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Neural model generating klinotaxis 
behavior accompanied by a random 
walk based on C. elegans 
connectome
Mohan Chen, Dazheng Feng*, Hongtao Su, Tingting Su & Meng Wang

Klinotaxis is a strategy of chemotaxis behavior in Caenorhabditis elegans (C. elegans), and random 
walking is evident during its locomotion. As yet, the understanding of the neural mechanisms 
underlying these behaviors has remained limited. In this study, we present a connectome-based 
simulation model of C. elegans to concurrently realize realistic klinotaxis and random walk behaviors 
and explore their neural mechanisms. First, input to the model is derived from an ASE sensory neuron 
model in which the all-or-none depolarization characteristic of ASEL neuron is incorporated for the 
first time. Then, the neural network is evolved by an evolutionary algorithm; klinotaxis emerged 
spontaneously. We identify a plausible mechanism of klinotaxis in this model. Next, we propose the 
liquid synapse according to the stochastic nature of biological synapses and introduce it into the 
model. Adopting this, the random walk is generated autonomously by the neural network, providing 
a new hypothesis as to the neural mechanism underlying the random walk. Finally, simulated ablation 
results are fairly consistent with the biological conclusion, suggesting the similarity between our 
model and the biological network. Our study is a useful step forward in behavioral simulation and 
understanding the neural mechanisms of behaviors in C. elegans.

Caenorhabditis elegans (C. elegans) is an ideal model organism for exploring the link between neural systems 
and behaviors. Its nervous system is compact, small in scale, easy to understand, and has been mapped almost 
entirely. An adult hermaphrodite contains only 302 neurons and over 7000 synaptic connections1–3. Furthermore, 
it exhibits a wealth of behaviors4,5 including orienting to a wide range of stimuli. Salt chemotaxis6, as a spatial 
orientation behavior, is fundamental for C. elegans survival because the bacteria on which it feeds release salt 
(NaCl) into the surrounding medium. Klinotaxis6,7 is a strategy of chemotaxis that gradually adjusts the direction 
of C. elegans towards a higher chemical concentration. This strategy relies on chemical differences between two 
sides of the body during locomotion. The head sensory neurons, ASEL and ASER, are mainly responsible for 
sensing NaCl8,9. However, because ASE neurons are too close together and C. elegans lies on its side, the spatial 
concentration information required for klinotaxis cannot be directly obtained from their responses. In fact, the 
ASEL/R neuron is an ON-/OFF-cell9, sensing the increase/decrease in NaCl at a single point. Therefore, responses 
of klinotaxis depend on both the sensory input and its current state during head sweeps dorsoventrally10–12. In 
addition, chemotaxis in C. elegans is irregular and obviously accompanied by a random walk. Random walk, as 
an unbiased exploration, exists during its locomotion, whether in an isotropic environment or in an environ-
ment with chemical gradients7,13,14. Researchers have found that chemotaxis strategies have little effect on the 
statistics of the random walk14, which preserves the ability to continuously explore environments in all directions 
and avoid local traps.

Despite the vast amount of available knowledge of behaviors and neural circuits and advancement in elec-
trophysiology, the neural mechanisms underlying these behaviors are still not clearly delineated. The lack of 
information on neurophysiology data (such as strengths and polarities of synapses) is a major obstacle15,16. In 
this context, simulation models are useful in filling in the data gaps using optimization techniques. As a part 
of the experiment–theory cycle, they can provide validations or generate new hypotheses on the generation of 
behavior16.

Below, we review the related works on salt chemotaxis simulation models of C. elegans. Some early models 
attempted to predict the strategies17, computational rules18, and network connectivity patterns19 of chemotaxis. 
Subsequent models focused more on behavioral implementation. Xu et al.20 used dynamic neural networks to 
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simulate salt attraction and toxin avoidance, and then incorporated body undulatory models to implement 
chemotaxis21,22. Demin et al.23 used a 3D simulator and an unrealistic neural circuit to control chemotaxis. Costa-
lago-Meruelo et al.24 combined a spiking neural network with a physical engine to emulate chemotaxis. However, 
in the above models, either sensory models make the spatial concentration information directly available, or the 
chemotaxis processes do not actually follow klinotaxis. Izquierdo et al.11 evolved a minimal klinotaxis circuit, 
consisting of only two pairs of sensory and motor neurons, and revealed a state-dependent neural mechanism of 
klinotaxis; subsequently, the circuit was expanded to include two interneuron pairs12,25 and the same mechanism 
was found. Although the minimal model is too simplistic, it is a useful starting point for studying the neural 
model of klinotaxis in C. elegans. In addition, Zu et al.26 proposed a computational model which decomposed 
the sensory input into two concentration gradients respectively required for two strategies of chemotaxis and 
implemented it in a network model.

The realistic sensory response is a prerequisite for estimating plausible mechanism of klinotaxis. We note a 
recent electrophysiological report27 that stimulation with NaCl evoked all-or-none membrane depolarization in 
ASEL neuron. Previously, both ASEL and ASER were thought to be encoded by graded potentials, because stud-
ies have reported that ASER fails to generate Na+ action potential28. This characteristic of ASEL has not yet been 
constructed in these models. Further, most chemotaxis models ignore the random walk; for the few models19,26 
that consider it, they directly added a random variable to motion outputs, which is biologically unrealistic. As yet 
no models have been reported in the literature that generate the random walk by the activities of neural networks.

Based on the above premises, we present a salt random-walk klinotaxis model of C. elegans to concurrently 
realize klinotaxis and random walk behaviors and explore the neural mechanisms of these behaviors. The model 
is constructed based on the connectome and functional neural circuits of C. elegans and evolved by a genetic 
algorithm (GA). Importantly, we incorporate the all-or-none depolarization characteristic of ASEL neuron and 
introduce the liquid synapse that we propose according to the stochastic nature of biological synapses into the 
model. Behavioral analysis verifies that the model can implement klinotaxis, which emerged spontaneously from 
network evolution. Through the analysis of sensorimotor transformation and neuronal dynamics, we identify 
the mechanism by which klinotaxis is generated in this model. In addition, we test the model in an isotropic 
environment, verifying that the neural network with liquid synapses is able to generate a random walk similar to 
that in real C. elegans. This provides a new hypothesis as to the neural mechanism underlying the random walk. 
Moreover, the model exhibited realistic klinotaxis accompanied by the random walk when tested in environ-
ments with NaCl gradients, just as real C. elegans does. Finally, we performed simulated ablation on neurons in 
the model to compare the similarity of the operation of our model to that of biological nervous system.

Results
Responses of ASE sensory neuron model to NaCl stimulation.  To input realistic sensory responses 
into the klinotaxis model, we first constructed an ASE sensory neuron model (see “Methods”: ASE sensory neu-
ron model), considering their electrophysiological characteristics recorded in previous studies9,27–29 and using 
a conductance-based approach30. We simplified each neuron to a single electrical compartment and required 
that the dynamics must meet the following characteristics. Regarding the ASEL neuron, (L1) it is an ON-cell, 
responding only to increases in NaCl concentration. (L2) The response is a stochastic all-or-none phenomenon; 
the greater the increase in concentration, the greater the probability of depolarization, but the depolarization 
amplitude remains the same. (L3) In response to a concentration step stimulus, the voltage rapidly rises to the 
peak and subsequently slowly decays to the resting state. Considering the ASER neuron, (R1) it is an OFF-cell, 
only responding to decreases in the NaCl concentration. (R2) The voltage response is in a graded manner. (R3) is 
the same as L3. (R4) The voltage response peak is a saturation function of the concentration decrease amplitude.

