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Casimir forces out of thermal 
equilibrium near a superconducting 
transition
S. G. Castillo‑López, R. Esquivel‑Sirvent, G. Pirruccio & C. Villarreal*

We present a comprehensive analysis of the out‑of‑equilibrium Casimir pressure between two 
high‑T

c
 superconducting plates, each kept at a different temperature. Two interaction regimes 

can be distinguished. While the zero‑point energy dominates in the near field, thermal effects 
become important at large interplate separations causing a drop in the force’s magnitude compared 
with the usual thermal‑equilibrium case. Our detailed calculations highlight the competing role 
played by propagating and evanescent modes. Moreover, as one of the plates undergoes the 
superconducting transition, we predict an abrupt change in the force for any plate distance, which 
has not been previously observed in other systems. The sensitivity of the dielectric function of the 
high‑T

c
 superconductors makes them ideal systems for a possible direct measurement of the out‑of‑

equilibrium Casimir pressure.

Two neutral parallel plates separated by a vacuum gap L attract each other due to quantum and thermal fluctua-
tions. The original derivation by  Casimir1 assumed perfect conducting plates at zero temperature. The extension 
to plates made of arbitrary materials and at a finite temperature was developed by  Lifshitz2 using the fluctuation-
dissipation theorem and Rytov’s theory of thermally induced electromagnetic  fields3,4. Lifshitz theory has been 
well established through extensive theoretical and experimental  work5 between  metals6,  semiconductors7,8, phase/
change  materials9,10, topological  insulators11,12, among others.

When both plates are at the same temperature, the Casimir force has a contribution from quantum fluctua-
tions at T = 0 and thermal  fluctuations13,14. At room temperature, for small separations ( L < 1µ m) quantum 
fluctuations are dominant. At larger separations L > 3µ m the thermal fluctuations are  important14. The experi-
mental observation of the thermal Casimir force was verified in an experiment by Sushkov and  collaborators15. 
The study of finite temperature corrections to the Casimir pressure entails the yet ongoing debate of whether 
the Drude or plasma models is better suited to describe the properties of the zero frequency p-polarized mode 
in metals. In a series of  works16–22, Bimonte et al. proposed to elucidate this controversy by measuring variations 
to the Casimir pressure in a rigid superconducting (SC) cavity for temperatures in the neighborhood of the 
transition temperature, Tc . Below this temperature, SC materials drastically modify their reflectivity properties 
from normal to superconducting; therefore, a pronounced variation δP in the Casimir pressure should ensue. In 
principle, this effect could be detected by use of the contemplated cavity, specifically designed to observe changes 
in the Casimir pressure along the SC transition. A novel alternative device is an on-chip platform developed 
by Norte et al.23. It consists of two microfabricated strings, coated with a SC material, that can be kept perfectly 
parallel at sub-µ m separations and in which one of the strings is coupled to an optomechanical cavity with a 
definite resonance frequency. The variation of the Casimir pressure at the SC transition should modify the string 
mutual distance with an accompanying change in the cavity resonance frequency. This procedure may yield an 
estimation of δP with a minimal resolution of 6 mN/m2 . However, for the classical BCS superconductors the 
predicted effects turn out to be too tiny to be detected by this sort of  device22. In that context, the use of high-Tc 
superconductors at sub- and µ m separations has been recently discussed in Refs.24,25. In the case of a pair of 
plates coated with YBa2Cu3O7−x (YBCO) and transition temperature Tc = 93 K, the characteristic thermal and 
zero-point frequencies, kBTc/� and ω0 = c/2L , are of the same order of magnitude ( 1014s−1 ) for plate separations 
L ≃ 1µ m, rendering these materials as optimally suited to test thermal contributions to the Casimir effect. For 
example, in the case with L ∼ 0.6µ m, the predicted δP has a magnitude of 3% of the equilibrium pressure at Tc , 
P
eq
th ≈ 4 mN/m2 . This quantity is nearby the resolution border of the experimental setup discussed above, and 

perhaps could be investigated through future improvements of this or similar devices. An alternative approach 
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put forth by Bimonte is based on differential measurements, which offer the advantage of a much higher sensitiv-
ity in comparison to absolute force  measurements22.

