head–Neck-PET–CT”28 public dataset and compare it previ-
ous approaches trained with the  dataset30,31, as well as those by off-the-shelf CNN  models37 and a traditional 
Cox’s proportional hazards regression model based on the nomogram method by Ju et al.38 for the clinical 
data only.

• We evaluate the performance of the PreSANet on a holdout test set using an internal retrospective dataset 
acquired from a separate institution. As part of this evaluation, we test a data augmentation strategy which 
takes into account the source institution when splitting the data for both unseen data and domains.

Results
Patient cohorts. The TCIA “Head–Neck-PET–CT”28 dataset—referred to on-wards as TCIA—is a public 
dataset that contains 3D PET and CT radiotherapy planning imaging data along with clinical information and 
contoured regions of interest of 298 patients. Patients with histologically proven H&N cancer, receiving radio-
therapy or chemoradiotherapy with curative intent between 2006 and 2014 were included. Patients with metas-
tasis or palliative intent treatment at the outset of the study were excluded. All patients underwent a pretreat-
ment 18F-fluorodeoxyglucose (FDG) PET/CT scan between 6 and 66 days before treatment (median: 18 days). 
PET scans were reconstructed using the ordered subset expectation maximization (OSEM) iterative algorithm, 
with photon absorption and scattering attenuation correction performed. Patient sex, age, primary tumor site, 
tumor classification stage, therapy choice (radiation or chemo-radiation), and presence of prior surgery were 
included in the clinical data. Table 1 presents the patient cohort characteristics and demographic data used as 
input to the model. Median follow-up from radiotherapy was 45 months (range 6–112) An imbalanced outcome 
distribution is clearly observable: by the end of the study, 13% of patients reported distant metastasis (median: 
15 months, range 4–51), 14% presented locoregional tumor recurrence (median: 17 months, range 4–59) and 
19% were reported deceased from any cause (median: 28 months, range 6–82).

A separate retrospective dataset—referred to from this point on as Internal CHUM—was retrospectively 
collected from the radiation oncology department of the CHUM hospital. It presents 371 patients from the 
same institution as one of the subsets of the “Head–Neck-PET–CT” with no overlap, treated for H&N cancer 
undergoing radiotherapy or chemoradiotherapy acquired between 2011 and 2019, with no overlap with the TCIA 
dataset. Details on this second cohort are also shown in Table 1 The same exclusion criteria as those from the 
“Head–Neck-PET–CT” study were  applied28. Images acquired included 120kV CT and expert segmentations of 
primary tumors and organs at risk. PET data was also acquired separately for all patients as long as the acquisi-
tion was within 1 month of the CT acquisition date. PET images were reconstructed using the 3D row action 
maximum likelihood algorithm (RAMLA), corrected for photon absorption, scattering attenuation and rigidly 
registered to the matching CT. The clinical data was acquired from the radiation oncology department at the 
CHUM. The endpoints follow-up was performed between 1 and 104 months after the beginning of treatment 
(median: 51). The distribution of binary outcome events occurrence is as follows: at last follow-up, 7% of patients 
reported distant metastasis (mean: 18 months, range 3–71), 9% presented locoregional tumor recurrence (mean: 
12 months, range 3–44) and 17% were reported deceased (median: 28 months, range 1–84).

Ablation study. Figure 1 summarizes the model architecture ablation results—the features tested are the 
pseudo-volumetric models, preprocessor module and self-attention—when using all available input modalities: 
CT, PET, and other clinical data. The proposed PreSANet model with all features and all input modalities shows 
the highest prediction performance on the test set for the three presented metrics, with an area under the receiv-
ing operating curve (AUROC) of 79.8%[77.0− 82.7] for DM. The performance was significantly worse when 
removing any combination of all three proposed features at p < 0.05 . For LR, the model obtained an AUROC 
of 78.8% [77.0–80.5]. Statistically significant difference between the full-featured model and the other ablation 
variants was found at p < 0.05 when removing both the preprocessor module and self-attention layers for the 
pseudo-volumetric variant ( 70.4% AUROC [64.3–76.5]), and when removing the preprocessor module for the 
2D variant ( 70.3% AUROC [63.5–77.2]). All other variants for LR was found to perform worst than the pro-
posed model at p < 0.05 . For OS, an AUROC of 82.0% [80.2–83.9] and an accuracy of 78.7% [78.4–79.0] were 
obtained with no statistically significant differences found when compared with the pseudo-volumetric model 
without self-attention layers (AUROC = 78.8% [76.0–81.6]; accuracy = 76.0% [72.0–79.9]) and when compared 
with the pseudo-volumetric model without both the preprocessor module and the self-attention layers (AUROC 
= 82.15% [81.0–83.3]; accuracy = 79.8% [76.6–83.0]). The pseudo-volumetric variant without the preprocessor 
module performed worse at OS prediction at p < 0.05 ( 77.4% AUROC [74.5–80.2]). All other feature combina-
tions showed worse performance than the proposed model for OS at p < 0.05 . Overall, the combination of the 
pseudo-volumetric architecture, the preprocessor module and the self-attention layers is necessary to obtain the 
highest performance for the tasks of DM and LR prediction, with reduced performance observed when only a 
subset of features are included instead. For the task of OS prediction, the pseudo-volumetric architecture leads 
to significantly higher performance, with no clear improvements when including the preprocessor module and 
self-attention layers.

Figure 2 presents ablation results for the possible input modalities (PET and clinical data). In every case, 
the CT is included as a base input image. More specifically, a sub ablation experiment was run on the following 
possible model inputs: CT, CT + PET, CT + clinical data, and CT + PET + clinical data (the proposed approach). 
For the proposed pseudo-volumetric PreSANet model, using three input modalities shows the highest AUROC 
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performance when predicting DM ( 79.8% [77.0–82.7]) and LR ( 78.8% [77.0–80.5]) at p < 0.05 . For OS of the 
same proposed model, an AUROC of 82.0% [80.2–83.9] was shown to not be a statistically significant improve-
ment for the variant including CT and clinical data only as inputs ( 82.0% [79.7–84.3]). Otherwise, all other 
input combinations were shown to perform significantly worse at p < 0.05 . More ablation results are presented 
in Table S2 in the appendix.

For the pseudo-volumetric model with self-attention, the only loss in performance due to input modality 
ablation was observed for OS when either removing the clinical data ( 82.0% [80.2–83.9] > 56.5% [51.5–61.5] 

Table 1.  Characteristics of patient cohorts with H&N cancer for 4 institutions acquired from the Cancer 
Imaging Archive (TCIA) and internally at the CHUM. Figures are mean (standard deviation) where 
indicated,minimum–maximum value where indicated, and number (% of non-missing values) otherwise. 
The TNM staging system indicates the size and extent of the primary tumor, the number of nearby cancerous 
lymph nodes and whether the cancer has metastasized at the onset of the study, respectively.