To verify whether the responses of the ASE neurons met the summarized characteristics, we applied various 
NaCl concentration step changes (up-/down-steps) to the neural network model (see “Methods”: Klinotaxis 
model: neural network model) to observe the responses of ASE neurons.

The ON- and OFF-cells characteristics of ASEL and ASER (L1, R1) can be obtained from Eqs. (6) and (9). 
Figure 1a and b show the voltage dynamics of the ASEL neuron in response to up-steps. We performed multiple 
experiments (n = 50) for each up-step scenario, and added a small noise to the ASEL neuron to avoid a complete 
overlap of voltage traces. It may be observed that small up-steps evoked a small number of depolarizations; as 
the up-steps increase, the number increases. Considering the up-steps of different magnitudes, all the depolar-
ized voltage peaks were similar. These indicate that ASEL had an all-or-none depolarization in response to NaCl 
stimulation as required in L2. During depolarization, the voltage trace underwent a process of rapid rise and 
subsequent slow decay, satisfying the characteristic in L3. The results reproduce the response pattern of ASEL 
neuron in biological experiments27.

Figure 1c and d show the voltage dynamics of the ASER neuron in response to down-steps. The voltage 
response peak increased with the increase in the magnitude of down-steps, that is, ASER had an obvious graded 
response, as required in R2. It may be observed from the shape of voltage traces that the dynamic satisfies R3. 
Moreover, the relationship between the ASER voltage peaks and magnitudes of down-steps, as shown in Fig. 1d, 
indicates a saturation relationship as required by R4. Therefore, the response dynamics of the ASER neuron 
satisfy characteristics summarized above.

Klinotaxis behavior generated by the klinotaxis model.  We constructed a connectome-based kli-
notaxis network model of C. elegans (see “Methods”: Klinotaxis model). The neurons in the neural network were 
chosen based on the functional neural circuits31–34 and the connection was based on the connectome1–3, involv-
ing chemical and electrical synaptic connections. The unknown parameters were evolved by a genetic algorithm 
(GA) for the purpose of achieving chemotaxis. Genetic algorithm generated a population of 300 models with fit-
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ness scores ranging from 0.26 to 0.79. Among them, there were 108 successful models with a fitness score higher 
than 0.7 and the reliability higher than 0.5 (see “Methods”: Terminology). Further analysis was limited to the 
successful sub-population. To verify whether these klinotaxis network models of C. elegans (hereinafter referred 
to as model elegans) followed klinotaxis, we tested them in environments with NaCl gradients and analyzed the 
behavior, referring to methods used for real C. elegans7 and the minimal klinotaxis model11,12. Definitions of 
variables in analysis refer to “Methods”: Terminology.

We first measured the chemotaxis performance in two environments (see “Methods”: Environmental models) 
to test the effectiveness and generalization of the successful models. In each time, these model elegans moved 
freely in different initial orientations at an initial position 4.5 cm away from the NaCl peak for 800 s and were 
executed 50 times in each environment. The results show that these model elegans achieved high chemotaxis 
indexes (CIs) and reliabilities regardless of the environment (Table 1).

Subsequently, we determined whether the behavior met klinotaxis. Considering a model elegans, its tracks 
are shown in Fig. 2a. The model elegans moved forward in a sinusoidal wave pattern and gradually adjusted its 
direction to the higher concentration side without sharp turns until it reached the NaCl peak. Based on the shape 
of the tracks alone, this behavior was consistent with klinotaxis in real C. elegans7. Then, we calculated and plotted 
the relationships between the turning bias and bearing, normal gradient, and translational gradient in tracks. 
The result is shown in Fig. 2b, c, and d, where gradients were linearly normalized to between -1 and 1. According 
to the judgment evidence of klinotaxis in real C. elegans7, (1) the relationship between the average turning bias 
and bearing should be approximately sinusoidal with the opposite algebraic signs; Fig. 2b shows that this was 
indeed the case. (2) The average turning bias should be proportional to normal gradient with the same algebraic 
signs; the relationship shown in Fig. 2c was consistent with this feature. (3) The average turning bias should be 
independent of translational gradient, which is reflected in Fig. 2d. However, if turning biases were divided into 
positive and negative, considering two translational gradient bins with the same value and opposite signs, the 
negative bin corresponds to greater turns. This suggests that the direction correction was greater when model 

Figure 1.   Voltage responses of ASE model evoked by up-/down-steps. (a) Voltage traces of ASEL neuron. m is 
the number of depolarizations evoked. (b) Voltage peaks of traces in (a), shown by colored dots. The gray areas 
are the violin plots, representing the kernel density estimations. (c) Voltage traces of ASER neuron. (d) The 
ASER voltage peak vs. down-step. The vertical arrows in (a), (c) indicate the onset times of stimuli.

Table 1.   Chemotaxis performance of the successful model elegans sub-population in two environmental 
models (n = 108, ± s.e.m.).

Environmental model Conical Gaussian

CI 0.753 ± 0.0231 0.749 ± 0.0213

Reliability 0.996 ± 0.0383 0.990 ± 0.0962
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elegans was far away from the NaCl peak, which has been found in the minimal klinotaxis model12. The above 
analyses indicate that the model elegans can realize klinotaxis.

Moreover, we performed the same quantitative behavioral analysis for 10 randomly selected model elegans, 
and the average results yielded the same conclusion (Fig. S1 in Supplementary Information 1).

Sensorimotor transformation and mechanism underlying klinotaxis.  To explore how the model 
generated klinotaxis, we analyzed sensorimotor transformation and neuronal dynamics of this model elegans. 
Figure 3 shows the sensorimotor transformation when up-/down-steps were applied at different locomotion 
phases. The steering response was quantified as the turning bias calculated over one cycle following a stimulus. 
Note that the ASEL’s responses to the up-steps were probabilistic and all-or-none; therefore, Fig. 3b only shows 
the case in which ASEL was activated, and Fig. 3d shows the average turning bias of multiple experiments (num-
ber is 100). The following conclusions can be drawn from the results in Fig. 3.

1.	 The down-/up-steps caused opposite steering responses. A down-step activated ASER, resulting in subse-
quent increases in the turning angle; as such, the translational direction was adjusted to the opposite side of 
the instantaneous direction of that phase (Fig. 3a). The reverse occurred when an up-step activated ASEL 
(Fig. 3b). These steering responses were effective because applying a down-/up-step implies that the instan-
taneous direction at that time is the direction of decreasing/increasing NaCl.

2.	 The steering response was related to the locomotion phase at which the stimulus was applied. As shown in 
Fig. 3a and d, at phase a/c, the translation direction was almost unchanged, because the component of the 
stimulus applied at this phase pointing to ventral/dorsal was approximately zero. At phase b/d, the adjustment 
amplitude was the highest, because the ventral/dorsal component of the stimulus applied at this phase was 
the largest. Moreover, the model elegans corrected its direction throughout the locomotion phase according 
to the discrepancies between its instantaneous direction and the direction of NaCl peak (Fig. 3c and d).