The problem of calculating the force when the two plates are at different temperatures was originally addressed 
by Dorofeyev using fluctuation  electrodynamics26. A general theory of out-of-equilibrium Casimir and Casimir-
Polder forces was presented by Antezza et al.27–29. The success of this latter formulation was shown by comparing 
with experimental measurements of the interaction between a Bose–Einstein condensate of trapped atoms and 
a flat surface at a temperature different from that of the  environment28. Recently, the non-equilibrium Casimir 
force between two similar metallic plates of Au and Ti kept at different temperatures and considering the tem-
perature dependence of their dielectric permittivity was calculated by Ingold et al.30. With that purpose, they 
introduced a temperature-dependent electronic relaxation rate, γ (T) . The derived results show a qualitatively 
different behavior than the case in which the dielectric function is independent of temperature. As mentioned 
by these authors, it will be of interest to study materials with a more sensitive temperature dependence.

In this work, we explore the nonequilibrium thermal effects on the Casimir pressure using high-temperature 
YBCO superconductors, whose dielectric function around the critical temperature changes drastically. With that 
purpose, we calculate the Casimir pressure between two parallel YBCO plates in contact with heat reservoirs at 
local temperatures, T1 and T2 , separated by a vacuum gap of width L at zero temperature. We employ the formal-
ism presented by  Antezza27, taking into account the temperature dependence of the dielectric function around 
the superconducting phase transition. Similar methods based on the evaluation of the Poynting vector have 
been recently employed by us to evaluate the near-field radiative heat transfer between high-Tc superconducting 
(HTSC)  plates31,32. A central feature in that analysis is the role of evanescent surface plasmon modes, which may 
hybridize when the plates are close enough, inducing nontrivial features like the enhancement of the heat flux 
by thin SC films. In the context of the Casimir effect, Intravaia et al.33 have shown that in the zero-temperature 
limit, the Casimir energy of a dispersive cavity can be expressed as a sum over of electromagnetic modes of two 
different kinds: two evanescent surface plasmon mode arising from the p-polarization, and an infinite number of 
propagating modes due to p- and s-polarizations. Notably, the evanescent p contribution becomes repulsive for 
intermediate and large plate separations, although the total Casimir force remains attractive in any circumstance. 
In the following, we expand the former notions to study HTSC materials in a wide range of temperatures and 
surface separations, and investigate how the balance of evanescent and propagating contributions determines 
the behavior of the out-of-equilibrium Casimir pressure.

Casimir force out of equilibrium
Consider a configuration out of thermal equilibrium constituted by two plates at local temperatures T1 and T2 , sep-
arated by a gap L, and with optical properties described by a temperature-dependent dielectric function εi(ω,Ti) , 
with i = 1, 2 . If we denote by Peqth (T , L) the pressure associated with thermal fluctuations at equilibrium, then the 
total nonequilibrium Casimir pressure, Pneq(T1,T2, L) , may be expressed in terms of corrections �P(T , L) about 
the zero-point, P0(L,T1,T2) , and average equilibrium pressure, Peqth (T1,T2, L) =

[

P
eq
th (T1, L)+ P

eq
th (T2, L)

]

/227,28:

including the L-independent black-body term, B(T1,T2) = 2σ(T4
1 + T4

2 )/3 . In Eq. (1), the thermal L-dependent 
terms may be split into contributions due to propagating (PW) and evanescent waves (EW): 

 Here, f (ω,T) = 1/[exp(�ω/kBT)− 1] is the Planckian distribution, Q and qz = q′z + iq′′z =
√