Internal TCIA

CHUM (n = 371) CHUM (n = 65) CHUS (n = 101) HGJ (n = 91) HMR (n = 41)

Age at diagnosis (years)

Mean (SD) 62 (8) 63 (9) 63 (10) 61 (11) 66 (9)

Minimum-maximum 40–85 44–90 34–88 18–84 49–85

Sex

Male 289 (78%) 49 (75%) 73 (72%) 74 (81%) 31 (76%)

Female 82 (22%) 16 (25%) 28 (28%) 17 (19%) 10 (24%)

Follow-up (months)

Mean (SD) 51 (23) 40 (11) 45 (18) 53 (24) 39 (20)

Minimum–maximum 1–104 12–66 18–93 25–112 6–70

DM 28 (7%) 2 (5%) 10 (10%) 14 (15%) 11 (27%)

LR 36 (9%) 7 (11%) 15 (15%) 12 (13%) 9 (22%)

OS 64 (17%) 5 (8%) 18 (18%) 14 (15%) 19 (46%)

T-stage

N/A 0 (0%) 5 (8%) 0 (0%) 4 (4%) 1 (2%)

T1 82 (22%) 8 (12%) 9 (9%) 20 (22%) 2 (5%)

T2 129 (34%) 28 (43%) 44 (44%) 20 (22%) 17 (41%)

T3 95 (25%) 19 (29%) 31 (31%) 35 (38%) 12 (29%)

T4 65 (17%) 5 (8%) 17 (17%) 12(13%) 9 (22%)

N-Stage

N/A 31 (8%) 4 (6%) 38 (38%) 12 (13%) 5 (12%)

N1 37 (9%) 8 (12%) 10 (10%) 18 (20%) 4 (10%)

N2 266 (71%) 45 (69%) 50 (50%) 58 (64%) 27 (66%)

N3 37 (9%) 8 (12%) 3 (3%) 3 (3%) 5 (12%)

M-Stage

N/A 0 (0%) 0 (0%) 0 (0%) 4 (4%) 0 (0%)

M0 371 (100%) 65 (100%) 101 (100%) 87 (96%) 41 (100%)

TNM-Stage

N/A 0 (0%) 2 (3%) 0 (0%) 0 (0%) 0 (0%)

Stage I 5 (1%) 0 (0%) 3 (3%) 1 (1%) 0 (0%)

Stage II 12 (3%) 2 (3%) 17 (17%) 5 (5%) 3 (7%)

Stage III 41 (11%) 7 (11%) 21 (21%) 28 (31%) 5 (12%)

Stage IV 313 (84%) 54 (83%) 60 (59%) 57 (63%) 33 (80%)

P16 Status

N/A 29 (7%) 41 (63%) 63 (62%) 31 (34%) 39 (95%)

+ 251 (67%) 21 (32%) 25 (25%) 30 (33%) 2 (5%)

− 91 (24%) 3 (5%) 13 (13%) 30 (33%) 0 (0%)

Tumor site

Oropharynx 369 (99%) 57 (88%) 72 (71%) 55 (60%) 19 (46%)

Nasopharynx 0 (0%) 2 (3%) 6 (6%) 14 (15%) 6 (15%)

Hypopharynx 0 (0%) 1 (2%) 1 (1%) 4 (4%) 7 (17%)

Larynx 0 (0%) 0 (0%) 22 (22%) 14 (15%) 9 (22%)

Other 2 (1%) 5 (8%) 0 (0%) 0 (0%) 0 (0%)
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AUROC). Similar behavior can be observed for the pseudo-volumetric model with the preprocessor module by 
either removing the clinical data when predicting OS ( 78.8% [76.0–81.6] > 59.5% [52.4–66.6] AUROC) or using 
only CT as input features ( 78.8% [76.0–81.6] > 58.7% [48.2–69.1] AUROC). This is also true for the baseline 
pseudo-volumetric model when either removing the clinical data for DM ( 63.2% [61.5–65.0] > 47.9% [43.2–52.6] 
AUROC) or OS ( 63.2% [61.5–65.0] > 70.3% [69.0–71.6] AUROC) or using only CT as input features for DM 
( 82.2% [81.0–83.3] > 54.3% [51.5–57.2] AUROC) or OS ( 82.2% [81.0–83.3] > 71.8% [69.7–73.9] AUROC). 
Overall, the proposed model with both the preprocessor module and self-attention presents the best performance 
when pairing the CT input with both the PET and the clinical data. Table S3 (in appendix) presents the ablation 
performance of the pseudo-volumetric model on the holdout HMR and CHUM datasets.

For the 2D PreSANet model, a statistically significant performance gain can be observed for predicting 
DM when removing PET from the inputs ( 60.6% [55.7–65.5] < 68.3% [66.6–70.1] AUROC). All other input 
combinations presented equivalent performance with p ≥ 0.05 . For the 2D model with self-attention, a similar 
performance gain was observed for DM when removing additional PET and clinical data, where performance 
improved with the removal of features instead of a decrease. For LR and OS, no statistically significant difference 
was found with the modalities ablation. For the 2D model with the preprocessor module, a significant gain in 
model performance was observed for the DM prediction task when removing both PET and clinical data from 
the inputs ( 62.8% [56.1–69.5] < 83.8% [82.5–85.0]). For LR and OS, no statistically significant difference was 
found with the modalities ablation. For the baseline 2D model, statistical significant evidence of performance loss 
due to the removal of the clinical data from the inputs can be observed for DM trained on CT and PET ( 65.7% 
[62.6–68.8] > 54.9 [52.5–57.2]), for LR trained on CT and PET ( 68.8% [67.1–70.4] > 61.3% [60.0–62.5]) or trained 
on just CT ( 68.8% [67.1–70.4] > 51.6% [51.3–51.8]), and for OS trained on CT and PET ( 75.7% [72.4–79.0] > 
59.3% [56.3–62.3]) or trained on just CT ( 75.7% [72.4–79.0] > 62.1% [61.6–62.6]). The baseline 2D model with 
CT as its only input is equivalent to the approach by Diamant et al.31. Table S4 (in appendix) presents the ablation 
performance of the 2D model on the holdout HMR and CHUM datasets. Overall, the 2D model variants seem 
to be confounded with the addition of PET or clinical data.

Adding PET to the prediction model. Figure 3 shows the effects of the addition of either modalities 
individually on model performance across all ablation experiments. With the addition of PET, out of 48 total 
experiments, 12 cases showed a statistically significantly worse performance at p < 0.05 (mean: 7.8% AUROC, 
range 3.3–14.3), and a statistical improvement in 6 cases (mean: 10.5% AUROC, range 7.7–14.7). For clinical 

Figure 1.  ROC curves for the proposed PreSANet model with different feature ablation. Rows represent the 
baseline 2D and the proposed pseudo-3D architectures. Figures presented are mean AUC [ 95% CI] over 5 
trials. Training and validation split used is shown in Fig. 8A30. Figure created with seaborn/matplotlib v0.11.2 
(seaborn.pydata.org).
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data, an improvement was observed in 22 cases (mean: 14.7% AUROC, range 7.5–25.6); a loss in performance 
was observed in 5 cases (mean: 8.8% AUROC, range 4.2–14.2). No statistical significance was found in all other 
experiments.