3.	 For a given phase, the amplitude of steering response was proportional to the amplitude of up-/down-steps 
(compare four solid lines in Fig. 3c or d); however, the formation mechanism was different. Down-steps 
caused graded responses of ASER, directly resulting in graded steering responses. In contrast, due to the 
all-or-none depolarization of ASEL, up-steps only resulted in two kinds of turning bias; the value when 
ASEL was not activated or activated is shown by the yellow or black dash-dot lines in Fig. 3d. The final aver-
age turning biases were distributed between these two; the larger the up-step, the greater the magnitude of 
average turning bias. This property allowed the model elegans to turn to a relatively better side when the 
polarities of the dorsal and ventral concentration changes were the same.

4.	 The steering response caused by the down-step was larger than that caused by the up-step with the same 
amplitude (compare y-axis values of Fig. 3c and d). This reflected the asymmetry of the gray dots shown in 
Fig. 2d at positive and negative translational gradients; that is, for the translational gradients with the same 
absolute value, the negative one induced a larger turning bias magnitude of model elegans than the positive. 
As such, the model elegans corrected the direction far away from the NaCl peak more strongly. This makes 

Figure 2.   Behavioral analysis of klinotaxis in the model elegans. (a) Multiplication of the locomotion tracks 
with different initial orientations. (b) Average turning bias vs. bearing. (c) Average turning bias vs. normal 
gradient. (d) Average turning bias vs. translational gradient. The gray dots represent the average positive and 
negative turning biases. The error bars represent s.d.
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functional sense, allowing the model elegans to quickly correct deviations from the chemotaxis path while 
preventing oversteering.

The head dorsoventral sweeps during locomotion are critical to the klinotaxis strategy. In our model, the 
locomotion fluctuations were induced by sinusoidal oscillating signals ( Iosci  in Eq. (12) in “Methods”) received 
by motor neurons; therefore, the sweeps were not spontaneously generated by the network. Nonetheless, the 
amplitude of fluctuations was determined through the evolution of the overall model, jointly influenced by wosc , 
wnmj , and parameters of motor neurons (refer to Eqs. (12) and (14) in “Methods”).

Subsequently, we analyzed how this sensorimotor transformation was formed by neuronal dynamics. The 
dynamics of sensory neurons have been given, and here we focus on motor neurons. In this model, the dynamic 
patterns of left and right motor neuron pairs are similar; therefore, only the left pair, SMBVL and SMBDL, are 
described as examples.

The motor neuronal dynamics in the absence of sensory input, including the neuronal inputs, voltages, and 
outputs, are shown in Fig. 4a. When the oscillating input was omitted, the steady-state input–output (SISO) 
relationship was a nonlinear sigmoidal function, reflecting only one saturated region because of large negative 
biases of motor neurons (see brown and purple curves in Fig. 4a). When neuronal input was small, the output 
was in the saturated region where the output was insensitive to the input changes. In an actual locomotion, 
motor neurons received sinusoidal oscillating inputs ( Iosci  in Eq. (12) in ”Methods”), making their instantane-
ous input–output states circulated counterclockwise around the SISO curves. The input of SMBVL and SMBDL 
varied sinusoidally with the locomotion phase throughout the locomotion cycle and were out-of-phase, causing 
SMBVL and SMBDL to enter alternately and do not occupy sensitive regions at the same time.

We then analyzed the resultant changes of dynamics in the presence of sensory input (for up-steps, only the 
case where ASEL was activated was considered). Figure 4b and c show the instantaneous differences of neuronal 
inputs and outputs in the subsequent period of time induced by an up-/down-step at the phase of 0.75π. An up-/
down-step caused a continuous voltage response of ASEL/R, which was transmitted by interneurons, resulting 
in a continuous change in motor neuronal inputs and the change was bidirectional. However, owing to the 
influence of saturated region, the ASEL/R response only led to a decrease/increase in motor neuronal outputs. 
Considering the overall effect, when ASEL was activated, the inhibition of the SMBDL output was greater than 
that of the SMBVL output. Therefore, the model elegans veered toward the ventral side, and the ASER had an 
opposite effect. This explains the steering responses at the phase of 0.75π, as shown in Fig. 3.

We take the cumulative amount of instantaneous differences caused by a stimulus applied at a phase as the 
difference of this phase. Then the analysis was extended from 0.75π to all phases; the results are shown in Fig. 4d, 
e. For all phases, the ASEL/R response only led to a decrease/increase in motor neuronal outputs. SEMDL/VL 
outputs were alternately sensitive to sensory inputs; SMBDL was sensitive during ventral sweeps, whereas SMBVL 
was sensitive during dorsal sweeps. Consequently, during ventral sweeps, ASEL/R activation led to a decrease/
increase in SMBDL output and a constant SMBVL output, resulting in a ventral/dorsal steering in model elegans, 

Figure 3.   Steering responses of the model elegans elicited by up-/down-steps. (a), (b) Changes in locomotion 
track caused by down-steps (a) or up-steps (b). The black curves represent the tracks without stimuli, and the 
four colored curves respectively represent the tracks after applying an up-/down-step at the four phases of the 
corresponding colors. (c), (d) Steering response vs. locomotion phase at which a down-step (c) or an up-step (d) 
was applied. The four colored dotted lines represent the positions of four phases in (a) and (b). The gray dashed 
lines represent the shape of locomotion in all the phases. The yellow dash-dot lines represent the turning bias 
when ASEL was not activated or without stimulus. The black dash-dot line in (d) represents the turning bias 
when ASEL was activated.
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and the reverse was true for dorsal sweeps. This explains the direction of steering responses shown in Fig. 3. 
Moreover, comparing the magnitudes of output differences (i.e., the z-axis values shown in Fig. 4d and e), it can 
be observed that the amplitude of differences caused by the down-step were larger than that caused by the up-step. 
This explained the asymmetry of the turning bias amplitudes caused by down- and up-steps shown in Fig. 3c, d. 
Additionally, we showed the output differences of the SMBDL and SMBVL caused by the up- and down-steps 
in different sizes at each locomotion phase (see Fig. S2 of Supplementary Information 1), which more visually 
explained the steering response in Fig. 3c, d.

According to the above analysis, the mechanism of this model generating klinotaxis mainly depends on fol-
lowing principles. (1) The ASEL and ASER have antagonistic synaptic effects on motor neurons. This ensures 
that when the concentration changes in opposite polarity are sensed at the same locomotion phase, the opposite 
steering responses are caused. (2) Dorsal and ventral motor neurons are alternately sensitive to sensory input. 
This ensures that when the same concentration change is sensed during the dorsal and ventral sweeps, the 
opposite steering responses are caused, indicating state-dependence. (3) The sensory responses form graded 
average steering responses in different way, allowing the model elegans to turn to a more favorable side when the 
concentration changes during dorsal and ventral sweeps are of the same polarity. The mechanism which emerged 
in this model is approximately similar to that in the minimal klinotaxis model11,12. Nonetheless, due to the more 
realistic sensory coding pattern and network architecture, this model provides new findings as to the operating 
detail, such as ASEL forming the graded average steering responses by depolarization probabilities. In addition, 
in the minimal model11,12, the structure and parameters were set to be symmetrical across the dorsoventral 
midline to ensure that the communication of sensory neurons to bilateral motor neurons was symmetrical. In 
our model and the real nervous system, the connectome structure is not symmetrical. Our model spontaneously 
developed both the symmetry and mechanism during evolution, further demonstrating the plausibility of the 
mechanism in the biological network.

