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Transcriptomes 
of electrophysiologically recorded 
Dbx1‑derived respiratory neurons 
of the preBötzinger complex 
in neonatal mice
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Breathing depends on interneurons in the preBötzinger complex (preBötC) derived from Dbx1‑
expressing precursors. Here we investigate whether rhythm‑ and pattern‑generating functions reside 
in discrete classes of Dbx1 preBötC neurons. In a slice model of breathing with ~ 5 s cycle period, 
putatively rhythmogenic Type‑1 Dbx1 preBötC neurons activate 100–300 ms prior to Type‑2 neurons, 
putatively specialized for output pattern, and 300–500 ms prior to the inspiratory motor output. 
We sequenced Type‑1 and Type‑2 transcriptomes and identified differential expression of 123 genes 
including ionotropic receptors (Gria3, Gabra1) that may explain their preinspiratory activation profiles 
and  Ca2+ signaling (Cracr2a, Sgk1) involved in inspiratory and sigh bursts. Surprisingly, neuropeptide 
receptors that influence breathing (e.g., µ‑opioid and bombesin‑like peptide receptors) were only 
sparsely expressed, which suggests that cognate peptides and opioid drugs exert their profound 
effects on a small fraction of the preBötC core. These data in the public domain help explain the neural 
origins of breathing.

Inspiration, the preeminent active phase of breathing, originates in the preBötzinger complex (preBötC) of the 
lower  brainstem1,2. Interneurons derived from Dbx1-expressing precursors (hereafter, Dbx1 neurons)3,4 comprise 
the preBötC core; they are responsible for generating inspiratory rhythm and transmitting it as a rudimentary 
output pattern to premotoneurons and motoneurons for pump and airway  muscles5–10.

Cellular-level studies of inspiratory rhythm and pattern take advantage of transverse slices that retain the 
preBötC and remain spontaneously rhythmic in vitro. Constituent preBötC neurons can be recorded at the rostral 
slice surface while monitoring the inspiratory motor rhythm (~ 5 s cycle period) via the hypoglossal (XII) cranial 
nerve. Inspiration begins with a low amplitude preinspiratory phase attributable solely to rhythmogenic neurons. 
As their activity crosses threshold, preinspiration leads to an inexorable high amplitude inspiratory burst, which 
recruits an additional class of pattern-related neurons that drive motor  output2,11–13. There are two theories that 
differentiate the rhythm and pattern subsets of the Dbx1 preBötC neuron population.

The first theory posits that the neuropeptide somatostatin (SST) is a marker for output/pattern neurons. SST-
expressing  (SST+) preBötC neurons discharge during inspiration and postinspiration, i.e., the output phases of 
the inspiratory breathing cycle, rather than during the rhythmogenic preinspiratory phase. Furthermore, photo-
stimulation in the preBötC of adult mice that express channelrhodopsin (ChR2) in  SST+ neurons preferentially 
affects inspiratory motor  pattern6. These findings, in the context of what we already know about Dbx1 neurons, 
suggest that the Dbx1  SST+ preBötC neurons play a dominant role in inspiratory pattern-generation and, by 
exclusion, that Dbx1 preBötC neurons lacking SST expression  (SST-) are inspiratory  rhythmogenic6.

The second theory subdivides Dbx1 preBötC neurons electrophysiologically. Neurons that activate with 
a ramp-like summation of synaptic potentials 300–500 ms before the onset of a large-magnitude inspiratory 
 burst14,15 are considered “Type-1” and putatively rhythmogenic. Type-1 neurons also express A-type transient  K+ 
current (IA) whose blockade perturbs preinspiratory activity and destabilizes the inspiratory rhythm in vitro16. 
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Neurons that activate ~ 300 ms later than Type-114,15 are considered “Type-2”, putatively postsynaptic to Type-1 
and tasked with generating preBötC  output11,15. Type-2 neurons express hyperpolarization-activated cationic 
current (Ih)14 whose blockade profoundly affects motor output with mild effects on  rhythm17.

We subdivided rhythm and pattern Dbx1 preBötC neurons based on the latter theory, which provides mul-
tiple criteria that can be measured during whole-cell recordings. We retrieved cytoplasmic contents and per-
formed next-generation RNA sequencing on 17 samples: 7 Type-1, 9 Type-2, and 1 neuron, referred to here as 
Unknown, that did not precisely fit either category but was Dbx1-derived and inspiratory. These data elucidate 
the transcriptional profile at the cellular point of origin for breathing, a key physiological behavior for humans 
and all mammals. The data are publicly available (National Center for Biotechnology Information [NCBI] Gene 
Expression Omnibus [GEO] Accession code: GSE175642) to facilitate future studies of the Dbx1 preBötC core 
that interrogate the neural mechanisms of breathing.

Results and discussion
We analyzed Dbx1 preBötC neurons using Patch-Seq18, which entails whole-cell patch-clamp recording followed 
by next-generation sequencing (Supplementary Fig. 1A) and bioinformatics (Supplementary Fig. 1B).

The maximum yield of high-quality RNA was inversely proportional to whole-cell recording duration (5 min 
on average, 3–8 min in all experiments). Inspiratory burst characteristics and intrinsic membrane properties for 
Type-1 and Type-2 neurons (Fig. 1A top and bottom, respectively) are already well  established14,15. Given the 
time constraints, we focused on measuring the intrinsic membrane properties i.e., delayed excitation and sag 
potentials, at the expense of recording fewer inspiratory burst cycles.