Due to the instability resulting from the introduction of PET data as shown in the ablation studies, an 
experiment was conducted to investigate the viability of this modality in the Internal CHUM dataset. The per-
formance of the model trained using a randomized 5-fold cross-validation on this dataset, comparing the effects 
of adding PET to the inputs showed a marked decrease in performance across all relevant metrics (see Table S1 
in Appendix). With the addition of PET to CT + clinical inputs, a 3.7–11.8% decrease in prediction accuracy 
and 0.6–10.5% decrease in AUROC across all three outcomes. For this reason, all of the subsequent results use 
CT + clinical as input modalities.

Figure 2.  Ablation AUROC results for the proposed PreSANet model. Subfigure grids represent ablations of 
the Preprocessor and self-attention features for the (A) 2D variant, and (B) pseudo-volumetric variant. Within 
each sub-figure, the combination of input imaging and clinical modalities are presented. Figures presented 
are mean performance over 5 repeated trials with error bars representing 95% CI. Stars indicate statistical 
significance using the dependent t-test for paired samples with Bonferroni correction, with the number of stars 
indicating: (1) p < 0.05 , (2) p < 0.01 , (3) p < 0.001 , (4) p < 0.0001 . Each modality combination is compared 
with the proposed model that uses CT image, PET image and clinical data as inputs. Training and validation 
split employed matched the one presented by Vallieres et al.30. Figure created with seaborn/matplotlib v0.11.2 
(seaborn.pydata.org)

Figure 3.  Effect of adding clinical data or PET images combined to the baseline CT. Columns represent 
different architectures used in the ablation experiments, for each of the predicted targets. Figures are percentage 
change in mean AUROC with the addition of the indicated modality to the indicated base modalities. Figures 
and colors represent the effect size for cases where a statistical significance was found (p value < 0.05). Squares 
in white indicate no statistically significant difference was found. Figure created with seaborn/matplotlib v0.11.2 
(seaborn.pydata.org)
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Internal and external validation. Figure 4 shows the AUROC internal validation classification perfor-
mance (see Fig.  8A), which corresponds to previous deep learning  approach31 and radiomics  approach30 by 
PreSANet as well as popular state-of-the-art off-the-shelf models. As a baseline, a simple CNN as described by 
Diamant et al.31 was also trained and evaluated. Overall, the proposed method achieved the highest AUROC 
for all three outcomes (DM: 79.83% [77.05–82.60]; LR: 78.8% [77.1–80.4]; OS: 82.0% [80.2–83.9]) compared to 
the baseline as well as InceptionV3, DenseNet, ResNet and ResNeXt. The shaded confidence interval shows that 
most of these approaches perform similarly statistically whereas the proposed approach performs significantly 
better. Furthermore, the prediction result of the progression-free survival (PFS) outcome, combining both DM 
and LR into a single label is shown, using the combination of the prediction probabilities of each individual DM 
and LR models. The proposed PreSANet model achieved 79.9% AUROC [78.2–81.6], surpassing all other com-
pared models, as well as surpassing both DM and LR models separately.

Table 2 describes the proposed model evaluated on split A, compared with the previous works by Vallières 
et al.30 using a random forest method and Diamant et al.31 using a CNN approach. As well, popular state-of-the-
art off-the-shelf models were also trained and evaluated on the same data split are described. Finally, a baseline 
CNN model was trained using the architecture and hyperparameters described  in31.

The proposed PreSANet approach shows the highest accuracy and AUROC for both LR (accuracy: 74.2% 
[71.6–76.8]; AUROC: 78.8% [77.1–80.4]) and OS (accuracy: 78.7% [78.4–79.0]; AUROC: 82.0% [80.2–83.9]). It 
also shows high imbalanced classification performance for OS (specificity: 81.0% [72.5–89.5]; sensitivity: 67.5% 
[61.5–73.5]). For LR, a higher specificity was achieved by the traditional Cox’s proportional hazard  approach38 at 
100% > 81.0% [72.5–89.5], but with very poor sensitivity 6.2% < 67.5% [61.5–73.5]. A higher overall sensitivity 

Figure 4.  ROC curves for the proposed PreSANet model compared with previous works and off-the-shelf 
models. Figures presented are mean AUC [ 95% CI] over 5 trials. Training and validation split used is shown in 
Fig. 8A30. Figure created with seaborn/matplotlib v0.11.2 (seaborn.pydata.org)
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was achieved by the  CNN31 at 77.5% [69.2–85.8] > 67.5% [61.5–73.5], trading off however for a lower specificity 
at 37.6% [24.7–50.5] < 81.0% [72.5–89.5].

For DM, the highest performing model remains the Random Forest approach by Vallières et al.30, which 
compared to our approach obtained a balanced accuracy of 77.5% [68.6–81.6] > 74.5% [70.9–78.1], an AUROC 
of 86.5% [77.4–94.5] > 79.8% [77.1–82.6] and a sensitivity of 86.6% [76.2–91.4] > 64.2% [56.6–71.7]. The highest 
specificity for DM was achieved by the traditional Cox’s  model38 with 94.6% > 84.8% [80.2–89.6].

Table 3 presents the performance of our proposed PreSANet approach on an external dataset (see Fig. 8B 
for data split description), when trained entirely on the TCIA dataset. The AUROC achieved for DM at 68.8% 
[68.0–69.7], for LR at 69.2% [68.1–70.3] and for OS at 69.3% [68.4–70.1] shows a very small 95% confidence 
interval across 5 repeated trials.

Testing cross‑site generalization. Figure 5 presents the 4-fold cross-validation ROC curves for each of 
the evaluated sites. Each of the folds contained three sites in training and one hold-out site for testing. Across 
all possible outputs, the highest performing test fold was that of HMR with 74.1% [68.7–79.5] for DM, 76.2% 
[72.7–79.6] for LR and 81.7% [79.6–83.9] for OS. Spearman’s correlation factor between training set size and 
AUROC performance was found to be 0.753 for DM, − 0.150 for LR and 0.772 for OS. The worst performing 

Table 2.  Model comparison with previous works. Models were evaluated on split A, corresponding to the 
training and evaluation split presented by Vallieres et al.30. Off-the-shelf models were trained on a 2D image 
of the largest lesion slice, computed the same way as in the ablation study. Nomogram  model38 was calculated 
on the clinical data only. To obtain a 3 channel image required by these models, two repeated CT images and 
the PET image were concatenated. Figures reported are mean [95% Confidence Interval] for each of the 5 
evaluated metrics, where available. Accuracy metric is normalized per class frequency. Bold corresponds to 
the highest value across Models for each Metric (Accuracy, Specificity, Sensitivity, AUROC) for each outcome 
(DM, LR, OS).