ω2/c2 − Q2 
are the corresponding in- and out-plane components of the wavevector in the vacuum, and

S i m i l a r l y,  t h e  o u t - o f - e q u i l i b r i u m  c o n t r i b u t i o n s  a r e  e x p r e s s e d  a s  f o l l o w s : 
�P(T , L) = �PPW (T , L)+�PEW (T , L), with 

 In the above expressions, the reflection coefficients rαi  correspond to α = { s,p }-polarized waves impinging 
on the (vacuum | i-plate) interface,
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Here, q(i)z =
√

εi(ω,Ti)ω2/c2 − Q2 represents the out-plane component of the wavevector inside the i-plate. 
Notice that in the case of similar materials with rα1 = rα2  , where rα1  and rα2  do not depend on temperature, the out-
of-equilibrium contributions vanish, and the total pressure is given by P0(T1,T2, L)+ P

eq
th (T1,T2, L) . However, 

since we are considering materials where the dielectric function εi(ω,Ti) depends not only on the frequency of 
the incident light, but also on the (different) temperatures of the plates, T1 and T2 , then the out-of-equilibrium 
terms yield a finite contribution that modify results proper of thermal equilibrium.

On the other hand, the zero-point contribution to Pneq can be written, after a rotation to the imaginary fre-
quency plane ω → iξ , as follows:

with p =
√

1+ c2Q2/ξ2  . The zero-point term in Eq. (6) describes the action of zero-point radiation fields 
scattered by surfaces whose optical properties are described by temperature-dependent reflection coefficients, 
similarly as in the equilibrium case, where the reflection coefficients may depend, for example, upon the tem-
perature by way of the electronic scattering rate, γ (T) . Due to convergence reasons, in this work the calculations 
involving the zero-point term have been performed in the imaginary frequency space, while those associated to 
thermal contributions have been performed in the real frequency space.

The dispersion relations of the allowed electromagnetic modes within the superconducting cavity, ω(Q) , are 
determined by the zeros and branch cuts of Eq. (3). In the case of s-polarization, they admit an infinite number 
of PW modes. For p-polarization, besides the infinite PW modes, two-coupled evanescent fields arise, adopting 
either a symmetric or an anti-symmetric configuration, with respective dispersive relations ω−(Q) and ω+(Q) . 
The development of this kind of low-frequency collective oscillations in the form of surface plasmons in both 
conventional and HTSCs is well  established34. On the other hand, in the case of isolated surfaces (corresponding 
to the limit L → ∞ of the cavity) a single evanescent field is generated about each one, with the corresponding 
relation, ω∞(Q) , determined by the pole of the reflection coefficient, rp . Explicit calculations show that, in gen-
eral, ω−(Q) < ω∞(Q) < ω+(Q) . It follows that, depending on the plate separation, the anti-symmetric mode 
may involve an energy excess over the infinite separation configuration, leading to a repulsive force. In contrast, 
the symmetric mode always induces an attractive force. Therefore, the detailed behavior of the Casimir pressure 
will be mainly determined the balance of the repulsive and attractive contributions for a given plate separation 
and  temperature33.

In the calculations presented below, only L distance-dependent contributions are considered, so it was neces-
sary to eliminate the L-independent term implicit in Eq. (4a)28.

Optical response
YBCO is a highly anisotropic ceramic in which coherent charge transport mainly occurs along two CuO2 planes 
(per crystallographic unit cell), denoted as ab-planes. In the optimally doped regime, superfluid transport is 
also observed to a small extent in the transverse c-axis direction. The optical response of uniaxial materials like 
YBCO is specified by a diagonal dielectric tensor diag(εab, εab, εc) , whose components have been experimentally 
investigated for several compounds at different temperatures and frequencies using reflectivity and impedance-
type measurements. Nevertheless, our explicit calculations show that the c-axis optical response yields negligible 
contributions in the evaluation of the Casimir pressure, and thus we neglect this contribution in the following.

