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Functional buffering via cell‑specific 
gene expression promotes tissue 
homeostasis and cancer robustness
Hao‑Kuen Lin1,2,4, Jen‑Hao Cheng1,3,4, Chia‑Chou Wu1,4, Feng‑Shu Hsieh1, Carolyn Dunlap1 & 
Sheng‑hong Chen1,3*

Functional buffering that ensures biological robustness is critical for maintaining tissue homeostasis, 
organismal survival, and evolution of novelty. However, the mechanism underlying functional 
buffering, particularly in multicellular organisms, remains largely elusive. Here, we proposed that 
functional buffering can be mediated via expression of buffering genes in specific cells and tissues, by 
which we named Cell‑specific Expression‑BUffering (CEBU). We developed an inference index (C‑score) 
for CEBU by computing C‑scores across 684 human cell lines using genome‑wide CRISPR screens and 
transcriptomic RNA‑seq. We report that C‑score‑identified putative buffering gene pairs are enriched 
for members of the same duplicated gene family, pathway, and protein complex. Furthermore, CEBU 
is especially prevalent in tissues of low regenerative capacity (e.g., bone and neuronal tissues) and 
is weakest in highly regenerative blood cells, linking functional buffering to tissue regeneration. 
Clinically, the buffering capacity enabled by CEBU can help predict patient survival for multiple 
cancers. Our results suggest CEBU as a potential buffering mechanism contributing to tissue 
homeostasis and cancer robustness in humans.

Robustness in biological systems is critical for organisms to carry out vital functions in the face of environmental 
 challenges1,2. A fundamental requirement for achieving biological robustness is functional buffering, whereby the 
biological functions performed by one gene can also be attained via other buffering genes. Although functional 
buffering has long been regarded as a critical function contributing to biological robustness, the mechanisms 
underlying functional buffering remain largely  unclear3. Based on transcriptional regulation of buffering genes, 
functional buffering can be categorized as either needs-based buffering or intrinsic buffering. Needs-based 
buffering involves transcriptional activation of buffering genes only when the function of a buffered gene is com-
promised. To accomplish needs-based buffering, a control system must exist to detect compromised function and 
then activates expression of buffering genes. Needs-based buffering is often observed as genetic compensation in 
various biological systems including fungi, animals and  plants3–6. One classical needs-based buffering mechanism 
is genetic compensation among duplicated genes, whereby expression of a paralogous gene is upregulated when 
the function of the active duplicated gene is  compromised4. Genetic analyses of duplicated genes in Saccharomyces 
cerevisiae have revealed upregulation of gene expression in ~ 10% of paralogs when cell growth is compromised 
due to deletions of their duplicated  genes6–8. Apart from duplicated genes, non-orthologous/analogous genes 
can also be activated for needs-based  buffering9. For instance, inactivation of one growth signaling pathway can 
lead to activation of others for the coordination of cell growth and  survival3,4. Such needs-based buffering genes 
have been documented as enabling unicellular/multicellular organisms to cope with environmental  stresses3,8.

Recent genome-wide studies of duplicated genes in human cells have revealed another class of buffering 
mechanism whereby expression of buffering genes is not responsive to impaired function but is constitutively 
expressed, hereafter termed “intrinsic buffering”10–12. In some duplicated gene families, the strength of paralogous 
gene expression determines the essentiality of their corresponding duplicated genes in human cell lines, i.e., the 
higher the expression of paralogous genes in a particular cell line, the less essential are their duplicated  genes10–12. 
This observation indicates that paralogs may buffer and contribute to the function of their duplicated genes in 
specific cells through their constitutive gene expression. In addition to duplicated gene families, gene essentiality 
can depend on inherent variability in the expression levels of other genes in the same pathway, suggesting that 
functionally analogous genes in the same pathway can also buffer each  other13. Despite these observations, it 
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remains unclear what mechanism may give rise to this context-dependent constitutive expression of buffering 
genes and how such intrinsic buffering may function in multicellular organisms.