Model Metric DM LR OS

Cox  Model38

Accuracy 58.0 [58.0–58.0] 53.1 [53.1–53.1] 73.8 [73.8–73.8]

Specificity 94.6 [94.6–94.6] 100.0 [100.0–100.0] 76.8 [76.8–76.8]

Sensitivity 21.4 [21.4–21.4] 6.2 [6.2–6.2] 70.8 [70.8–70.8]

AUROC 71.8 [71.8–71.8] 70.8 [70.8–70.8] 72.0 [72.0–72.0]

Random  forest30

Accuracy 77.4 [68.6–81.6] 67.5 [61.3–73.8] 65.6 [59.7–69.2]

Specificity 76.0 [58.4–82.2] 68.4 [60.9–80.1] 57.6 [50.2–67.4]

Sensitivity 86.6 [76.2–91.4] 63.7 [57.4–73.5] 76.2 [70.3–87.9]

AUROC 86.5 [77.4–94.5] 69.8 [58.1–79.3] 78.3 [64.5–88.0]

CNN31

Accuracy 63.4 [59.3–67.6] 62.3 [60.0–64.6] 70.3 [68.2–72.3]

Specificity 62.6 [58.9–66.3] 74.7 [57.3–92.0] 63.9 [56.6-71.2]

Sensitivity 64.3 [53.4–75.1] 50.0 [31.4–68.6] 76.7 [71.8–81.6]

AUROC 61.6 [57.6–65.6] 60.8 [59.0–62.6] 70.5 [68.9–72.1]

DenseNet

Accuracy 51.3 [42.7–60.0] 57.5 [55.0–60.1] 59.6 [49.4–69.9]

Specificity 67.0 [36.8–97.1] 37.6 [24.7–50.5] 73.4 [61.8–85.0]

Sensitivity 35.7 [10.7–60.8] 37.5 [24.7–50.5] 45.8 [20.3–71.4]

AUROC 53.1 [45.1–61.3] 61.7 [58.8–64.5] 63.5 [52.7–74.3]

InceptionV3

Accuracy 58.7 [54.8–62.5] 53.9 [52.8–55.0] 56.4 [51.2–61.7]

Specificity 55.9 [32.0–78.8] 59.1 [45.3–73.0] 75.4 [66.4–84.3]

Sensitivity 61.4 [37.8–85.1] 48.8 [35.1–62.4] 37.5 [19.8–55.2]

AUROC 64.2 [58.9–69.4] 54.1 [48.5–59.6] 58.9 [51.7–66.0]

ResNet

Accuracy 52.5 [48.2–56.8] 55.5 [49.3–61.7] 59.0 [53.9–64.1]

Specificity 50.7 [22.8–78.5] 52.2 [31.5–72.9] 58.8 [35.2–82.4]

Sensitivity 54.9 [24.7–83.9] 58.8 [41.6–75.9] 59.2 [36.5–81.9]

AUROC 56.7 [51.8–61.6] 56.3 [45.9–66.6] 63.1 [57.8–68.4]

ResNeXt

Accuracy 56.9 [51.2–62.7] 54.5 [52.6–56.3] 56.8 [50.8–62.8]

Specificity 32.4 [16.3–48.4] 62.7 [43.8–81.5] 67.8 [47.8–87.8]

Sensitivity 81.4 [68.4–94.4] 46.2 [27.8–64.7] 45.8 [22.9–68.8]

AUROC 59.0 [56.3–61.6] 54.0 [48.7–59.3] 61.1 [52.5–69.7]

PreSANet

Accuracy 74.5 [70.9–78.1] 74.2 [71.6–76.8] 78.7 [78.4–79.0]

Specificity 84.8 [80.2–89.6] 81.0 [72.5–89.5] 80.7 [73.4–88.1]

Sensitivity 64.2 [56.6–71.7] 67.5 [61.5–73.5] 76.7 [69.6–83.8]

AUROC 79.8 [77.1–82.6] 78.8 [77.1–80.4] 82.0 [80.2–83.9]
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folds with little overlap in the 95% confidence interval curves were HGJ for LR (AUROC: 55.5% [54.2–56.8]) and 
CHUM for OS (AUROC: 55.5% [51.6–59.3]).

Table 4 presents the cross-validation performance with the addition of balanced accuracy, specificity and 
sensitivity metrics. For DM, the highest sensitivity is obtained when testing on CHUM at 86.7% [70.7–100.0] at 
the cost of low specificity at 57.4% [45.7–69.1] < 68.1% [60.6–75.7 obtained for CHUS. For LR, a sensitivity of 
88.9% [79.2–98.6] was obtained for HMR, yet resulted in a specificity of 56.3% [46.0–66.5] < 73.0% [61.1–85.0] 
when compared with CHUS, which had the highest specificity. The fold tested on HMR for OS achieves the high-
est balance of specificity ( 70.9% [62.2–79.6]) and sensitivity ( 86.3% [78.6–94.0]) as well as the highest sensitivity. 
The mean AUROC cross-validation performance was 67.2% [61.3–73.1] for DM, 68.4% [65.1–71.6] for LR and 
68.1% [64.9–71.2] for OS. The mean balanced accuracy obtained was 71.6% [68.1–75.2], 69.6% [66.2–73.0] and 
71.2% [69.3–73.1] for DM, LR and OS.

Discussion
Reliable forecasting of radiotherapy outcomes remains a challenging task for clinicians. Accurate predictions 
could not only help in current clinical practice but it could also help physicians tailor treatment plans to indi-
vidual anatomies and physiologies. Improved prediction technologies could help guide the physician’s decision 
on treatment intensification and omitting systemic for local therapy plans, all of which would help limit side 
effects from treatment, improve quality of life, improve treatment efficiency in terms of the delivered dose, and 
reduce radiation exposure and cost to the patient. In this study, a pseudo-volumetric CNN-based deep learning 
model is proposed that combines PET, CT, and patient clinical data to predict DM, LR, and OS for head and 
neck cancer cases undergoing radiotherapy.

While our work is not the first to have explored using CNNs for tumor risk  assessment31, the proposed model 
introduces three main novel features: a preprocessor module that normalizes image differences across institutions, 
self-attention layers to identify salient latent space image information, and a pseudo-volumetric formulation 
that allows the model to use all slices from a scan volume even when the number of slices is  variable33. Indeed, 
a major limitation of deep learning approaches in medical imaging is the lack of sufficient sample points neces-
sary for neural networks to generalize. Compared with previous approaches, our proposed architectural features 
attempt to offset this issue by extracting more information from the available data: a beneficial alternative when 
acquiring more data becomes too difficult. The self-attention and preprocessor module blocks are recent tech-
niques employed in state-of-the-art deep learning approaches for natural and medical image processing, respec-
tively. Despite their black box nature, both additions showed improved training performance without increasing 
model capacity—929,678 trainable parameters in the baseline 2D CNN from the ablation study and the internal 

Table 3.  Performance on the Internal CHUM dataset. Training is performed in the entirety of the TCIA 
dataset, with 298 samples. Testing is performed on the Internal CHUM dataset, with 371 samples. In both 
training and testing sets, the CHUM institution was seen by the model. Accuracy is normalized per class 
frequency.