In the normal regime at T = 100 K, the dielectric function εab(ω) has been represented as a superposition 
of a high-frequency term, ε∞ , a Drude component due to free charge carriers, a mid-infrared (MIR) Lorentz 
contribution (maybe associated with indirect interband transitions), plus additional phonon  contributions35–38:

where the plasma frequency ω2
pn = e2ρn/ε0m . Here, ρn is the number density of incoherent charge carri-

ers with charge e, and mass m. On the other hand, the temperature-dependent electronic relaxation, γ (T), 
has been fitted in this work to reproduce the observed linear dependence of the resistivity with temperature: 
γ (T) = γ0 + βT , for T > Tc . Spectral measurements along the ab-plane may be fitted by the parameter choice: 
ε∞ = 3.8 , ωp = 1.14× 1015 rad/s, γ0 = 4.56× 1013 rad/s, β = 1.215× 1011 rad/s-K, �mir = 3.95× 1015 rad/s, 
ωmir = 3.95× 1014 rad/s, and Ŵmir = 1.52× 1015 rad/s. The number of optical phonons considered in the dielec-
tric response is Nph = 6 , and the parameters Sph;ab,k , ωph;k , and γph;k , are presented in Ref.31.

A particularity of ceramic superconductors like YBCO arises from the combination of a strong oscillator 
strength �mir of the MIR contribution with a large decay rate Ŵmir , which gives rise to a hybridization of the MIR 
modes with the low-frequency Drude modes. This mode coupling induces a surface plasmon with a frequency 
�p ≈

(

(ω2
p +�2

mir)/ε∞

)1/2
≈ 1.6× 1015 rad/s, intermediate between ωp and �mir ; consequently, these materials 

display a metallic behavior for frequencies ω < �p.
Corresponding measurements have been performed in the superconducting regime at T = 2 K. In this case, 

the coherent charge transport has been modeled by considering the dissipationless limit γ0 → 0 in Eq. (7), 
which implies that ω2

p/(ω
2 + iγ0ω) → ω2

p/ω
2 − iπω2

pδ(ω)/ω . However, an implicit assumption involved in 
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this procedure is that all of the spectral weight of the normal-state Drude conductivity ends up under the zero-
frequency delta distribution, which is valid only in the T ≪ Tc regime. Therefore, to characterize the YBCO 
optical response in the entire temperature interval, 0 < T < Tc , we introduce a temperature-dependent version 
of London’s two-fluid model of superconductivity. We suppose that, below Tc , the charge number density, ρ , 
may be split as follows: ρ = ρn(T)+ ρs(T) , where ρn(T) and ρs(T) correspond to normal and superfluid con-
tributions. This allows the introduction of normal and superfluid plasma frequencies, respectively defined by 
ωpn(T) = e2ρn(T)/ε0m , and ωps(T) = e2ρs(T)/ε0m . In that case, the dielectric response may be expressed as 
follows:

Here, ωps(2K) = 1.14× 1015 rad/s, while the parameters ε∞ , �mir , ωmir , and Ŵmir are the identical to those 
considered in the normal phase, while the phonon parameters presented in Ref.31 are very similar as those 
involved in the normal case.

The charge transport properties of YBCO can be modeled in terms of a quasi-2D gas of pre-formed Cooper 
pairs that condense at temperatures T ≤ Tc , displaying a superfluid behavior. At relatively low temperatures, the 
condensate excitations may be accounted for by means of a gas of weakly-interacting bosons with a Bogoliubov 
dispersion law E(k) =

√

c2s k
2 + (k2/2m)2 , where E is the energy, k the momentum, and cs the speed of sound. 