Our patch-clamp recordings confirmed the previously published disparities between Type-1 and Type-2 
neurons. Type-1 neurons showed delayed excitation of 167 ± 40 ms (n = 7 neurons from 6 slices) when subjected 
to suprathreshold current steps from a baseline membrane potential below − 70 mV (i.e., evidence of IA; Fig. 1B, 
top trace) but negligible sag potentials (2 ± 1 mV, n = 7 neurons from 6 slices) when subjected to hyperpolarizing 
current steps from a baseline membrane potential of − 50 mV (i.e., no evidence of Ih; Fig. 1C, top trace).

Type-2 neurons exhibited minimal delays in excitation (76 ± 40 ms, n = 9 neurons from 8 slices) when sub-
jected to suprathreshold current steps from a baseline membrane potential below − 70 mV (i.e., no evidence 
of IA; Fig. 1B, bottom trace) but their membrane potential trajectory ‘sagged’ 11 ± 4 mV (n = 9 neurons from 8 
slices) in the direction of baseline when subjected to hyperpolarizing current steps from a baseline membrane 
potential of − 50 mV (i.e., evidence of Ih; Fig. 1C, bottom trace).

Figure 1.  Physiological properties of Dbx1 preBötC inspiratory neurons. (A) top and bottom traces show 
inspiratory burst characteristics in Type-1 and Type-2 Dbx1 preBötC neurons, respectively. (B) Depolarizing 
current pulses (750–1000 ms) were applied from a membrane potential of − 70 mV. Top and bottom traces 
show presence and absence of delayed excitation (purple) in Type-1 and Type-2 neurons, respectively. (C) 
Hyperpolarizing current pulses (750–1000 ms) were injected from a membrane potential of − 50 mV. Top and 
bottom traces show absence and presence of a sag potential (orange) in Type-1 and Type-2 neurons, respectively. 
Voltage, current, and time calibration bars apply to all traces.
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The disparities between delayed excitation and sag potentials measured in Type-1 and Type-2 neurons are 
unlikely to occur by random sampling from a single population with normally distributed expression of IA and 
Ih with probabilities of  pdelay = 0.0006 (t = 4.53, df = 13) and  psag = 0.0002 (t = 4.96, df = 14), respectively. Therefore, 
we reject the null hypothesis and reconfirm that Type-1 and Type-2 are unique subpopulations of Dbx1 preBötC 
 neurons14.

One Dbx1 preBötC inspiratory neuron we recorded and sequenced did not fit the criteria for Type-1 or Type-
2, so we analyzed it as an Unknown.

We mapped all 17 samples from 14 slices to the murine genome (mm10 from Ensembl); 83% ± 3% of the 
sequences aligned uniquely resulting in an average of 10,335,384 uniquely aligned reads (Supplementary Table 1).

Transcriptomic differences between type‑1 and type‑2 neurons. The 31,543 genes that were 
expressed in at least one sample (7 Type-1 neurons and 9 Type-2 neurons) were examined for differential expres-
sion by DESeq2 (Fig. 2A). The Unknown neuron was not included in this analysis. DESeq2 identified 123 differ-
entially expressed (DE) genes (Figs. 2Aa and 3, Supplementary Table 2;  padj < 0.01,  log2 fold change [L2FC] > 1.5). 
The DESeq2 results were computed on Type-2 versus Type-1 neurons; a positive L2FC implies gene upregulation 
in Type-2 neurons, whereas a negative L2FC indicates gene upregulation in Type-1 neurons.

We used principal component analysis (PCA) to assemble Dbx1 preBötC neurons in a plane based on tran-
scriptome similarity, which revealed that Type-1 and Type-2 neurons form two distinct clusters (Fig. 2B). When 
we scrambled their Type-1 or Type-2 identities, PCA produced non-zero classification errors in the majority of 
trials (14/17), indicating that if half of the neuron transcriptomes were divorced from their identities as Type-1 
or Type-2 then discrete clusters generally did not form (Supplementary Fig. 2). These data suggest that Type-1 
and Type-2 neurons are separate neuron classes based on their transcriptome (Fig. 2B and Supplementary Fig. 2) 
in addition to their unique neurophysiological properties (Fig. 1).

Genes upregulated in type‑1. We report an upregulation of the 5-HT1D receptor gene, Htr1d (Fig. 3, Supplemen-
tary Fig. 3, Supplementary Table 2). In rhythmic slices from neonatal rats, bath application of 5-HT increases 
inspiratory burst frequency by evoking a non-selective inward cation current via at 5-HT2  receptors19–21. Our 
data suggest that 5-HT may affect Type-1 neurons via 5-HT1D receptor although we have no corroborating 
physiological data yet. If so, we speculate that 5-HT could modulate IA, which would not result in depolarization 
but could affect inspiratory rhythm  nonetheless16. IA is subject to neuromodulation by 5-HT receptors in mouse 
trigeminal ganglion  neurons22 and CA1 pyramidal  neurons23,24.

Genes upregulated in type‑2. Depletion of  Ca2+ in the endoplasmic reticulum (ER) activates the stromal inter-
action molecule (STIM) proteins, which subsequently activate the  Ca2+ release-activated  Ca2+ (CRAC) channels 
on the plasma membrane via the key subunit of CRAC channel,  Orai125–28. We report Type-2 upregulation of 
the CRAC channel regulator 2A gene, Cracr2a, as well as the serine/threonine protein kinase gene, Sgk1, which 
activates STIM1 and Orai1 and thus enhances store-operated  Ca2+ entry (SOCE)29. SOCE-related mechanisms 
that could support or augment inspiratory (eupnea-related) and sigh-related pattern generation remain impor-
tant topics for investigation. For example, regarding inspiration, intracellular  Ca2+ signaling in the context of 
SOCE could recruit  Ca2+-activated non-specific cationic current (ICAN), which profoundly contributes to amplify 
inspiratory  bursts30–32. One of the likely candidates giving rise to ICAN in preBötC is the Trpm4 ion  channel31,33. 
We do not see differential expression of Trpm4; however it does appear to be more highly expressed in Type-1 