Test set Metric DM LR OS

Internal CHUM

Accuracy 63.9 [63.4–64.4] 64.5 [63.7–65.3] 64.0 [63.6–64.4]

Specificity 75.3 [70.6–80.0] 70.2 [60.2–80.3] 73.0 [57.6–88.3]

Sensitivity 52.5 [47.8–57.2] 58.8 [48.2–69.4] 55.0 [40.2-69.8]

AUROC 68.8 [67.9–69.7] 69.2 [68.0–70.4] 69.3 [68.3–70.2]

Figure 5.  ROC curves for the proposed PreSANet evaluated in a single-site cross-validation. Figures presented 
are mean AUC [ 95% CI] over 5 trials. Training and validation used is shown in Fig. 8C. Figure created with 
seaborn/matplotlib v0.11.2 (seaborn.pydata.org).
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validation, and 881,014 trainable parameters in PreSANet—indicating that the architectural constraint helped 
guide the training process itself instead of increasing the memorization capabilities of the model. Furthermore, 
ablation experiments suggest an interaction effect between both features, possibly from the learned saliency 
maps requiring a specific normalized image.

Introducing another imaging dimension—along the anatomical vertical axis in our case—adds exponen-
tial complexity to DNNs, quickly becoming intractable computationally. Furthermore, as is the case of patient 
scans, the depth dimension is often of variable length, adding another source of difficulty for rectangular arrays 
requiring neural networks. A popular technique to address this is to construct a fully connected two dimensional 
CNN and take the average or maximum prediction score across all slices. A more complex approach lies in using 
these prediction scores as inputs to a secondary classifier network, allowing a learned pooling method, as was 
used by the AI system in McKinney’s UK and US clinical trials for screening mammography to great  success39. 
Our proposed pseudo-volumetric can thus be seen as a natural extension of these approaches, integrating the 
secondary network in an end-to-end fashion directly on the latent representation instead of prediction classes. 
This, along with the use of both mean and variance as statistics, allows robustness to inter-patient anatomical 
variability, but also potentially to missing slices within a patient. Nonetheless, our approach is likely overly cau-
tious, processing only slices containing the primary tumor. Exploring the impact of whole body scans could 
lead to improved performance if analysis of distant anatomical structures is made available to the model; this is 
especially true for metastasis prediction.

One benefit of medical imaging over natural images is the ability to obtain complementary scans of the same 
patient and region of interest. Thus, we explored the impact of adding information via PET imaging, as well 
as patient clinical information. To explore the impact of this complementary information, each of the previ-
ously explored ablation model variants was tested with various combinations of additional information on top 
of the baseline CT. It should be noted that the baseline 2D CT-input model is equivalent to the previous CNN 
 approach31. Interestingly, the features proposed in the PreSANet model enabled it to make use of the additional 
input data whereas all other pseudo-volumetric variants were only partially sensitive to multimodal informa-
tion. Adding clinical data on the other hand led to an improvement in 46% of the experiments, while a loss was 
observed in only 5 out of 48 ablation cases. As comorbidities that affect treatment efficacy are included in this 
data, our model can make use of this additional information to improve overall prediction for both regional and 
systemic outcomes. In a quarter of the cases, the addition of PET lead to a significant improvement in predictive 
performance. With a baseline of CT and clinical data, an improvement was seen in only 2 cases, but with the 
highest percentage increase at + 14% AUROC. Most of these seem to happen by adding PET to CT only inputs, 
where the extra imaging information becomes beneficial for local recurrence outcome prediction. However for 
distant metastases and overall survival OS prediction, the addition of PET to either CT or CT + clinical inputs 
lead to a significant loss in performance in a third of the ablation configurations. As both metastasis and death are 
both systemic outcome of treatment, information extracted from PET seems to be more beneficial in predicting 

Table 4.  Per-site 5-fold cross-validation. Figures reported are mean [95% confidence interval] for each of the 5 
evaluated metrics. Each test set indicates that samples belonging to it were used for testing: the rest of the data 
was used for training and validation. Accuracy metric is normalized per class frequency. Bold corresponds to 
the highest value across Models for each Metric (Accuracy, Specificity, Sensitivity, AUROC) for each outcome 
(DM, LR, OS).

Test set Metric DM LR OS

CHUS

Accuracy 73.1 [70.5–75.6] 7.18 [68.0–74.3] 65.5 [64.9–66.0]

Specificity 68.1 [60.6–75.7] 73.0 [61.1–85.0] 63.1 [49.09–77.2]

Sensitivity 78.0 [74.1–81.9] 69.3 [62.7–76.0] 67.8 [53.4–82.1]

AUROC 67.85 [63.7–72.0] 70.4 [66.8–74.0] 61.2 [58.8–63.5]

CHUM

Accuracy 72.0 [68.0–76.1] 72.8 [67.8–77.9] 67.5 [64.3–70.7]

Sensitivity 86.6 [70.7–100.0] 74.3 [58.0–90.6] 48.0 [38.4–57.6]

Specificity 57.4 [45.7–69.1] 71.4 [59.5–83.3] 87.0 [80.4–93.7]

AUROC 61.9 [51.2–72.6] 71.3 [67.3–75.3] 55.4 [51.1–59.7]

HGJ

Accuracy 66.2 [63.7–68.6] 62.0 [59.7–64.2] 73.1 [71.2–75.0]

Sensitivity 78.6 [58.8–98.4] 78.3 [71.8–84.9] 77.1 [71.9–82.4]

Specificity 53.8 [38.6–69.0] 45.6 [37.7–53.5] 69.1 [63.7–74.5]

AUROC 64.9 [62.2–67.7] 55.5 [54.1–56.9] 73.8 [70.3–77.2]

HMR

Accuracy 75.2 [70.0–80.3] 72.6 [69.4–75.7] 78.6 [76.7–80.5]

Sensitivity 83.6 [73.3–94.0] 88.9 [79.2–98.6] 86.3 [78.6–94.0]

Specificity 66.7 [62.1–71.3] 56.3 [46.0–66.5] 70.9 [62.2–79.6]

AUROC 74.0 [68.0–80.0] 76.3 [72.4–80.1] 81.9 [79.6–84.3]

Average

Accuracy 71.6 [68.1–75.2] 69.6 [66.2–73.0] 71.2 [69.3–73.1]

Sensitivity 81.7 [69.2–94.3] 77.7 [67.9–87.5] 69.8 [60.6–79.0]

Specificity 61.5 [51.7–71.3] 61.6 [51.1–72.1] 72.5 [63.8–81.2]