In the low momentum limit, this yields a phonon-like spectrum, E(k) ≈ csk . A simple calculation shows that a 
2D gas with this kind of dispersion relation satisfies the condition

which we substitute in Eq. (8) to describe the temperature dependence of the plasma frequency. Expression (9) 
yields an accurate representation of experimental measurements of ωps(T) = c/�p(T) (with �p the magnetic pene-
tration length and c light’s speed) along the CuO2 plane for a wide range of dopings of YBa2Cu3O7−δ  samples39–41.

Results
We computed the Casimir pressure acting on two semi-infinite YBCO plates out of thermal equilibrium using 
Eq. (1) for temperatures above and below Tc . In order to compare with thermal equilibrium results, we also cal-
culated the pressure provided by the Lifshitz expression at a fixed temperature T1 = T2 . In our first numerical 
experiment shown in Fig. 1, each plate is kept at different temperature, T1 = 300 K and T2 = 20 K, while the plate 
separation varies within the middle- to long-distance regime L = 0.5−8µm . Experimental investigations for 
normal metals have been carried out by Shushkov et al.15 in this distance scale. Also, we included the equilibrium 
Casimir pressure Peq obtained by setting T1 = T2 = 300 K in Eq. (1). In order to gain insight on the magnitude 
of the predicted forces, we compare our results with those expected in the case of two gold plates in thermal 
equilibrium at 300 K. Then, the ordinate axis is normalized to the equilibrium Casimir pressure PeqAu between 
two gold (Au) plates at 300 K: P(T1,T2, L)/P

eq
Au(300K, L) . It turns out that the function P(T1,T2, L) displays a 

(8)
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Figure 1.  Casimir pressure between two semi-infinite YBCO plates in (Peq) and out (Pneq) of thermal 
equilibrium as a function of the plates separation, L. The pressure axis is normalized to the equilibrium pressure 
between two gold plates at 300 K. When the gold permittivity is described using the Drude model with a finite 
damping rate γAu = 67 meV, the normalization conduces to the pressure curves given by the solid lines. If the 
damping rate is neglected in the normalization γAu = 0 , the dashed lines are obtained.
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monotonous L-dependence for temperatures far enough from Tc (as considered in Fig. 1); this also occurs for 
P
eq
Au(300K, L) , but for all temperatures. Therefore, the pressure ratio shows a smooth behavior. However, in the 

Au case the question whether the Drude or plasma model should be applied to describe the Au permittivity 
becomes particularly relevant, since the absence or presence of the zero-frequency p-polarized electromag-
netic contribution is determinant. We thus present our results by assuming both scenarios: The Drude model 
given by εAu(ω) = ε∞,Au − ω2

p,Au/ω(ω + iγAu) , with ε∞,Au = 9.84 , ωp,Au = 9.1 eV, and γAu = 67 meV, and the 
plasma model defined as the limit γAu → 0 of the Drude permittivity. Figure 1 shows that in either case, both 
Pneq(300K, 20K, L) and Peq(300K, L) attain values of the order of magnitude of the pressure acting between 
two gold plates. As expected, in the long-distance regime the predicted pressures in the plasma and Drude 
normalizations differ by a factor 1/2. Importantly, the equilibrium and nonequilibrium pressures may be clearly 
discriminated for plate separations L > 3µ m, so that Pneq(300K, 20K, L) is about 80% of Peq(300K, L) . Thus, the 
predicted decrease of the Casimir pressure as the system moves to a nonequilibrium situation seems feasible to 
be experimentally detected. We observe that the curves plotted in Fig. 1 display similar trends as those presented 
by Ingold et al. in Ref.30.