Figure 2.  Transcriptomic differences in Type-1 and Type-2 neurons. (A) L2FC versus adjusted p values of 
31,543 genes computed using DESeq2. Genes upregulated in Type-1 are in magenta and those upregulated 
in Type-2 are in blue-cyan. Gray shaded area represents the region expanded in (Aa), which corresponds to 
L2FC > 1.5 and  padj < 0.01. (B) Bar chart (top) shows PCs (x-axis) and variability (y-axis) in the expression of 123 
DE genes. Scatter plot (bottom) shows clustering of Type-1 (magenta) and Type-2 (blue-cyan) neurons using the 
first two PCs (highlighted in dark violet at top). The gray dashed line shows the boundary between the clusters 
of Type-1 and Type-2 neurons drawn by LDA.
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neurons (Fig. 4) which may explain the larger burst amplitude of Type-1 neurons compared to Type-2 neurons. 
Additionally, burst amplification is also important for inspiratory rhythm because burstlets, proposed to be the 
core rhythmogenic mechanism, are subthreshold from the standpoint of inspiratory burst  generation12,13. Type-1 
neurons, putatively rhythmogenic, need to cross this threshold, possibly via Trpm4 ion channels (Fig. 4), in 
order to trigger a pattern-generating inspiratory burst. Thus, both Type-1 and Type-2 neurons require the burst 
amplifying ICAN but in different settings: Type-1 to cross the threshold to trigger an inspiratory burst and Type-2 
neurons to further recruit the premotor and motor neurons, probably using the SOCE mechanisms, to gener-
ate inspiratory breathing movements. Sigh breaths, which occur at lower frequencies but are two-fold larger in 
 magnitude34 are likely also to involve  Ca2+ signaling and possibly SOCE mechanisms that recruit ICAN

35.
Dbx1 preBötC neurons are  glutamatergic3,4 and excitatory synaptic interactions, predominantly mediated 

by postsynaptic AMPA receptors, are essential for inspiratory rhythm and pattern  generation36,37. We detect 
Type-2 upregulation of the AMPA receptor, Gria3 (Figs. 3 and 4, Supplementary Table 2), which may at first 
seem counterintuitive for the neuron class with shorter inspiratory drive latency and typically lower-amplitude 
inspiratory  bursts11,14,15. Nevertheless, because the longer inspiratory drive latency in Type-1 neurons may be 
attributable to the rich topology of their excitatory synaptic  interconnections38,39, one possible interpretation 
would be that upregulation of Gria3 in Type-2 neurons augments inspiratory drive in these less richly intercon-
nected preBötC neurons. Upregulation of Gria3 may amplify postsynaptic AMPA receptor-mediated inspiratory 
drive to accomplish the output pattern-related role of Type-2 neurons.

Figure 3.  Log2(FPKM) values of the DE genes in Type-1 and Type-2 neurons.  Log2(FPKM) value is indicated 
by a pseudocolor scale. Individual neurons are listed in columns. Genes are listed in rows, arranged in 
the increasing order of L2FC values. The names of genes upregulated in Type-1 are in magenta and those 
upregulated in Type-2 neurons are in blue-cyan. Genes names highlighted in yellow are mentioned in the text.
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Synaptic inhibition influences inspiratory rhythm and output  pattern5,40–43. We report upregulation of the 
 GABAA receptor, Gabra1, in Type-2 neurons; Gabra3 appears to be more highly expressed in Type-2 neurons but 
it did not pass the DESeq2 criteria for differential expression (Figs. 3 and 4, Supplementary Table 2). Of course 
GABAergic drive acts on Type-1 neurons, but Gabra1 (and perhaps Gabra3) upregulation in Type-2 neurons 
suggests that a stronger source of inhibitory drive may be equipped to bypass the oscillator (i.e., the predominant 
rhythmogenic Type-1 neuron class) and selectively act on the output pattern-generating Type-2 subpopulation 
to arrest inspiration with immediacy. Behavioral exigencies that might apply include the breath-hold dive reflex 
upon submersion; attentive immobility, that is, the arrest of all movement (including breathing) for predators 
stalking prey or prey attempting to camouflage themselves in the context of being hunted; or, finally, in the 
context of a Valsalva maneuver.

Transcription factors program cell fate during embryonic development and regulate gene expression post-
natally. This study was performed postnatally (P0-2) so one does not expect pre-mitotic transcription factors. 
Nevertheless, we detected genes that help differentiate cardinal cell populations in the ventral progenitor zone 
of the neural tube including Dbx2, a sonic hedgehog-repressed (Class I) transcription factor co-expressed with 
Dbx1 in the p0 domain, and, surprisingly, a host of sonic hedgehog-induced (Class II) Nkx genes associated with 
more ventral domains (Supplementary Fig. 4). Because all 17 of our neurons were derived from Dbx1-expressing 
precursors and 8 of 17 expressed Evx1 or Evx2 (Supplementary Fig. 4, Supplementary Table 3), and only 1 of 17 
expressed Pax7, our sample represents the V0 ventral  (V0V) cardinal  class44,45.