Effect of the all‑or‑none depolarization characteristic of the ASEL neuron.  The all-or-none 
depolarization characteristic of the ASEL neuron formed a decision-making capability that made the large and 
sustained concentration increases more likely to trigger responses. The resulting steering response to the up-
step was all-or-none (fixed steering angle or no steering) in each locomotion phase; the graded average steering 
response to up-steps was formed by depolarization probabilities of the ASEL neuron. Consequently, the chemo-
taxis of the model elegans was achieved by combing the flexible steering in response to the down-step with the 
all-or-none steering in response to the up-step. It may make sense to allow for less energy consumption, and 
still having the flexibility to capture and turn in the favorable direction when C. elegans moves down gradients.

Subsequently, we analyzed how this characteristic affects the overall behavior during klinotaxis in the model. 
It can be observed from Fig. 2b that the average turning bias curve of model elegans was relatively flat when the 
bearing was near zero. Compared to the experimental data of real C. elegans7, the relationship curve between the 
average turning bias and bearing was not so sinusoidal. This is exactly due to the all-or-none characteristic of the 
ASEL neuron. When bearing had a small absolute value, there was a small deviation between the translational 

Figure 4.   Dynamics of the motor neurons. Green and blue represent SMBVL and SMBDL respectively. The 
solid-colored curves in 3D sub-graphs show the projections of 3D curves onto each plane. The shaded areas 
represent the regions of the neuronal output sensitive to neuronal input in the absence of the sensory input. 
(a) Dynamics in the absence of sensory input. The brown and purple curves on the y–z plane show the SISO 
curves of the SMBVL and SMBDL, respectively. (b), (c) Instantaneous differences in the neuronal inputs and 
outputs induced by an up-step (b) or a down-step (c) at a phase of 0.75π. The dashed lines show the trends of 
the neuronal inputs with phase when there is no sensory input. (d), (e) Differences in the neuronal inputs and 
outputs induced by an up-step (d) or a down-step (e) at each locomotion phase.
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direction of model elegans and the direction to the NaCl peak. In this case, whether the head swept dorsally or 
ventrally, concentration gradients may be continuously positive and large; therefore, the ASEL neuron was highly 
likely to be activated during both sweeps. This reduced the turning amplitude of both side sweeps, resulting in 
no steering. Interestingly, it could be observed subsequently that when the behavior included the random walk, 
this deviation of relationship curve compared to that of real C. elegans was significantly improved (see Fig. 6f). 

Figure 5.   Klinotaxis network motifs and motor neuronal parameter analysis. (a) Two network motifs in 
minimal klinotaxis models11. Arrowheads, excitatory connections; filled circles, inhibitory connections. (b) 
Biases of motor neurons. (c) Steady-state voltages of motor neurons in the absence of the sensory and oscillating 
inputs. The blue dots represent the right pair of motor neurons and the red dots represent the left pair.

Figure 6.   Behavioral analyses of the random-walk model elegans in an isotropic environment (a-d) and in 
an environment with NaCl gradients (e–h). (a) Three randomly selected tracks. (b) Distribution histogram of 
turning rates in a track (μ = 1.51 º/mm, σ = 30.52 º/mm, P = 0.38). The blue-dashed line is the probability density 
curve of the theoretical normal distribution. (c) Change in the average turning rates over time. (d) Relationship 
between turning rates at a time t and those after 6 s and 12 s. (e) Three randomly selected tracks in the presence 
of NaCl gradients. The black dot and red star represent the initial position and the NaCl peak, respectively. (f) 
Average turning bias vs. bearing. (g) Average turning bias vs. normal gradient. (h) Average turning bias vs. 
translational gradient.
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Actually, considering the analyzed data for klinotaxis in real C. elegans7, researchers only removed the data cor-
responding to consecutive sharp turns, implying that the object analyzed was exactly the klinotaxis accompanied 
by the random walk. Therefore, the conclusion that the klinotaxis behavior with random-walk conforms to the 
real C. elegans data is more accurate and meaningful.

Generalization and neuronal analysis.  The result of the GA was not a unique model, but an ensemble of 
models with different parameter sets. We examined the network motif and neuronal parameter distributions of 
models in the successful sub-population. The mean and standard deviation (SD) of each parameter across these 
models were provided in Supplementary Information 2.

In the study of minimal klinotaxis models11, the evolved models were clustered into two network motifs, as 
shown in Fig. 5a. Analysis showed that all our evolved models were concentrated in Motif 2. That is, the biases 
of each motor neuron were negative with a large magnitude, as shown in Fig. 5b; ASEL and ASER neurons had 
inhibitory and excitatory synaptic effects, respectively, on motor neuronal outputs through complex intercon-
nections of interneurons. This indicates that these models adopted the same mechanism analyzed in the previous 
section to implement klinotaxis. In the absence of sensory inputs, model elegans ran at as small a turning bias as 
possible until they sensed a change in the concentration and steered in an appropriate direction. This required 
that outputs of ventral and dorsal motor neurons varied with approximately the same amplitude in the absence of 
sensory inputs. Considering the right pair, ventral and dorsal motor neurons had fairly symmetric biases (Fig. 5b) 
and steady-state voltages (Fig. 5c); thus, when receiving oscillating inputs, their oscillating outputs were almost 
symmetric. Considering the left pair, the absolute values of negative biases of the dorsal motor neuron were 
always slightly greater than those of the ventral one. This can be compensated for by the different weights and 
reversal potentials of afferent neurons to them. The afferent neurons of the ventral motor neuron had a greater 
inhibitory effect on it; thus, its steady-state voltages in the absence of the sensory and oscillating inputs were 
always slightly lower than those of dorsal motor neuron, as shown in Fig. 5c. As such, the relative symmetry of 
the dorsal and ventral oscillating locomotion was ensured.

Our network models allowed us to explore the characteristics of interneurons in the realistic connection 
architecture. We mainly focused on neuronal biases, which affected the sensitivity of neuronal outputs to changes 
in inputs, and on the output changes of neurons in response to sensory inputs. Through analysis, we observed 
several interneurons which had relatively significant and stable characteristics. First, the magnitude of the biases 
of several interneurons, such as AIZR, AVBL, RIAL, RIAR and RIBR neurons, were consistently large in models; 
for sensory inputs in any direction (up- and down-steps), the output differences of these interneurons were little 
and negligible. Therefore, these neurons were insensitive to sensory inputs and were unimportant for klinotaxis 
in models. Considering these neurons with large magnitude biases (including motor neurons), their biases always 
tended to be negative, except for the RIBR neuron. This makes sense from the perspective of the energy constraint 
of nervous systems, because the negative bias saturates the synaptic conductance to zero.