AUROC 67.2 [61.3–73.1] 68.4 [65.1–71.6] 68.1 [64.9–71.2]
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local tumor behavior after radiotherapy. This concurs with the functional usage of PET to measure changes in 
metabolic process of tumors, a local physiological activity. While this seems to contradict at first with findings in 
literature for similar applications, the most important difference to note is that the imaging information provided 
to expert clinicians for assessment is in the form of whole-body FDG PET/CT40–42. With a systemic view of the 
post-treatment effects, physicians can better predict the progression of H&N cancers. In this particular applica-
tion, the datasets were restricted to the field of view of the CT—that is of the head and neck regions—thus limit-
ing the type of regional or distal metabolic activity information that the model could extract from PET images. 
Furthermore, while part of this information should be recovered in the clinical data made available to the model 
in the form of TNM staging, the exclusion criteria for this study specifically selects patients without onset distant 
metastasis (M) staging. Finally, there are the challenges associated specifically with PET as a modality. Indeed, 
the amount of variability in PET tracers and sequences when considering multicenter  datasets43, as well as the 
poor geometric accuracy associated with this  modality44 all make it much more difficult for learning algorithms 
to extract relevant information. It is likely therefore that a combination of these reasons lead to the information 
poor effects of PET imaging inclusion for predicting systemic outcomes such as death and metastasis. To verify 
if these effects were also present in the Internal CHUM dataset, and to decide if adding PET to the subsequent 
experiments was worthwhile, an experiment was conducted to explore the predictive value of including PET in 
the Internal CHUM dataset. Overall, the 5-fold cross-validation showed significantly lower performance with the 
inclusion of PET. Compared with the TCIA dataset where CT and PET were acquired together via the 18-FDG 
PET/CT acquisition scheme, ensuring precise anatomical correspondence, PET from the Internal CHUM data-
set were selected as long as the acquisition time was within 1 month of the CT. While rigid registration and CT 
attenuation preprocessing steps were both present, many other acquisition parameters in the Internal CHUM 
dataset were not controlled for between patients such as the choice of radio-tracers, timing variance, method of 
injection, increasing the intra-dataset variability. The difficulties in obtain a uniform distribution of functional 
PET for inter-dataset normalization made the information less exploitable with regards to PreSANet’s empirical 
performance. Combined with the benefits of PET being limited to regional outcomes, our proposed model ben-
efited more from clinical data than PET, which guided the decision of using a combination of CT and clinical data.

The choice of the data splitting strategy was made to allow comparison with other classification works on 
the same dataset. Indeed, our method shows a significant improvement over both the random  forest30 and 
CNN  methods31 for recurrence ( 7.2% accuracy and 9.8% AUROC improvement) and survival prediction ( 10.7% 
accuracy and 4.0% AUROC improvement). Furthermore, the 95% confidence interval for these metrics shows 
no overlap with the reported results from either works, indicating the importance of the improvement the 
pseudo-volumetric multi-modal method allows. In terms of true positive and negative predictive rate, PreSANet 
improved mainly over the specificity of the model ( 13.0% increase for LR and 13.7% increase for OS), which is 
particularly important clinically as recurrence and death events are significantly rarer. However, PreSANet has 
more difficulty predicting metastasis, showing comparable performance with the random forest method with an 
accuracy 95%CI of [70.9–78.1] = 77% and an AUROC 95%CI of [77.1–82.6] < 86%. Compared with the simple 
 CNN31, a 13.5% accuracy loss and 8.2% AUROC loss was observed. Given that both our method and the random 
forest method perform its image analysis on multi-modal inputs, there seems to be a benefit to information 
sparsity for metastasis prediction.

The final section of this study explored the capacity of proposed PreSANet model to predict treatment out-
comes across different sites. To do this, a per-site 4-fold cross-validation experiment was conducted in which each 
of the available sites—CHUS, HGJ, HRM, and CHUM—was held out for testing, with the remaining combined 
multi-site dataset used for model training. In all of the folds, the model was trained only with CT and clinical 
data as inputs, given the performance instability introduced by PET. It could be expected that given the uneven 
distribution of sample across sites (the CHUM having a combined count of 518 testing samples while the HMR 
site only having 41 testing samples), a larger training set would result in higher performance. While no Spear-
man’s correlation was found for LR ( − 0.150 ) between performance from CHUM and HMR, a noticeable one 
can be observed for DM (0.753) and OS (0.772). Indeed, the training dataset difference is the most extreme in 
this case at 233 versus 628, respectively, yielding a performance difference of 12.8% AUROC and 3.2% accuracy 
for DM, and 26.5% AUROC and 11.1% accuracy for OS. While this does suggest the importance of training set 
size, as supported by the literature across  disciplines45–47, it appears dependent on the target outcome. None-
theless, the best performance overall was observed in the HMR fold for both accuracy and AUROC across all 
three outcomes. Multi-site generalization seems possible by our approach as the performance of the folds seem 
to even show comparable results to the external validation case (see Table 3), where the CHUM testing site was 
present in both training and testing sets. Indeed the CHUM fold only shows a 2.1% AUROC increase for LR 
prediction, despite not benefiting from previously sites. Overall, PreSANet shows a prediction power averag-
ing 71.6% , 69.6% and 71.2% balanced accuracy for DM, LR and OS respectively. It also display strong negative 
predictive rate with 81.7% , 77.7% and 69.8% sensitivity at the cost of specificity, which remains difficult due to 
the imbalanced nature of the datasets.

One of the current limitation of this study is on the clinical impact of our predictive model. Indeed, with the 
goal of risk stratification, where physicians could decide on more specialized treatment techniques, e.g. local 
versus systemic radiation, with or without surgery or chemotherapy, overall outcome classification doesn’t yet 
allow this patient categorization. A variant of the model for a regression problem, predicting time to recurrence, 
metastasis or death of the patient would improve the clinical value of this work. Another limitation is the lack 
of control for the type of therapy administered in the training dataset; in this study a mix of radiotherapy and 
chemo-radiotherapy was used. While our current work is mainly limited by the overall number of available sam-
ples, further work either restricting the specific type of therapy, the dose administered, the choice of regional or 
systemic treatment and the presence of prior surgery could be interesting to explore. Alternatively, adding this 
information directly as inputs could improve model performance too. Finally, the question of whether adding 
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PET leads to significant change remains a nuanced one. While there was enough cases in the ablation that showed 
worse performance for us to forgo including this data in the multi-dataset experiments, there remain nonethe-
less some configurations showing promising results. Overall, the multi-modal inputs had varied effects on the 
proposed architecture and should explored more.

This work demonstrates that for combined multi-site imaging datasets, certain techniques can be used to 
improve deep learning model performance for tumor outcome prediction tasks. In a set of ablation experiments 
on the public multi-site TCIA Head–Neck-PET–CT dataset, statistically significant performance improvement 
was demonstrated when combining all proposed features and all input modalities. In every case, training was 
performed using the training split used in previous literature for this particular dataset, with transfer learning 
employed across sites as well as using repeated 5 trials for increased statistical power. To validate the proposed 
approach, a multi-site dataset combining the aforementioned dataset with a novel retrospective head and neck 
dataset, achieving generalization across sites. The per-single site cross-validation experiments demonstrated the 
model’s prediction capabilities on a larger unseen validation set, with this validation scheme chosen specifically 
to demonstrate the cross-site generalizability potential of the model, something which isn’t quite as confidently 
shown in the more traditional single site hold-out test approach. Overall, we found that the results supported 
the primary goal of this study, which was to demonstrate the applicability of the proposed model when tested 
on site specific samples, after it was trained on a variety of sites. This is to better reflect the real world application 
where specialists from a particular institution would like to fine-tune this model on a potentially larger dataset 
of their own acquisition, despite its results being fine-tuned on different data sources. Future study will look at 
improving on the PET modality integration for improved performance, as well as performing an analysis on latent 
space of the pseudo-volumetric embedding since this encoding is similar to that of variational autoencoders.