Further, we report upregulation of transcription factors Akna and Runx1 in Type-2 neurons (Fig. 3, Supple-
mentary Table 2). Runx1 helps consolidate spinal motor neuron identity by suppressing interneuron  programs46. 
It may, therefore, seem counterintuitive that Runx1 is upregulated in Type-2, but we speculate that it may be 

Figure 4.  Quantitative gene expression for ionotropic and metabotropic synaptic receptors, neuropeptides, 
neuropeptide receptors, and Trp channels. The first two bars show group data for Type-1 (n = 7; magenta bar) 
and Type-2 (n = 9; blue-cyan bar). The height of the bar is  log2(mean FPKM) value and the error bar with 
horizontal cap shows  log2(mean + SD). The next set of 17 bars shows  log2(FPKM) values for each neuron in the 
following order: 7 Type-1 neurons (magenta), 1 Unknown neuron (green), and 9 Type-2 neurons (blue-cyan). 
Gene names are color-coded according to the subfamily to which they belong. Gene names in bold indicate DE 
and contain a superscript 1 if upregulated Type-1 neurons and 2 if upregulated in Type-2 neurons.
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acting to suppress Type-1 programs or else halting any further programming or developmental changes to Type-2 
neurons. The potential role of Akna is not known.

Non‑coding RNA. We report 15 differentially expressed long non-coding RNA (such as 2610035D17Rik, 
Gm39244, Gm32647) (Fig.  3, Supplementary Table  2). The function of these transcripts and their role(s) in 
inspiratory rhythm- and pattern-generation is unexplored for now.

Transcripts associated with cellular neurophysiology. We next examined a broad spectrum of iono-
tropic and metabotropic synaptic receptors, peptides, peptide receptors, and transient receptor potential (Trp) 
ion channels (Fig. 4); voltage-dependent ion channels, regulatory subunits, and intracellular receptors (Fig. 5); 
purine receptors, monoamine receptors, and cell adhesion molecules (Supplementary Fig. 3); as well as tran-
scription factors (Supplementary Fig. 4) irrespective of whether they are DE or non-DE genes. Here, our goal 
was to understand preBötC neuron excitability and signaling in general, not differential expression, so the crite-
ria for inclusion were relaxed: any genes that were expressed in > 25% of the neurons (4 out of 17), regardless of 
the type of neuron, were quantified (Supplementary Table 3) and cataloged.

Ion channels and their regulation. The delayed excitation in Type-1 neurons is a functional characteristic of 
A-type transient  K+ current that can be mediated by the  Kv channels:  Kv1.4 (Kcna4),  Kv3.3–3.4 (Kcnc3‑4), and 
 Kv4.1–4.3 (Kcnd1‑3). However, the magnitude of IA depends on two proteases (Dpp6, Dpp10; Supplementary 
Table 3) that increase the plasma membrane expression of  Kv4.247,48 and the interacting proteins for all  KV4.x 

Figure 5.  Quantitative gene expression for voltage-dependent ion channels, regulatory subunits, and 
intracellular receptors. The first two bars show group data for Type-1 (n = 7; magenta bar) and Type-2 (n = 9; 
blue-cyan bar). The height of the bar is  log2(mean FPKM) value and the error bar with horizontal cap shows 
 log2(mean + SD). The next of 17 bars shows  log2(FPKM) values for each neuron in the following order: 7 Type-1 
neurons (magenta), 1 Unknown neuron (green), and 9 Type-2 neurons (blue-cyan). Gene names are color-
coded according to the subfamily to which they belong. None are DE.
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channels (K channel-interacting proteins i.e. KChIPs [Kcnip1‑4]; Fig. 5, Supplementary Table 3) that substan-
tially enhance IA without affecting its voltage-dependence or  kinetics49,50. Neither the genes for  Kv ion channels 
nor these regulatory genes cross our significance threshold in DESeq2 so we make no statistical claims. Never-
theless, we posit that Kcnip2 and Kcnip4 are important for augmenting IA in Type-1. The mean expression levels 
appear to differ greatly between the subpopulations (see kcnip2 and kcnip4 bar heights in Fig. 5) but the high 
variability in the expression level for these genes preludes their ratification as “DE” by DESeq2 analysis. The high 
variability in the gene expression level is probably due to the technical limitations of Patch-Seq that are discussed 
in “Perspectives” below.

The sag potential in Type-2 neurons is a classic property of hyperpolarization-activated, cyclic nucleotide-gate 
channels (HCN) channels encoded by Hcn1‑4 (Fig. 5, Supplementary Table 3). We do not detect any significant 
difference in the expression of these genes.

Our data show that Type-1 and Type-2 neurons comprise electrophysiologically discrete classes (Fig. 1) and 
yet they do not express different levels of ion channels typically associated with IA and Ih (Fig. 5). We propose that 
the magnitude of IA and Ih, and thus their influence on membrane potential trajectories, are instead governed 
by either Kcnip2 and Kcnip4 or by neuromodulation, in which neurons presynaptic to the preBötC regulate 
its constituent neurons’ membrane properties. The influence of neurons outside of—and presynaptic to—the 
preBötC would be impossible to assess by Patch-Seq, the potential role of Htr1d notwithstanding (see above).

Peptides and peptide receptors. Given the importance of the µ-opioid receptor, Oprm1, in opioid-induced res-
piratory  depression51–54 we analyzed the expression of Oprm1, even though it was neither DE nor expressed in 
> 25% of the samples. Oprm1 is expressed in only 3 out 17 samples here (2 Type-1 neurons and 1 Type-2 neuron 
express Oprm1, net mean expression of 0.50 ± 1.58  log2[FPKM], n = 17; Fig.  4, Supplementary Table  3). Our 
results are congruent with the recent demonstration that ~ 8% of Dbx1 preBötC neurons express Oprm152,55. 
The apparent sparsity of Oprm1 expression does not negate the obvious potency of µ-opioid receptor-mediated 
effects in the preBötC but it constrains the mechanism underlying opioid-induced respiratory depression to 
operate on a small fraction of constituent preBötC neurons, both Type-1 and Type-2, which affect rhythm and 
pattern.