Moreover, a critical interneuron, the AIZL neuron, was observed with biases steadily centered on the range of 
the sensitivity (mean 0.56, SD 0.49). The sensory inputs caused large output differences of the AIZL neuron. Fur-
thermore, the ASEL and ASER sensory neurons had opposite synaptic effects on its output; the up-step increased 
its outputs, while the down-step decreased its outputs. This neuron had direct connections with the same polarity 
to the left pair of motor neurons. Thus, it can be concluded that the AIZL interneuron was important for the 
implementation of klinotaxis in these models. In addition, the AIBR neuron also had large and bidirectional 
output differences for sensory input in most models, with the up-step decreasing its outputs and down-step 
increasing its outputs; however, the variance of its biases was slightly larger across all models.

Additionally, there was a class of interneurons, AIYL and RIML neurons, whose biases were distributed in 
the range of sensitivity; nevertheless, in most models (AIYL: 87 out of 108; RIML: 101 out of 108), the synaptic 
effects from two sensory neurons had the same polarity. Sensory inputs induced only unidirectional changes in 
their outputs; both up- and down-steps leaded to an increase in outputs of the AIYL and RIML neurons.

Liquid synapse and a hypothesis as to the neural mechanism of the random walk.  Regardless 
of the chemical environment, the locomotion of C. elegans often involves the random walk7,13,14. The previ-
ous study14 has shown that chemotaxis strategies have little effect on the statistics of the random walk, which 
maintain its ability to continuously explore the environment in all directions, even when moving in the favora-
ble direction. The study35 in Drosophila larvae has provided strong evidence that the random walk is gener-
ated intrinsically in the nervous system, without environmental interactions. However, it is not clear how this 
behavior is generated. In this study, we related statistical properties of the random walk to the variable nature of 
biological synapses.

According to the experimental data of real C. elegans in isotropic environments, the random walk has two 
behavioral features7. (W1) The curving rate varies randomly, and the overall distribution shows a normal dis-
tribution with a mean of zero and a SD of 32.3°/mm. (W2) The curving rate is strongly correlated with time, 
and the extent of the correlation changes over time. Distribution of curving rate is dependent on the previous 
6 s curving rate (average value over 6 s is close to previous value), but independent of the previous 12 s curving 
rate (average value over 12 s is always zero).

Contrary to synapses in artificial neural network, the strengths of which are fixed after optimization, biological 
synapses are plastic and time-varying36,37. A major manifestation, long-term potentiation, has been recognized 
as the biological basis of learning and memory. In addition, the synapse is stochastic and variable to a certain 
extent due to many factors in the nervous system. For example, synapses are affected by transmitted signal 
noises such as various burst and indeterminate signals. Moreover, there are small noise sources in each synapse, 
which contribute to synaptic variability37,38, such as synaptic calcium channel noise, spontaneous activities of 
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synaptic vesicles, and variability of receptor proteins in the postsynaptic membrane over time. These electrical 
and biochemical noises make synapses variable, thereby altering the amplitude of the postsynaptic current, and 
likely affecting information processing at macro level, such as behavior. According to the central limit theorem, 
when a phenomenon in nature is affected by many independent random factors, and if each factor makes a small 
impact, the total impact can be regarded as obeying a normal distribution.

Considering the above, we propose the concept of liquid synapse, and hypothesize that liquid synapses in the 
neural network can generate random walk behavior. The liquid synapse refers to the concept that the strength 
of the synapse varies slowly, randomly, and in small increments over time, and the overall distribution of each 
synapse follows the normal distribution with a small SD.

We introduced liquid synapses into the klinotaxis model to form the random-walk klinotaxis model of C. 
elegans (hereinafter referred to as random-walk model elegans). Each chemical synapse was assigned an inde-
pendent normal distribution based on fixed parameters in the klinotaxis model. The mean of the distribution 
was determined through the evolution of klinotaxis function, analogous to long-term plasticity, i.e., the mean 
was the fixed synaptic strength in the klinotaxis model. This ensures that the klinotaxis function is not disrupted 
(i.e., liquid synapses cannot affect the plasticity outcomes related to learning). Considering the W2 feature of 
the random walk and the smoothness of the synapse, a random value in the corresponding distribution was 
assigned to the synaptic strength every 12 s. The synaptic strength varied linearly between consecutive guide-
post values selected above. Thus, each synapse exhibited a continuous and slow variation over time. The SDs of 
the distributions, as a set of unknown parameters, were also optimized using the GA (cf. “Methods”: Klinotaxis 
model: model optimization). The fitness was evaluated by the similarity between the behavioral distribution of 
the model in an isotropic environment and the W1 behavioral feature.

Considering the network model with liquid synapses, the dynamic equation of neurons is consistent with 
Eq. (12) in “Methods”, except that chemical synaptic strengths are time varying. The equations of the liquid 
synaptic strength wc

ij(t) from neuron j to i are given as follows.

where k is the non-negative integer. t0 ≥ 0 and �T = 12 s . To avoid confusion, the fixed chemical synaptic 
strength that evolved in the klinotaxis model is expressed as wc

ij in this set of equations; wc
ij,T follows a normal 

distribution with a mean of wc
ij and an SD of σij.

Realistic random walk generated by liquid synapses.  To verify the above hypothesis, we tested the 
random-walk model elegans in an isotropic environment. In each experiment, the random-walk model elegans 
moved freely in a random initial orientation for 1,200 s, and the experiments were conducted 500 times. From 
the several tracks shown in Fig. 6a, the behavior was a diffused and undirected process which sometimes moved 
forward and other times circuitously, like the tracks of real C. elegans.

To verify whether the behavior met W1, a series of statistical analyses was performed on the turning rates 
in all tracks. We calculated the mean (μ) and SD (σ) of turning rates in each track. The average μ and σ were 
1.593 ± 3.6790°/mm and 31.895 ± 2.3207°/mm (n = 500, ± s.d.), respectively, which were close to the values 
recorded in W1. In addition, the one-sample Kolmogorov–Smirnov (K-S) test was carried out on turning rates. 
This is a classical method for testing the goodness of the fit between sample and theoretical distributions. If P 
value is greater than the significance level (0.05), the null hypothesis that the sample conforms to theoretical 
distribution is not rejected. The average P value was 0.3679 ± 0.2696 (n = 500, ± s.d.), which was far beyond 
0.05, indicating that turning rates obeyed the distribution required in W1. Figure 6b displays the distribution 
histogram of turning rates in one track, which visualized clearly that the distribution was approximate to the 
theoretical distribution.

To verify whether the behavior met W2, we analyzed the correlation over time of turning rates referring to 
the analysis method in biological experiments7. The turning rates were intercepted for consecutive 20 s starting 
with any initial value to form a strip. Then all strips were divided into bins based on their initial values. For each 
bin, we calculated the average once each second. As shown in Fig. 6c, each average turning rate was close to 
the value of previous moment; nonetheless, after approximately 12 s, the effect of the initial value almost disap-
peared, and the average turning rate in each bin tended to zero. Thereafter, we plotted the relationship between 
the turning rates at a time point and the turning rates after 6 s or 12 s (Fig. 6d). There was a significant positive 
correlation between the turning rates and the values after 6 s, but almost no correlation with the values after 12 s 
(the correlation coefficients were 0.674 and 0.182, respectively). These results are consistent with the W2 feature.