For a complete analysis of the Casimir effect within the long-distance regime, we present contour graphs of 
the magnitude of the Casimir pressure as a function of the plate separation and the temperature. The contour 
lines in these figures represent isobaric trajectories along which the Casimir pressure is constant. Figure 2(a) 
corresponds to the equilibrium case in which the temperature of both YBCO plates is varied between 10 to 300 
K. The nonequilibrium situation is presented in Fig. 2(b) where the temperature of plate-1 T1 = 300 K, and 
the temperature of the second plate is swept within the range of 10–300 K. Consistently with results found in 
Ref.24, the equilibrium Casimir pressure shows a smooth behavior as a function of the separation distance, L. In 
contrast, its temperature dependence displays a sudden change in the slope at T = Tc , when both plates become 
superconducting, and the pressure suffers a noticeable increase for T < Tc , see Fig. 2(a). This manifestation of 
the SC phase transition results more evident for longer separation distances. On the other hand, the out-of-
equilibrium pressure also exhibits a pronounced variation when the second plate passes to the superconducting 
state, T2 = Tc , as illustrated in Fig. 2(b). However, in this latter case the pressure suffers an abrupt decrease for 
temperatures below, but nearby Tc.

In order to compare the contrasting trends of the Casimir pressure in- and out-of-thermal equilibrium, we 
plot in Fig. 3 the temperature dependence of Pneq and Peq for four fixed separation distances of (a) L = 0.1µ m, 
(b) L = 1µ m, (c) L = 4µ m, and (d) L = 8µ m. In the figures below, the Casimir pressure is normalized to 
the zero-point contribution given by Eq. (6). For the short distance L = 0.1µ m, Fig. 3(a) shows that the out-
of-equilibrium corrections to the Casimir pressure are negligible since Peq ≈ Pneq when the two YBCO plates 
are in the normal state. On the other hand, as the temperature decreases below Tc , both the equilibrium and 
nonequilibrium pressures increase abruptly. As mentioned above, within the long-distance regime L = 1−8µ m, 
we observe different behaviors of Pneq and Peq due to the superconducting phase transition. Figure 3(b) shows 
that while the equilibrium pressure between plates separated by L = 1µ m suddenly increases below Tc , the 
nonequilibrium pressure shows a sharp decrease when plate-2 becomes superconducting. For temperatures 
both above and below Tc , Peq > Pneq at L = 1µ m. When the plates are separated L = 4µ m, Fig. 3(c), the non-
equilibrium pressure becomes higher than the equilibrium one Pneq > Peq for a system made of two plates in 
the normal state. On the other hand, below Tc , Pneq < Peq . At the last cut of L = 8µ m, our calculations predict 
that Pneq > Peq except within the temperature range of 60–90 K, see Fig. 3(d). Additionally, each plot in Fig. 3 
shows the zero-point contribution, Peq0  and Pneq0  , to the total Casimir pressure in- and out-of-thermal equilibrium 

Figure 2.  (a) Contour plot of the modulus of the equilibrium Casimir pressure (in logarithmic scale), Peq , 
as a function of the separation distance, L, and the temperature of the YBCO plates, T. (b) Contour plot of 
the modulus of the nonequilibrium Casimir pressure (in logarithmic scale), Pneq , as a function of L and the 
temperature of plate-2, T2 , for a fixed temperature of plate-1, T1 = 300 K.
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(green and violet solid curves, respectively). In all cases, when the two YBCO plates are superconducting, the 
zero-point contribution Peq0  dominates the equilibrium pressure as Peq0 (T < Tc) ≈ Peq(T < Tc) . In contrast, 
the nonequilibrium pressure differs from its corresponding zero-point contribution, Pneq0 (T < Tc) , because the 
thermal contribution coming from the plate in the normal state at T1 = 300 K is still relevant.

We analyze in Fig. 4 the thermal contributions to the Casimir pressure associated with EW and PW modes 
(according to Eqs. (2)–(4)) for the four cases described before. We observe that in the short-distance regime, 
L = 0.1µ m (Fig. 4a), the thermal contribution to the pressure arises solely from EW modes, both in equilibrium 
and out of equilibrium, yielding an attractive but negligible pressure of magnitude ∼ 10−4P0 , which increases 
with temperature. In fact, both equilibrium and out-of-equilibrium contributions coincide at T ∼ 300 K. In con-
trast, PW modes provide a null contribution in the short-distance regime. Clearly, the EW contribution shows 
an abrupt change at Tc , decreasing its value for T < Tc . In particular, it becomes null in the equilibrium case, so 
that in this case only the zero-point term given by Eq. (6) yields a finite attractive force.