Peptide receptors for tachykinins (neurokinin-1 receptor specifically), neuromedin B, and gastrin-releasing 
peptide (NK1R, Nmbr, and Grpr, respectively) modulate breathing by acting directly on preBötC neurons. NK1R-
expressing (Tacr1‑3) preBötC neurons form a heterogeneous population of rhythm- and pattern-generators56. 
Consistent with this idea, we do not observe differential expression of genes encoding NK1R (Fig. 4, only Tacr3 
passed our screening criteria for display).

Sigh breaths draw on the inspiratory reserve volume of the lungs to reinflate collapsed (or collapsing) alveoli 
and optimize pulmonary  function34. Bombesin-like peptide receptors, Nmbr and Grpr, that modulate sighing 
were detected in ~ 7% of all preBötC neurons, including Dbx1 and non-Dbx1  subpopulations57. We report 
more than double that expression level: 18% of our samples (n = 3) expressed bombesin-like peptide receptor 
transcripts: 1 Type-1 and 1 Type-2 neuron expressed Nmbr for a combined mean expression level of 0.05 ± 0.19 
 log2(FPKM) and 1 Type-2 neuron expressed Grpr at an expression level of 0.01  log2(FPKM) (Supplementary 
Table 3). These data are in line with expectations because our study focuses exclusively on Dbx1 preBötC neurons, 
the core for inspiratory breathing rhythm and pattern, whereas Li et al.57 measured transcripts in any preBötC 
neuron, ~ 50% of which are not derived from Dbx1-expressing progenitors.

Pituitary adenylate cyclase-activating peptide (PACAP) is important for breathing responses to  CO2. PACAP 
mutant mice exhibit blunted chemosensitivity and die within 3-weeks after birth due to respiratory  defects58. 
Bilateral microinjections of PACAP in preBötC, in vivo, increases breathing frequency and inspiratory motor 
 output58 and in vitro leads to an increase in XII motor output  frequency58,59. We report expression of PACAP 
receptor (Adcyap1r1) in 15 out of 17 samples (6 Type-1 neurons, 8 Type-2 neurons and 1 Unknown) for a 
combined mean expression level of 3.52 ± 3.24  log2(FPKM), which would explain the effect of PACAP on both, 
rhythm and pattern (Fig. 4, Supplementary Table 3).

SST (and SST receptors) are expressed in core preBötC neurons, including—but not limited to—those derived 
from Dbx1-expressing  precursors3,4,60. Several seminal studies in vitro and in vivo show that SST modulates 
inspiratory rhythm and  pattern6,11,61. However, more recent studies specifically posit that SST-expressing  (SST+) 
preBötC neurons are specialized for output  pattern6,11. We report Sst expression in 14 out of 17 Dbx1 neurons: 
5 Type-1, 8 Type-2, and 1 Unknown for a combined mean expression level of 10.11 ± 11.65  log2(FPKM) (Fig. 4). 
Therefore, our data are incongruent with the theory that divides rhythm and pattern Dbx1 preBötC neurons on 
the basis of SST expression. Since we find that  SST+ Dbx1 neurons are well apportioned among putative rhythm- 
and pattern-generating subpopulations, Type-1 and Type-2, respectively, we posit that a substantial population 
of non-Dbx1  SST+ neurons with exclusively pattern-generating functionality exists in the preBötC, which we 
did not sample because of our focus on Dbx1-derived subpopulations.

Perspectives. Dbx1-derived preBötC neurons operate in unison to generate breathing movements. We dis-
tinguish rhythm and pattern functions in seeking to understand the neural origins of breathing but there is just 
one behavior. Type-1 and Type-2 neurons are significantly different on the basis of only 123 genes out of the 
31,420 genes we detected, although it should be noted that our criteria of  padj < 0.01 and L2FC > 1.5 are relatively 
 stringent62–64. Thus, these putative rhythm- and pattern-generating populations have much more in common in 
terms of their transcriptomes, compared to that which differentiates them.

We acknowledge technical limitations could have limited our ability to resolve Type-1 versus Type-2 tran-
scriptome disparity. The minute amount of starting material (usually ≤ 10 pg RNA in the retrieved cytoplasm) 
from a single neuron necessitates substantial amplification to get sufficient cDNA for sequencing (> 150 pg/
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µL). Amplification leads to bias favoring some sequences and invariably drowning-out  others65. Also, reverse 
transcription errors can lead to faulty replication followed by a failure to map to the reference genome. These 
caveats produce false zeros for genes that are biologically expressed at non-zero  levels62,66,67. We performed 
multiple quality checks (Supplementary Fig. 1B) for our sequences, used stringent criteria for selecting DE 
genes and scrambling to ensure the differential expression analysis was efficient in detecting DE genes. How-
ever, these checks cannot differentiate a technical zero from a biological zero. The upshot of these caveats is that 
our Patch-Seq analysis assuredly missed some expressed genes and incorporates some false zeros. We further 
acknowledge that the disparities between Type-1 and Type-2 neurons may come about during translation and 
post-translational modifications, which impact phenotypic properties like inspiratory burst magnitude (ICAN, 
i.e., Trpm4-dependent), delayed excitation (IA), and sag potentials (Ih).

Nevertheless, these data provide the electrophysiology and transcriptomic data, including non-coding tran-
scripts, for Dbx1 preBötC inspiratory neurons at the core of inspiratory rhythm and pattern generation. The 
transcriptomic data reported here can be utilized or meta-analyzed to design new experiments studying the 
neural control of breathing.

Methods
The Institutional Animal Care and Use Committee at William & Mary approved these protocols, which conform 
to policies set forth by the Office of Laboratory Animal Welfare (National Institutes of Health) and the National 
Research  Council68.