The above experimental analyses suggest that the random-walk model elegans is capable of generating the 
random walk similar to that in real C. elegans, confirming our hypothesis that liquid synapses in the neural 
network can generate the random walk.

Realistic klinotaxis accompanied by the random walk generated by the model and complete 
chemotaxis behavior.  Considering chemotaxis in real C. elegans, klinotaxis and random walk behaviors 
coexist. Therefore, we tested the random-walk model elegans by performing the same experiments as model 
elegans in environments with NaCl gradients. The chemotaxis performance is shown in Table 2. Influenced by 
the random walk, the average CIs were comparable with only a slight decrease compared to the model elegans 

(1)wc
ij,T (k) ∼ N

(
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ij , σ

2
ij

)

,
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and the reliabilities remained at a value of one. The tracks shown in Fig. 6e were not as neat as that of the model 
elegans; however, it eventually reached the NaCl peak and hovered around that point. These indicate that the 
random-walk model elegans was able to achieve chemotaxis accompanied by the random walk.

We performed the same verification method as adopted in the model elegans to verify whether the process 
conformed to klinotaxis. From the results shown in Fig. 6f, g, and h, we can observe the sinusoidal relationship 
between the average turning bias and bearing, the proportional relationship between the average turning bias 
and normal gradient, and the independence between the average turning bias and translational gradient. These 
relationships were consistent with the experimental results of real C. elegans, indicating that the model can realize 
klinotaxis accompanied by the random walk.

Chemotaxis in real C. elegans employs two strategies, klinotaxis7 and klinokinesis (biased random walk)13, 
which operate in parallel during chemotaxis. In contrast to the klinotaxis strategy which gradually adjust the 
direction of C. elegans, the biased random walk strategy reorients the locomotion through sharp turns. The 
biased random walk, based on the random walk, modulates the probability of sharp turns as a sigmoidal func-
tion of concentration temporal gradients7,13; for negative gradients, sharp turns occur more frequently, shorten-
ing runs down gradients. We included the biased random walk in the behavior generated by the random-walk 
model elegans to show the complete chemotaxis behavior of C. elegans. When the biased random walk strategy 
was implemented, the occurrence probabilities and turning angles of sharp turns were set based on the prob-
ability equation and turning angles given by Iino et al.7, which was obtained by fitting experimental data. We 
implemented the experiment 100 times and compared it with the random-walk klinotaxis behavior (see Fig. S3 
in Supplementary Information 1). The results showed that when the biased random walk was included, the 
random-walk model elegans could better aggregate at the NaCl peak, which was consistent with the conclusion 
obtained by Iino et al.7.

Results of the simulated ablation experiment.  In organisms, the effect of neurons on behavior can 
be explored by laser ablation. Similarly, we performed the simulated ablation experiment on evolved network 
models. We randomly selected 10 models from the successful sub-population and evolved their liquid synapses 
to obtain random-walk model elegans. Then, we conducted simulated ablations on neurons in each random-
walk model elegans and measured the CIs to compare with the results of biological ablation experiments7. The 
average results are shown in Fig. 7.

Ablating the ASE pair led to a complete loss of klinotaxis; in this case, the model was unable to sense external 
stimuli. Ablating ASEL only slightly reduced the klinotaxis efficiency, whereas ablating ASER caused unstable 
klinotaxis defects. The biological ablation experiment7 has shown similar results, with ASER playing a major 
role and ASEL contributing to it; however, ASEL is not required.

In addition, biological experiment7 showed that although each interneuron has been implicated in chemotaxis 
in the studies of functional neural circuits31–34, for most interneurons, the ablation of a pair alone does not cause 
severe damage, except for AIZ. The simulated ablation of interneurons in our model yielded the similar results. 
Considering AIY or AIZ neuron pair, ablating AIYR or AIZL significantly affected klinotaxis, and the ablation of 
the other one (AIYL or AIZR) had no effect. However, ablating AIZ pair resulted in a severe impairment, whereas 
ablating AIY pair still allowed the model to perform klinotaxis with a slightly reduced efficiency. These are con-
sistent with the biological conclusion7 that AIZ neurons are crucial to klinotaxis, whereas AIY neurons are not. 
Considering AIB neurons, ablating AIBR resulted in a decrease in performance; nevertheless, as can be seen by 
the variance, ablating AIBR had little effect in some models and serious effects in the other models. The same is 
true for ablating AIB pair. This is similar to the biological conclusion7 to some extent that ablating AIB neurons 

Table 2.   Chemotaxis performance of the random-walk model elegans in two environmental models 
(n = 100, ± s.d.).

Environmental model Conical Gaussian

CI 0.712 ± 0.0355 0.701 ± 0.0371

Reliability 1.0 1.0

Figure 7.   Klinotaxis efficiencies of multiple neuron-ablated random-walk model elegans. (a) Simulated ablation 
of an individual neuron. (b) Simulated ablation of a pair of neurons. The gray bar indicates the average CI of 
models, and the error bar is s.e.m. (n = 10).
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leads to a significantly decreased chemotaxis performance with a relatively large variance in the klinotaxis index 
of each tested C. elegans. The ablation of RIV neurons resulted in a significant defect in klinotaxis, which was 
the only inconsistency with the biological result. This can be explained by the oversimplification of the motor 
neurons, which in our model are only a group of SMB neurons. We selectively eliminated the connections of 
RIV and found that the RIV pair affected klinotaxis by directly innervating the SMBVL and did not affect other 
neurons. Thus, ablation of RIV resulted in a severe asymmetry of ventral and dorsal output. However, in real C. 
elegans, the head locomotion is controlled by multiple groups of motor neurons. Nonetheless, it should be noted 
that ablating RIV in real C. elegans eliminates the ventral bias of Ω-turns31. This can be indirectly reflected by 
our finding that RIV innervates ventral motor neuron SMBVL.

The fair consistency between the simulated ablation results of our model and the biological conclusion sug-
gests that this model may operate through mechanisms similar to those in the nervous system. Both ablation 
experiments in the biological nervous system and the simulated ablation experiments in our model showed 
that the interneurons in the neural circuit were redundant for the klinotaxis behavior alone. Additionally, we 
constructed a random network with the same neurons and the same total number of connections, but the con-
nection structure was randomly generated. Through evolving its parameters, this random network also realized 
the klinotaxis behavior (see Fig. S4 in Supplementary Information 1). Nevertheless, we do not suppose that these 
results deny the significance of the specific network structure of the nervous system. The behavior in C. elegans 
is complex and requires the compact nervous system to integrate a large amount of information with limited 
resources to generate appropriate and adaptive responses. In terms of the overall behavior, the specific network 
structure of C. elegans may be of great significance.

Discussion
In this study, following knowledge of neuroanatomy, functional neural circuits, electrophysiology and behavior, 
we have presented a random-walk klinotaxis model of C. elegans. Simulation experiments have verified that 
the model can concurrently realize realistic klinotaxis and random walk behaviors. Through the model, we 
have identified a plausible neural mechanism underlying klinotaxis and provided a new hypothesized neural 
mechanism of the random walk.