Methods
Data preparation. Imaging data from the patient cohorts originated in DICOM format containing both 
PET and CT volumes of shape 512× 512 . Slice depth distribution ranged between 83 and 348 (median: 132). 
Isotropic resampling was performed to obtain a uniform 1× 1 mm spacing between pixels. To lower memory 
consumption during model training, the resolutions were downscaled in the axial plane to 196× 196 . PET were 
standardized to obtain the standard uptake value (SUV) while CT were converted to Hounsfield scale (HU). 
Each modality was then normalized to obtain a pixel intensity distribution with zero mean and unit standard 
deviation. For the 2D ablation experiments, only the 2D slice with the largest GTV tumor by surface area was 
used as input for both CT and PET. Everywhere else, the entire 3D scanning volume of the primary GTV was 
used.

The clinical data included age, sex, TNM classification stage as per the American Joint Committee on 
 Cancer48—tumor size and invasion of surroundings, regional node involvment, and presence of metastasis—p16 
biomarker status and primary tumor site. Sex and p16 biomarker status were encoded using categorical one-hot 
encoding representation. Similarly, primary tumour sizing (T) was encoded into values 0–4, regional lymph 
node spread (N) was encoded into values between 0 and 3 and distant metastasis (M) was encoded as 0 or 1. Age 
values were normalized between 0 and 1 based on a maximum value of 100 years. The resulting clinical data was 
a length 22 vector. Each endpoint (DM, LR, OS) was converted to a binary value for classification purposes. A 
ground-truth value designated the occurrence of the event for the patient at any point between the end of the 
treatment and the end of the follow-up period.

PreSANet. The proposed outcome prediction pipeline consists of an end-to-end pseudo-volumetric CNN 
with self-attention augmented with a dense auxiliary branch for clinical information integration, shown in 
Fig. 6. The first component of the model—the preprocessor module Pre—includes a low-capacity FCN network 
that performs image-to-image normalization as inspired by the works of Drozdzal et al.34. It consists of 4 down-
sampling convolutional layers with 16, 32, 64, and 128 filter maps, 3 × 3 kernels and 2 × 2 strides with a rectified 
linear unit (ReLU) activation layer after each, followed by 4 upsampling transpose convolutional layers with 128, 
64, 32 and 16 filter maps, with matching kernel size, stride size and activation layers, shown in Fig. 7A. Between 
the layers with matching input/output size, long skip connections are used, implemented as channel-wise con-
catenation, to allow the model to spatially re-align the predicted normalized features. The resulting output is a 
deep normalized image, optimized with respect to the specific classification task.

Following this, the feature extraction component of the network is a CNN ( CSA ), with 3 convolutional blocks 
with 64, 128 and 256 feature maps. Each convolutional block is comprised of a bottleneck triplet show in Fig. 7 
with a 4 fold feature expansion factor: in the first block for example, a 1 × 1 convolution layer with stride 1 and 
64 feature maps is followed by a 32 depth wise-separable groups 3 × 3 convolution layer—the bottleneck—with 
stride 2 (each group having 8 feature maps, totalling 256) that performs image downsampling, and finally by 
another 1 × 1 convolutional layer with stride 1 and 64 feature maps. This approach helps to limit the size of the 
model in memory, often leading to better training  performance35. Scaled exponential linear unit (SELU) activa-
tion  function49 and batch-normalization are used after each convolution. Each convolutional block also includes a 
short residual skip connection around the bottleneck block to combat the exploding/vanishing gradient problem.

To benefit from the global contextual information in the latent image, a global context (GC) block with self-
attention as presented by Cao et al.36 followed every convolution block. It was implemented as a 1 × 1 convolu-
tional layer and a softmax layer in the context modelling unit, two 1 × 1 convolutional layers separated by layer 
normalization and ReLU activation inside the transformation block, and a final element-wise addition as fusion 
strategy with the residual input latent representation.

To integrate the patient clinical information into the CNN, an auxiliary branch Aux(22)(Xclinical) was included 
taking as inputs the one-hot encoded categorical clinical features as well as the normalized age of the patient. 
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Figure 6.  Proposed PreSANet deep learning architecture for radiotherapy outcome prediction. The 
convolutional backbones consist of the combination of the preprocessor module and the self-attention CNN 
feature extractor. Using shared weights, each of the two channel (PET, CT) input volume is split into individual 
slices passed to the backbone. The resulting per-slice feature vectors are aggregated using mean and variance 
into two 256-feature vectors. They are then concatenated with the outputs of a fully connected network 
component (yellow) that processes the clinical input data forming a 768 feature vector. Figure created with 
Draw.io

Figure 7.  Details of the convolutional backbones of the proposed PreSANet model. (A) Preprocessor sub-
module consisting of a downsampling and upsampling branch with skip connections taking a 2D image as 
input and returning a normalized 2D image as output. (B) Convolutional blocks in the feature extractor module 
consist of a residual bottleneck unit with depthwise-separable group convolutions followed by a global context 
unit. Every bottleneck unit outputs four times as many channels as it takes at its input, using 32 grouped 
convolutions with a 3× 3 kernel. Downsampling is performed in the middle layer of the bottleneck block using 
a stride of 2. Residual skip connections sum the input of the bottleneck block into its output. Self-attention is 
modelled with a context-modelling layer using an element-wise product. The residual addition of an attention 
map to the output of each block allows the model to process global context and attend salient parts of the image. 
Figure created with Draw.io
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This linear neural network consists of a 128 and a 256 dense layer, with SELU activation after each. The output 
feature vector was then concatenated to the flattened convolutional output vector.

In order to deal with the variability in GTV and cropped input volume size, we adapted the  HeMIS33 model 
to combine information across all slices x in a volume X. This method normally combines any number of input 
modalities into a single features space by via an fusion layer, defined as the first and second moment of the hetero-
modal inputs. In our case, the new volumetric abstraction layer is defined across heterogeneous input depths 
using the same two statistics for an input volume XCT ,PET with two modalities as channels:

resulting in a single vector representing a patient’s 3D bi-modal (PET and CT) scan embedding. This pseudo-
volumetric neural network approach for variable length inputs has the advantage of not necessitating any crop-
ping and bounding-box artifacts that happens in more traditional volumetric methods. To do so, the entire 
convolutional backbone—Preprocessor Pre followed by the Self-Attention CNN CSA—is used on each 2D input 
slice xCT ,PET ∈ X , with shared weights. The resulting per-slice representation is abstracted across all slices via the 
mean (Eq. 1) and variance (Eq. 2) statistics. The output yields two vectors of size 256, which is then concatenated 
together along with the clinical 256 feature vector to form a final 768-vector representation of the patient across 
variable scanning length, modalities and clinical data. This strategy is robust to missing slices, to interpolation 
artifacts and variable scan spacing, issues unique to medical imaging and uncommon to natural images, making it 
an attractive method for radiological scans. We compared this method with the standard approach of performing 
classification on a single slice containing the largest GTV lesion surface  area31—a 2D approach.