Mice. We crossed knock-in mice generated by inserting an IRES‑CRE‑pGK‑Hygro cassette in the 3’ UTR of 
the Developing brain homeobox 1 (i.e., Dbx1) gene, i.e.,  Dbx1Cre  mice69 (IMSR Cat# EM:01924, RRID:IMSR_
EM:01924) with mice featuring Cre-dependent expression of fluorescent  Ca2+ indicator GCaMP6f., dubbed 
Ai148 by the Allen  Institute70 (RRID: IMSR_JAX:030328) Ai148 mice had C57Bl/6J background;  Dbx1Cre mice 
had a mixed C57Bl/6J;CD1 genetic background. We used their offspring, referred to as Dbx1;Ai148 mice (P0-2) 
for experiments.

The animals were housed in colony cages on a 12/12 h light/dark cycle with controlled humidity and tem-
perature at 23 °C and fed ad libitum on a standard commercial mouse diet (Teklad Global Diets, Envigo) with 
free access to water.

In vitro slice preparations. The workbench was cleaned with RNase ZAP (Thermo Fisher, Waltham, MA) 
before beginning each experiment. All the beakers and tools were either autoclaved or cleaned first with RNase 
ZAP and then with nuclease-free water (NFW).

Dbx1;Ai148 pups were anesthetized by hypothermia, consistent with the American Veterinary Medical Asso-
ciation (AVMA) guidelines for  euthanasia71. The neuraxis, from the pons to lower cervical spinal cord, was 
removed within ~ 2 min and submerged in ice-cold artificial cerebrospinal fluid (aCSF) containing (in mM): 
124 NaCl, 3 KCl, 1.5  CaCl2, 1  MgSO4, 25  NaHCO3, 0.5  NaH2PO4, and 30 dextrose. The aCSF was prepared in 
an RNase-free environment and then aerated continually with 95%  O2 and 5%  CO2 during the experiment. We 
trimmed the neuraxis and glued the dorsal surface of the brainstem onto an agar block (exposing the ventral 
side). The block and brainstem were affixed rostral side up within a vibratome (Campden Instruments 7000 
smz-2, Leicester, UK) while perfusing with aerated ice-cold aCSF. We cut a single transverse slice 450–500 µm 
thick (n = 14 slices total) with preBötC on its rostral  surface72. We started a 3-h countdown clock as soon as 
the mouse was anesthetized and discarded the slice at the end of the interval to avoid sample degradation and 
contamination.

Whole‑cell patch‑clamp recording and cytoplasmic sample collection. We perfused slices with 
aCSF (28 °C) at 2–4 ml/min in a recording chamber on a fixed-stage upright microscope. The external  K+ con-
centration  ([K+]ext) of the aCSF was raised from 3 to 9 mM to facilitate robust respiratory rhythm and XII motor 
output. We recorded XII motor output using suction electrodes fabricated from autoclaved borosilicate glass 
pipettes (OD: 1.2 mm, ID: 0.68 mm) fire polished to a diameter of ~ 100 µm. XII motor output was amplified by 
2000, band-pass filtered at 0.3–1 kHz, and RMS smoothed for display.

Inspiratory Dbx1 preBötC neurons were selected visually based on rhythmic fluorescence emitted by 
GCaMP6f. Patch pipettes were fabricated from autoclaved borosilicate glass (OD: 1.5 mm, ID: 0.86 mm) using 
a 4-stage program on a Flaming-Brown P-97 micropipette puller (Sutter Instruments, Novato, CA). Patch pipettes 
with tip resistance of 3–5 MΩ were filled with an internal solution, mixed in an RNase-free environment, contain-
ing (in mM): 123 K-gluconate, 12 KCl, 10 HEPES, 0.2 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 10  Na2-phosphocreatine, 
and 13 Glycogen (osmolarity adjusted to 270–290 mOsm and pH 7.25). We added 0.8% Recombinant Ribonu-
clease Inhibitor (RRI) to the internal solution immediately before each experiment to preserve RNA. We used 
robotic micromanipulators (Sensapex, Helsinki, Finland) to guide our patch pipettes toward inspiratory neurons 
under visual control and then performed whole-cell patch-clamp recordings using an EPC-10 patch-clamp ampli-
fier (HEKA Instruments, Holliston, MA) with PATCHMASTER software (RRID:SCR_000034).

Starting from a quiescent membrane potential between inspiratory bursts, we defined inspiratory drive latency 
as the elapsed time from first detection of summating synaptic potentials (EPSPs) until the onset of the inspira-
tory burst.

We measured two intrinsic membrane properties from a baseline membrane potential of − 60 mV: input 
resistance and cell capacitance. We applied 1 s current steps in a 10-step sequence and plotted the resulting cur-
rent–voltage (I–V) relationship. For input resistance, we then measured the slope of the I–V curve in the linear 
region between (approximately) − 60 and − 40 mV. The membrane time constant was fitted by regression to an 
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exponential function based on the membrane voltage response to a 500 ms hyperpolarizing current pulse. We 
measured the cell capacitance using the membrane time constant and input resistance.

We tested for A-type  K+ current (IA) by applying suprathreshold depolarizing current step commands of 
750–1000 ms duration from holding potentials of − 70 mV (Fig. 1B) and − 50 mV. The net applied current dur-
ing the step command was equivalent regardless of holding potential. Neurons expressing IA exhibited delayed 
excitation of 120–220 ms from a holding potential of − 70 mV, but not from a holding potential of − 50  mV14,15.

We tested for hyperpolarization-activated cationic current (Ih) by applying hyperpolarizing current step 
commands of 750–1000 ms duration, which caused initial voltage excursions exceeding − 30 mV from a hold-
ing potential of − 50 mV (Fig. 1C). Neurons expressing Ih exhibited a time- and voltage-dependent depolarizing 
‘sag’14,15.