Klinotaxis requires an interaction of the environment, nervous system, and behavior; thus we first constructed 
a sensory model. To our knowledge, this is the first implementation of an ASEL model with all-or-none depo-
larization, as well as the first salt chemotaxis model with two sensory coding patterns. In fact, in C. elegans, the 
orchestrated dynamics of two sensory neurons with different coding manners may be a common design to more 
efficiently integrate environmental signals to drive the appropriate behavioral outputs. For example, the chemo-
taxis for odorant diacetyl depends on both AWA coding positive gradients via stochastic pulsatile dynamics and 
AWC​ON coding negative gradients deterministically in a graded manner39. The deterministic response of one neu-
ron is likely to compensate for the stochastic activity of the other to some extent, making behavior more robust. 
This sensory model allowed us to explore the mechanism of klinotaxis generation under the realistic sensory 
codes. In addition, our sensory model may be applied for other chemotaxis with similar sensory coding patterns.

Compared to the minimal klinotaxis model11,12, our model is closer to the biological network, both in terms 
of network architecture and sensory response characteristics. The neural mechanism underlying klinotaxis in our 
model is approximately similar to that in the minimal model. From the perspective of multiple roles of simula-
tion models16, the significance is that the mechanism emerged spontaneously in a more realistic model, further 
demonstrating the plausibility of this mechanism and refining it. Furthermore, our model allows us to identify 
the characteristics of interneurons in the realistic network architecture.

Our model is the first to generate the random walk from activities of a neural network and generate klino-
taxis accompanied by the random walk, just like the chemotaxis process in C. elegans. The liquid synapse we 
proposed is based on the nature of the real-world biological synapses, not our arbitrary thinking. From this 
we propose a new hypothesized mechanism whereby the liquid synapses affect behavior from the bottom up, 
generating the random walk. It is known that the sources of noise in nature are diverse; C. elegans is simultane-
ously affected by various internal noise from the nervous system and inevitably receives external sensory noise 
from the environment. When the sensory input noise is large enough, the behavior may be influenced and show 
randomness. Nevertheless, the random walk in C. elegans was often observed in petri dishes with less ambient 
noise. The study35 of Drosophila larvae with blocked synaptic activity in sensory neurons has shown that the 
random searching behavior can be spontaneously generated by the neural network independent of sensory 
system inputs. This strongly supports the view that the random walk is intrinsically generated by the nervous 
system. In a sense, this is reasonable. The random walk behavior preserves an exploratory searching ability of C. 
elegans to the environment; this searching ability should be intrinsic for organisms, rather than dominated by 
the environment. Additionally, in real nervous systems, random disturbances occur at multiple levels37, and the 
random walk may be caused not just at the synaptic level. Therefore, our hypothesis provides a plausible and not 
necessarily a unique solution to the way the nervous system generates the random walk behavior.

Further, we noticed two interesting phenomena. First, in the study of evidence for klinotaxis in C. elegans7, 
the data analyzed are actually the “run” part of locomotion, which include the random walk. Considering our 
model, compared to the klinotaxis behavior alone (Fig. 2b, c), the relationship curves of klinotaxis behavior 
accompanied by random walk (Fig. 5f, g) do resemble those of the previous study7. Second, the simulated ablation 
results are fairly consistent with the biological conclusion. These two phenomena were not designed specifically, 
but emerged spontaneously from the model. This suggests our model is effective and may operate through the 
mechanisms similar to the biological nervous system.

In our study, we evolved the klinotaxis and random walk behaviors sequentially using GA for simplicity 
reasons. Actually, in nervous systems, synaptic growth and learning occur in the presence of noise. That is, in 
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biological synapses, the plasticity associated with learning is accompanied by noise-induced variability; these 
two are not separate. For the sake of biological plausibility, it can be considered to train all parameters simulta-
neously in one training in the future.

The simultaneous realization of both strategies of chemotaxis, the klinotaxis and biased random walk, in 
one model through plausible mechanisms is valuable and is a direction of our future research. We modified the 
neuron parameter to sufficiently increase the response amplitude of ASER neuron in our neural model; then, 
the model elegans’ steering response to negative gradients increased. When the magnitude of negative gradient 
was large enough, the trajectory formed a sharp turn. Combined with the random turning generated by liquid 
synapses, this resulted in a relatively high probability of sharp turns in negative gradients and a little probability 
of sharp turns in positive gradients. However, using biologically plausible neural mechanisms to well enough fit 
the function of the probability of sharp turns to temporal gradients of the concentration obtained in biological 
experiments, and to realize several types of behaviors of sharp turns, including short and long reversals that 
require backward movement, are needed to be further studied and extended on the basis of the current model. 
In addition, this study focused on the head navigation, and thus did not consider the body dynamics. The body 
and muscle models40,41 and mechanisms of undulatory locomotion42,43 of C. elegans should be combined in the 
future for further study of the overall locomotion during chemotaxis.

In general, our study is a useful step forward in the modeling-experiment cycle. It draws on available knowl-
edge to simulate behaviors and in turn provides new insights into the neural mechanisms of behaviors in C. 
elegans. Furthermore, the realization of these behaviors in a simulation model provides theoretical support for 
worm-like navigation robotics systems.

Methods
ASE sensory neuron model.  Considering the ASER neuron, the dynamics is expressed by an ordinary 
differential equation (ODE).

where subscript R and j correspond to the ASER neuron and neuron j, respectively. τ is the time constant, and 
V denotes the membrane voltage relative to the resting potential. The second and third terms are chemical and 
electrical synaptic currents from other neurons, respectively. wc

Rj and wg
Rj are chemical and electrical synaptic 

strengths from neuron j to ASER, respectively. f (·) is the sigmoid function, which expresses the nonlinear effect 
of presynaptic voltage on the postsynaptic voltage. E denotes the reversal potential and b denotes the bias. The 
last term represents chemosensory input current, where EextR  is the equilibrium potential and gR represents the 
conductance of ion channels that transmit the stimulus signals. When there is no external stimulus, channels are 
closed by default, and the state is regulated by a pair of simple state-transition equations as follows.

where βR is a free parameter, and hR is a variable that directly controls the conductance of channels. αR is a vari-
able affected by external stimuli.

where ταR is the decay time constant of αR . The real ASE neurons are adaptive and adjust their sensitivity to 
respond to shallow or large concentration changes44. Here, we assume that ASE neurons have adapted to the 
current environment, and the chemosensory signal �C received by ASE is the instantaneous change in concen-
tration scaled to between −1 to 1. Finally, conductance is derived by

where the constant parameter γR combined with the hyperbolic tangent function (tanh) ensures the saturation 
response property of the ASER neuron.

Contrary to the ASER model, the ASEL model depolarizes in an all-or-none manner. The dynamic equation 
is as follows.

where the subscript L corresponds to ASEL. The voltage of the ASEL model is determined by calcium ion chan-
nels, because EGL-19, a type of voltage-gated calcium channels, was found to be essential for the depolarization 
of ASEL27. ECaL  is the equilibrium potential of calcium ions, and gL represents the conductance which controls 
the state of channels. The channels are activated when ASEL senses an increase in the NaCl concentration and 
the integrated afferent signal exceeds a threshold. The state-transition equations are the same as those of ASER, 
except that αL is set as
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where ταL is the decay time constant of αL , and inthres is the threshold. inL = �C + netL + ξL is the integrated 
afferent signal of ASEL, where netL is the afferent signal from other neurons, including the chemical and electrical 
synaptic signals limited by a tanh function.