To generate the final classification probability for each patient volume XCT ,PET for a given target output t, a 
two hidden layer linear classifier neural network L(768) was used, with 128 and 256 features respectively, and each 
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Figure 8.  Data splitting strategies for model evaluation. The mean performance is reported across all five folds. 
(A) The training set are samples originating from CHUS and HGJ, with 20% held out as a validation set. The 
test set is composed of samples from CHUM and HMR. This  split30 is used for ablation experiments as well 
as comparison to previous literature. (B) 5-fold cross-validation over the entire dataset. This split is used to 
evaluate the novel Internal CHUM dataset. (C) Hold-one-institution-out cross-validation strategy where each 
source institution is held as a test set with the remaining samples used for training and validation. This split is 
used to test cross-institution generalization. Figure created with Draw.io
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with a preceding SELU activation function layer to introduce non-linearity. This linear classifier takes as input the 
concatenation of the first moment Êt , the second moment ˆVart and the embedding of the clinical data Aux(22)t :

where the resulting logits would then be used with a Sigmoid activation function to generate the per patient class 
probabilities P(X = t) (Eq. 3). For training via stochastic gradient descent, the loss of the model is computed on 
these class probabilities via the binary cross-entropy.

Network training. In total, each training fold was trained for 100 epochs on a single GeForce RTX 2080 Ti 
GPU with model checkpoints saved based on the top-1 validation accuracy. Training code and model architec-
ture were implemented in Python 3.7.350 and PyTorch 1.5.037 using CUDA 10.1 and the PyTorch-Lightning51 
library. To deal with data imbalance, a 6:1 resampling strategy was used on the minority class for each predic-
tion label, along with online data augmentation by a factor of 4 using random flipping, shifts by up to 40% and 
rotations by up to 20 degrees using the  Albumentations52 library. The Adam optimizer was used with a learning 
rate of 3.2−5 , a weight decay of 1.7−4 and a batch size of 32. Hyperparameters selection and model architecture 
choice was performed on the 20% validation subset of the training data and is presented in the ablation section 
of the results. The models were trained from scratch for each of the three possible outcome labels (DM, LR, 
OS), then fine-tuned via the proposed transfer learning strategy. For statistical power, the models were trained 
5 times using different random initialization. Reported figures are the mean and 95% confidence interval (CI) 
of the trials. Statistical significance was computed using the dependent t-test for paired samples and Spearman’s 
correlation for inter-fold comparison. Bonferroni corrections were applied for multiple comparisons to achieve 
the stated Type 1 error of 5%.

Training and evaluation strategies. In each experiment performed in this study, transfer learning across 
prediction outputs was employed. Initially, each model was trained independently for each of the three target 
labels, DM, LR, and OS, resulting in three models. For each model, the state corresponding to the best validation 
performance (measured at each epoch of training) was kept. Then, of the three models, the one with the best 
validation performance was selected (and the others were discarded). Initializing the model weights with this 
model, transfer learning was performed by fine-tuning on the remaining two other labels.

Three separate data splitting strategies were evaluated, as shown in Fig. 8. These correspond to the four dif-
ferent phases of the study. Split A is used in two different phases: hyperparameters and model selection with 
ablation experiments, as well as comparison with literature and off-the-shelf models (Fig. 8A). Split B is used to 
evaluate the novel Internal CHUM dataset using the proposed model (Fig. 8B). Split C is used to evaluate the 
model generalizability to different sites using cross-validation (Fig. 8C).

In the first evaluation split (Fig. 8A), only patients from the TCIA “Head–Neck-PET–CT” dataset were 
considered. Samples from CHUS and HGJ—the two institutions forming the larger subsets with 192 (64%) 
samples—were selected to be part of the training and validation set, while the remaining are used for holdout 
testing. This split is identical to the one presented in the initial work  in30 as well as in the follow-up  work31. Also, 
the same split was used for the ablation experiments for hyperparameters and model selection, where a 20% 
subset of the training set was reserved as a validation set. This split is also used to compare model performance 
with results reported by the radiomics random forest approach by Vallières et al.30 and CNN by Diamant et al.31, 
as well as to compare with the following off-the-shelf computer vision models from the Torchvision  package53: 
 DenseNet54,  InceptionV355,  ResNet56 and  ResNeXt35 and a traditional survival prediction approach using Cox’s 
proportional hazards regression model based on the nomogram  method38 (see Fig. S1 in appendix). This later 
method differs from all other machine learning methods presented as it only uses the clinical information. In 
this case, an additional outcome was trained for prediction called progression-free survival (PFS) which attempts 
at evaluating whether a patient would live without any form of recurrence or metastasis up to the last follow-up 
date. This prediction was generated as a combination of the individual prediction values of both the DM and the 
LR models, by taking the maximum score of the two individual probabilities.

In the second evaluation split (Fig. 8B), the model’s performance was evaluated on a separate external dataset, 
with training performed on the entire TCIA dataset. The Internal CHUM dataset was then used only for external 
validation: a 298:371 training testing split. This split is useful as a true holdout testing on an unseen dataset. It 
also has the particularity that the testing split contains samples from CHUM, which is an institution seen during 
training in the TCIA dataset. Overall this particular split considers the effects of training on a multi-site dataset 
on performance generalization without enforcing any multi-domain restriction.

In the third evaluation strategy shown in Fig. 8C, we investigate if withholding one of the domains from the 
training set affects model performance. In other words, we explore the generalization power of the proposed 
model to new unseen domains rather than unseen datasets (which was explored in split B). Specifically, for each 
hospital (CHUM, CHUS, HGJ and HMR), samples from that site were reserved for the testing set: the rest of 
the data was used for training and validation. The overall methodology is functionally a non-randomized 4-fold 
cross-validation. In this way, performance can be evaluated on testing data from an unseen site, with the training 
set benefiting from features from three other sites. This would allow demonstrating whether the proposed model 
was robust to variation across acquisitions from different institutions.

Performance evaluation was repeated five times for every model in all of the results to obtain confidence 
intervals and ensure accurate statistical power. The monitored metrics included the area under the Receiver 
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Characteristic Curve (AUROC), accuracy, specificity and sensitivity for the binary classification task. Accuracy 
figures are balanced for each class due to the imbalanced nature of the dataset.

Ethical statement. This study was performed in line with the principles of the Declaration of Helsinki. 
Ethics approval was granted by the Institutional Review Board (IRB) for human studies of the Centre Hospitalier 
Université de Montréal (CHUM). Informed consent was waived by the IRB (Comité Éthique de la Recherche 
18.194) of CHUM as the data used in the study was retrospective.
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