The sudden variation of the pressure at Tc and the vanishing of the thermal contribution for T < Tc at equi-
librium is also displayed by EW modes at larger plate separations. However, as the separation increases towards 
the micrometer regime the associated pressure shows a shift from attractive to repulsive, see Fig. 4(b)–(d). 
Concomitantly, its relative magnitude increases not only with the separation but also with the temperature, so 
that at L = 8µ m and T = 300 K, it is about half the magnitude as Peq0  . We notice that the structure of the EW 
contribution is very similar for L ∼ 1µ m. On the other hand, the influence of PW modes manifest itself at larger 
distances, giving rise to an attractive pressure that exceeds the repulsive action of the EW modes at all plate 
separations and temperatures.

Conclusions
The Casimir pressure out of thermal equilibrium was analyzed between two high-Tc superconducting plates 
kept at different temperatures, T1 and T2 , for temperatures above and below the critical one, Tc = 93 K. When 
the temperature of one of the plates varies in the range T2 = 10−300 K, while the other is fixed at T1 = 300 K, 
the former undergoes a superconducting transition at T2 = Tc that manifests itself as a noticeable change in 
the slope of the nonequilibrium Casimir pressure, i.e. a discontinuity of its derivative. The abrupt variation of 
the pressure is also observed at thermal equilibrium, when the temperature of both plates changes within the 
same range T1 = T2 = 10−300 K. However, in the long-distance regime L = 1−8µ m, the equilibrium pressure 
increases abruptly below Tc , whereas the out-of-equilibrium pressure suffers a sharp decrease nearby Tc . The dif-
ferent behavior of the in- and out-of-equilibrium pressure is due to the thermal contribution of evanescent waves 
which show different temperature and separation dependences above and below Tc , but exhibiting in all cases a 
sudden change at Tc . In the near-distance regime, L = 0.1µ m, these contributions are of attractive character, in 

Figure 3.  Temperature dependence of the equilibrium Peq and nonequilibrium Pneq Casimir pressures for 
fixed separation distances of (a) L = 0.1µ m, (b) L = 1µ m, (c) L = 4µ m, and (d) L = 8µ m. The vertical 
axis of each figure is normalized to the corresponding zero-point pressure existing within two plates at 9.3 
K: Peq0 (0.1µm) = 2.95N/m2 , Peq0 (1µm) = 6.78× 10−4 N/m2 , Peq0 (4µm) = 3.88× 10−6 N/m2 , and 
P
eq
0 (8µm) = 2.72× 10−7 N/m2.
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contrast with the long-distance regime where they always provide a repulsive contribution proportional to the 
temperature. Of notice, the thermal contributions to the in-equilibrium pressure always vanish below Tc , with 
the zero-point terms being the only persisting ones. On the other hand, propagating modes always induce an 
attractive pressure whose influence becomes apparent at separations L > 1µ m and balance the repulsion due to 
evanescent modes, yielding a net attractive Casimir pressure. The predicted equilibrium ( T1 = T2 ) and nonequi-
librium ( T1  = T2 ) pressure turn out to be of the order of the Casimir pressure obtained experimentally between 
two gold plates at T = 300 K. For distances L > 3µ m, our results imply that nonequilibrium pressure is 80% of 
the equilibrium one, and they are consistent with those reported in Ref.30 for Au plates at different temperatures. 
The out-of-equilibrium Casimir force could be measured using the on-chip platform described before, based on 
an optomechanical cavity in combination with a grounded capacitor made of free-standing superconducting 
 plates23. Our results suggest the feasibility of using high-Tc superconductors to measure nonequilibrium effects 
on the Casimir pressure.
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