The mechanism of the stochastic depolarization of the ASEL neuron is still unclear. To make the response 
satisfy this characteristic, we assume a random signal ξL that varies uniformly and randomly within a certain 
range. Finally, the conductance is denoted as

where γL is a constant combined with the tanh function to ensure the same depolarization amplitude.
In real nervous system, ASE neurons have synaptic connections from other neurons1; therefore, this ASE 

model considers afferent signals from other neurons, which has been ignored in most previous models.

Klinotaxis model: neural network model.  The klinotaxis neural network architecture, as shown in 
Fig.  8, is constructed based on the functional neural circuit7,31–34 and neuroanatomical data1–3 of C. elegans. 
This network consists of 12 pairs of interneurons. Among them, RIM neurons (originally known as motor neu-
rons) have been redistributed as interneurons3 and RIV neurons are polymodals that can be regarded as either 
interneurons or motor neurons3. Excluding RIA and AVE neurons, the remaining interneurons, which were 
identified to contribute to modulating the locomotion underlying chemotaxis, were summarized by Kocabas 
et al.33 according to previous assays about functional neural circuits7,31,32. In recent years, the sensory encod-
ing of RIA interneurons34 was found to be gated according to head orientation, which may involve attention 
to asymmetric stimuli during head sweeps. The AVE neurons are the command interneurons which are found 
to generally have more synaptic connections and directly synapse to motor neurons to promote forward or 
backward locomotion1,32; in particular, AVE neurons have rich reciprocal connections with other command 
interneurons included in the model (AVA, AVB, AVD, and PVC). Additionally, SMB motor neurons have been 
identified to set the amplitude of sinusoidal undulations31. This may influence the gradual turning underlying 
klinotaxis. Together with the chemosensory neurons ASE, they form the klinotaxis neural network. The con-
nections between neurons follow the connectome of C. elegans1–3, involving chemical and electrical synaptic 
connections.

Although some neurons in C. elegans have been observed to cause action potentials in recent years45,46, most 
neurons are still thought to exhibit graded potentials28. Therefore, the neurons (except ASE) in the model are 
represented by ODEs with graded potentials. The voltage dynamic equation of neuron i is given as follows.

Excluding the last term, the rest is the same as the dynamic equation of the ASER neuron and the sym-
bols have the same meaning; hence, they are not repeated here. wc

ij ≥ 0, wg
ij ≥ 0 and wg

ij = w
g
ji . Since C. elegans 
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Figure 8.   Architecture of the neural network model regarding chemotaxis in C. elegans. 
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moves in a sinusoidal wave pattern, a sinusoidal oscillator component is used to generate the oscillating sig-
nal, and the last term represents the input from it. δi = 1 for the motor neurons and δi = 0 for the others. 
Iosci = wosc sin

(

2π t
/

Tosc
)

 with Tosc
= 4.2 s for one cycle of the sinusoidal locomotion18, and wosc > 0 is the 

connection strength from the oscillator. The dorsal and ventral motor neurons receive oscillating input in the 
opposite phases.

Klinotaxis model: kinematic model.  The kinematic model refers to that in the minimal klinotaxis 
model11,12. The model is treated as a point with position coordinates (x, y) on a two-dimensional (2D) plane. The 
position is updated as follows.

where v = 0.022 cm/s is the constant speed based on measured data18 and θ is the instantaneous angular direction.
According to graded synaptic transmission at the neuromuscular junction (NMJ)47 and two assumptions11, 

the turning angle φ is controlled by motor neuron outputs f (Vi + bi).

where the subscripts iD ∈ {SMBDL,SMBDR} and iV ∈ {SMBVL,SMBVR} represent dorsal and ventral motor 
neurons, respectively. wnmj > 0 is the connection strength of the NMJ.

Klinotaxis model: model optimization.  The unknown parameters were optimized by a genetic algo-
rithm (GA)48, which simulates the process of natural evolution to search the optimal solution. Here, a total of 463 
parameters to be optimized (including wc , wg , E, b, ECaL  , EextR  , wosc , wnmj ) were randomly encoded as real-values 
between 0 and 1, forming an individual. 300 individuals constituted a population of the initial generation. Con-
sidering each generation, crossover, mutation, and selection operations were performed. The crossover rate was 
0.8. When performing the crossover, two individuals were randomly selected as parents. Five new individuals 
were spawned evenly along the direction of their connecting line. We evaluated each one using the fitness func-
tion and only the highest scoring individual was retained as a child. The mutation rate was 0.3. When performing 
the mutation, a Gaussian noise with a mean of zero and a standard deviation of 0.05 was added to the child. If 
the fitness score of the child is better than that of one parent, the child is substituted for the lower scoring parent. 
Iteration stopped if 1000 generations were reached or if the fitness scores of the best individual did not improve 
significantly for 50 consecutive generations.

The fitness function is defined as the average chemotaxis index (CI) of multiple experiments. The CI is 
determined by the time average of the distance between the klinotaxis model and the NaCl peak point during 
the whole locomotion.

where r(t) is the Euclidean distance to the NaCl peak point at time t, and r(0) is the initial distance. T is the total 
time in one experiment.

Environmental models.  To optimize the model and test its generalization, two NaCl environmental mod-
els were used. The first is a conical gradient model used in the minimal klinotaxis model11,12, in which the 
concentration gradient is independent of the spatial location. The concentration C(t) at time t is linearly propor-
tional to the Euclidean distance from the NaCl placement point.

where κ is the conical gradient coefficient. We apply this environment in the context of optimization.
The other is a Gaussian-shaped gradient model used in classical C. elegans chemotaxis assays7. C(t) is calcu-

lated using the Fick’s equation with 2D diffusion with no border.

where N0 is the NaCl solution concentration. Dc is the diffusion coefficient, and dc is the agar plate thickness. t0 
is the diffusion time before experiments, and r is the distance from the NaCl placement point. This environment 
is used to test the generalization of the model.

Terminology.  Reliability refers to the proportion of C. elegans that can reach NaCl peak point (in our simu-
lations, a circular area within 0.1 cm of the peak point) in all experiments. The turning bias is the sum of the 
turning angle φ in one sinusoidal cycle. The instantaneous direction is the locomotion direction at the current 
moment. The translational direction is defined as the connecting direction of two positions that differ by one 
sinusoidal cycle, which is equivalent to the forward direction of C. elegans in one cycle. The normal direction 

(13)
(

dx

dt
,
dy

dt

)

= (v cos (θ), v sin (θ)),

(14)ϕ =
dθ

dt
= wnmj





�

iD

f
�

ViD + biD
�

−

�

iV

f
�

ViV + biV
�



,

(15)CI = 1−
1

T

∫ T

0

r(t)

r(0)
dt,

(16)C(t) = κ

√

x(t)2 + y(t)2,

(17)C(t) =
N0

4πdcDc(t + t0)
exp

(

−
r2

400Dc(t + t0)

)

,
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refers to the direction in which the translational direction is rotated 90° counterclockwise. The translational 
gradient is the concentration gradient in the translational direction. The normal gradient is the concentration 
gradient in the normal direction. Bearing is the angle between the translational direction relative to the direction 
of the NaCl peak point. The turning rate is defined as the turning bias per unit translational distance.
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