After, categorizing the Dbx1 preBötC neuron as Type-1 and Type-2 (Supplementary Fig. 1Aa), cytoplasmic 
contents were extracted under voltage clamp (− 60 mV holding potential) by applying negative pressure (0.7–1.5 
psi). Successful extraction left the neurons visibly shrunken. Negative pressure was applied for a maximum of 
10 min or until the neuron was electrophysiologically unstable, indicated by holding currents exceeding − 600 pA, 
whichever happened first. The patch pipettes were retracted promptly, and the cytoplasmic contents were ejected 
by breaking the pipette tip at the bottom of the RNase-free PCR tube containing 4 µL of stock solution (stock 
solution = NFW with 2% RRI) while applying positive pressure (Supplementary Fig. 1Ab). Great care was taken 
to avoid any bubbles while applying positive pressure. Samples were briefly spun in a mini centrifuge, then snap-
frozen in liquid nitrogen and stored at − 80 °C until further processing.

We monitored for potential contamination by collecting negative control samples during each experiment. 
Patch pipettes were filled with internal solution and then inserted into the tissue without targeting any neuron 
for recording; their contents were processed identically.

cDNA synthesis, library preparation and sequencing. RNA from the recovered cytoplasm of patch-
clamped neurons was converted to complementary DNA (cDNA) according to the SMART-Seq HT proto-
col (Takara Bio USA, Mountain View, CA), which incorporates the template-switching activity of the reverse 
transcriptase to select for full-length cDNAs and to add PCR adapters to both ends of the first-strand DNA 
(SMART = Switching Mechanism at 5’ end of RNA Template). Samples were denatured at 72  °C for 3  min. 
poly(A) + RNA was reverse transcribed using a tailed oligo(dT) primer. First strand cDNA synthesis and dou-
ble-stranded cDNA amplification were performed in a thermocycler using the following program: 42  °C for 
90 min; 95 °C for 1 min; 18 cycles of 98 °C for 10 s, 65 °C for 30 s, 68 °C for 3 min; and finally, 72 °C for 10 min. 
PCR-amplified cDNA was purified by immobilization on Agencourt AMPure XP beads (Beckman Coulter, Brea, 
CA), and then washed with 80% ethanol and eluted with elution buffer. Sequencing libraries were prepared from 
the amplified cDNA using SMART-Seq PLUS kits (Takara Bio USA, Mountain View, CA). Unique dual indexes 
were used on the amplified libraries to identify samples. We verified average cDNA size, abundance, and quality 
control of the final library using a Bioanalyzer High Sensitivity kit (Agilent, Santa Clara, CA) and Qubit dsDNA 
High-sensitivity Assay Kit (Molecular Probes, Eugene, OR) (Supplementary Fig. 1Ac). cDNA samples contain-
ing less than 150 pg/µl cDNA were not sequenced. The cDNA sequencing libraries passing quality control were 
sequenced using an Illumina HiSeq X Sequencing system (Supplementary Fig. 1Ad) with paired-end (150 bp) 
reads (Admera Health Biopharma Services, South Plainfield, NJ). A total of 18 samples were sequenced. Investi-
gators were blinded to cell type during library construction and sequencing.

Quality control, pre‑processing, and alignment to reference genome. Nucleotide sequences 
along with their corresponding quality scores were returned as FASTQ files. We received an average of 18,724,864 
(n = 18 samples) paired-end reads per sample. The quality of reads was verified using FastQC v0.11.8 (Supple-
mentary Fig. 1Ba). One sample returning 688 reads was discarded.

The mouse reference genome, mm10 from Ensembl, was used to create the genome directory for aligning the 
reads in STAR using the following commands:

1. wget ftp:// ftp. ensem bl. org/ pub/ relea se- 102/ fasta/ mus_ muscu lus/ dna/ Mus_ muscu lus. GRCm38. dna. prima 
ry_ assem bly. fa. gz

2. wget ftp:// ftp. ensem bl. org/ pub/ relea se- 102/ gtf/ mus_ muscu lus/ Mus_ muscu lus. GRCm38. 102. gtf. gz
3. gunzip Mus_musculus.GRCm38.dna.primary_assembly.fa.gz
4. gunzip Mus_musculus.GRCm38.102.gtf.gz
5. STAR --runMode genomeGenerate --genomeDir {path to genome folder} --genomeFastaFiles Mus_muscu-

lus.GRCm38.dna.primary_assembly.fa --sjdbGTFfile Mus_musculus.GRCm38.102.gtf --sjdbOverhang 149 
--genomeSAsparseD 2

The raw reads were aligned to the mm10 reference genome by the splice-aware STAR software v2.7.7a, which 
generates BAM alignment files (Supplementary Fig. 1Bc), using the following command:

1. STAR --genomeDir mm10ReferenceGenome --readFilesIn inputFASTQFile1.fastq inputFASTQFile2.fastq 
--outFileNamePrefix outputBAMFile --outSAMtype BAM SortedByCoordinate --outReadsUnmapped Fastx

The alignment procedure (above) was done a total of 3 times for each sample to monitor the quality of the 
samples. The first alignment corresponds to raw reads. The second and third alignments are done after removing 
adapter and overrepresented sequences, respectively.

ftp://ftp.ensembl.org/pub/release-102/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-102/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-102/gtf/mus_musculus/Mus_musculus.GRCm38.102.gtf.gz
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Adapters added during library construction: AGA TCG GAA GAG CAC ACG TCT GAA CTC CAG TCA (paired 
end 1) and AGA TCG GAA GAG CGT CGT GTA GGG AAA GAG TGT (paired end 2) were trimmed (Supplementary 
Fig. 1Bb) by bbduk v38.00 using the following command:

1. sh bbduk.sh in1 = inputFASTQFile1.fastq. in2 = inputFASTQFile2.fastq out1 = outputFASTQFile1.fastq 
out2 = outputFASTQFile2.fastq ktrim = r -Xmx27g mm = f k = 33 hdist = 1 literal = AGA TCG GAA GAG CAC 
ACG TCT GAA CTC CAG TCA,AGA TCG GAA GAG CGT CGT GTA GGG AAA GAG TGT tbo tpe

The SMART-Seq HT kit uses dT priming for first-strand cDNA synthesis, annealing to the poly A tails of 
mRNA. The sequencing reads contained poly T/A sequences that were identified by FASTQC and tagged as 
overrepresented sequences, and finally trimmed (Supplementary Fig. 1Bb) by cutAdapt v3.2 using the following 
command:

1. cutadapt -a overrepresentedSequence -A overrepresentedSequence’ -o outputFASTQFile1.fastq -p output-
FASTQFile2.fastq inputFASTQFile1.fastq inputFASTQFile2.fastq −m 10 −j 4

The STAR v2.7.7a alignment software tallies the number of sequences that (1) align uniquely, (2) align 
at multiple portions, or (3) fail to align with mm10. We present these alignment statistics for each step (raw 
reads, adapter-trimmed reads, and adapter-trimmed reads following removal of overrepresented sequences, i.e., 
processed reads) in Supplementary Table 1. Only the final processed reads were used for downstream analysis.

We employed Qualimap v.2.2.2 to perform a final quality check of the BAM alignment files using this 
command:

1. qualimap rnaseq -bam inputFile.bam -gtf Mus_musculus.GRCm38.102.gtf outdir outputFileDir --paired 
--java-mem-size = 4G

Intergenic reads exceeding 30% indicate DNA contamination. Our samples showed an average of 
5.37% ± 2.33% intergenic reads (n = 17) so we conclude that our samples were not contaminated and thus could 
be used for downstream analyses. The quality control metrics of the processed reads, computed by Qualimap, 
are shown in Supplementary Table 1.

Uniquely aligned reads were converted to fragment counts (Supplementary Fig. 1Bd) using featureCounts 
from the Rsubread package v2.4.2. The data pre-processing was performed using computing facilities at William 
& Mary (https:// www. wm. edu/ it/ rc).

Data analysis. We wrote custom R scripts (R v4.0.3, RRID:SCR_001905) that quantify gene expression as 
fragment counts per kilobase of exon per million mapped reads (FPKM; Supplementary Fig. 1Be). This quan-
tification method is ideally suited for paired-end reads and normalizes for gene length and quantity of mapped 
reads. We also used R scripts to compute the mean and standard deviation (SD) of FPKM values. The  log2 trans-
formed value of FPKM, mean FPKM, or mean + SD FPKM were used for visualization.

Genes that are part of mm10 but had zero fragment counts in all 17 samples were omitted from all further 
analyses and consideration (23,824 genes). We performed differential expression analyses on the remaining non-
zero genes (31,543 genes) using DESeq2 v1.30.1 software. DESeq2 uses fragment count (not FPKM) for each 
gene to calculate its geometric mean (non-zero counts only) across all the samples (Supplementary Fig. 1Bf). 
Next, it normalizes each count by dividing the fragment count of the gene by its geometric mean. The fold 
change (L2FC) between Type-1 and Type-2 Dbx1 neurons is calculated using logarithm (base 2) of the nor-
malized counts. Any gene where the L2FC exceeds 1.5 and adjusted p value  (padj) is less than 0.01 was deemed 
differentially expressed (DE).

Custom MATLAB scripts (RRID:SCR_001622) implemented unsupervised principal component analysis 
(PCA) for dimensionality reduction and clustering of the  log2(FPKM) expression profiles of 123 DE genes and 
16 samples. Although the PCA was performed without regard for sample category, clustering of the Type-1 and 
Type-2 samples is evident using the first two principal component scores that represent 32% of the variation 
in the data (Fig. 2B, axes labelled PC1 and PC2). A boundary line calculated using linear discriminant analysis 
(LDA) shows that an accurate Type-1 versus Type-2 classification may be performed using the first two principal 
component scores.

As a control, we permuted the labels identifying the 16 samples as Type-1 versus Type-2 and repeated our 
analyses of the  log2(FPKM) expression profiles. In each of 17 scrambled data sets, 50% of the samples were 
correctly labelled and 50% were “imposters” with false identities. In each case, we performed DESeq2 analy-
sis to obtain a list of “DE genes” and performed PCA on this subset of genes. Supplementary Fig. 2A shows a 
representative LDA using PC1 and PC2 for genes differentially expressed between two groups of neurons with 
scrambled Type-1 and -2 identities. The classification error in this case is 0.25, because 4 of the 16 neurons 
are misclassified (4 Type-2 neurons, one of which is a Type-2 imposter, are on or below the boundary line). 
Overall, the performance of classifiers obtained by LDA of such “DE genes” was severely degraded compared to 
the unscrambled case, especially when the LDA was restricted to the first several principal component scores 
(Supplementary Fig. 2). This result adds confidence to our list of DE genes for Type-1 versus Type-2 neurons.

https://www.wm.edu/it/rc
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Ethical approval. The reporting of this study follows the ARRIVE guidelines (https:// arriv eguid elines. org/) 
that maximize the quality, reliability, and reproducibility of research that facilitates other researchers and readers 
to scrutinize and evaluate it.

Data availability
The raw data of nucleotide sequences along with their corresponding quality scores (FASTQ format), raw frag-
ment counts of the processed data (text file) and the FPKM values of the processed data (text file) are publicly 
available in the NCBI GEO database (Accession code: GSE175642). The custom R scripts written to process the 
raw fragments counts are freely available (https:// github. com/ prajk ta9/ bioin forma tics- scRNA- seq).
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