In this study, we investigated if cell- and tissue-specific gene expression can act as an intrinsic buffering 
mechanism to buffer functionally related genes in the genome, thereby strengthening cellular plasticity for 
cell- and tissue-specific tasks. We proposed this concept as the “Cell-specific Expression-BUffering” or CEBU 
mechanism (illustrated in Fig. 1A). To explore CEBU as a potential buffering mechanism and to estimate buffer-
ing capability, we developed an inference index, the C-score, to identify putative gene pairs displaying CEBU. 
This index calculates the adjusted correlation between expression of a buffering gene and the essentiality of the 
buffered gene (Fig. 1B), utilizing transcriptomics  data14 and genome-wide dependency data from the DepMap 
 project14,15 across 684 human cell lines. Our results suggest the potential authenticity of the CEBU mechanism 
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Figure 1.  Genome-wide CEBU analysis using the C-score index. (A) Illustration of the cell-specific expression-
buffering mechanism (CEBU). Cells with higher buffering gene (G2) expression (darker arrow) have stronger 
buffering potential, thereby lowering the essentiality of the buffered gene (G1). The illustration and cartoons are 
created using Adobe Illustrator. (B) C-score plot: the x-axis is the dependency score of the buffered gene (G1) 
and the y-axis is the expression level of the buffering gene (G2). G1 is considered as being potentially buffered 
by G2, as quantified by C-score, which is an adjusted correlation for a given gene based on the C-score plot. (C) 
Distribution of C-scores for all gene pairs (blue) and one of five randomly shuffled distributions (grey). The plot 
shows C-score between 0.4 and 0.6. The dashed lines indicate the C-score percentiles of 0.25, 0.35 and 0.45 for 
the all-gene-pair distribution.
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and this CEBU-mediated intrinsic buffering may play a critical role in cell-specific survival, tissue homeostasis, 
and cancer robustness.

Results
Development of the C‑score to infer cell‑specific expression buffering (CEBU). In seeking an 
index to explore intrinsic buffering operated via constitutive gene expression, we postulated a buffering rela-
tionship whereby the essentiality of a buffered gene (G1) increases when expression of its buffering gene (G2) 
decreases across different human cell lines (Fig. 1). Given that G2 expression differs among cell lines, the strength 
of buffering capacity varies across cell lines, thereby conferring on G1 cell-specific essentiality. This concept 
prompted the formulation of the cell-specific expression buffering mechanism, here named CEBU, which can be 
quantitatively investigated by developing an inference index, C-score. The C-score of a gene pair is derived from 
the correlation between the essentiality of a buffered gene (G1) and expression of its buffering gene (G2) (see 
C-score plot, Fig. 1B), and is formulated as:

where ρ denotes the Pearson correlation coefficient between essentiality of G1 and expression of G2. Their regres-
sion slope (slopeG1, G2) is normalized by slopemin, which denotes the minimum slope of all considered gene pairs 
in the human genome (see “Methods”). The normalized slope can be weighted by cell- or tissue type-specific b. 
In our current analysis, b is set as 1 for a pan-cell- and pan-cancer-type analysis. Gene essentiality is represented 
by dependency scores (D.S.) from the DepMap  project15, where the effect of each gene on cell proliferation was 
quantified after its knockout using the CRISPR/Cas-9 approach. Specifically, a more negative D.S. reflects slower 
cell proliferation when the gene is knocked out, thus reflecting stronger essentiality. Expression data was obtained 
through RNA-seq 14. We anticipated that the higher the C-score of a gene pair, the more likely G2 would buffer 
G1 based on our proposed CEBU mechanism.

We conducted a genome-wide analysis to calculate C-scores for all genes with negative mean dependency 
scores (G1s) pairing with expressed genes (G2s), yielding 9196 G1 × 13,577 G2 gene pairs across 684 human cell 
lines (Fig. 1C and see “Methods”). For our analysis, we considered gene pairs to have a high C-score with a strong 
likelihood of intrinsic buffering when their C-scores were > 0.25, yielding 64,439 gene pairs which comprises 
0.058% of the 9196 × 13,577 gene pairs in the human genome (Supplementary Table S1 and Data availability). To 
assess whether the results are due to random chance, we generated a bootstrapped null distribution by random 
shuffling of G2 expression among cell lines (Fig. 1C). This null distribution can be modeled as a normal distribu-
tion (Supplementary Fig. S1), for which we determined the high C-score gene pairs are statistically significant 
with a q-value < 2.2e-16 after multiple testing correction (Fig. 1C). Table 1 lists the top 20 G1s pairing with the 
G2 that yields the highest C-score. The highest C-score gene pair is FAM50A and FAM50B, which are potential 
transcriptional regulators recently discovered to be synthetic  lethal16. Other well described synthetic lethal cases 

C-score = ρG1,G2

(

1+ b
slopemin

slopeG1,G2

)

Table 1.  Top 20 C-score gene pairs. The top 20 G1s pairing with the G2 that yields the highest C-score is 
shown. D duplicated gene pair, ND Non-duplicated gene pair.

G1 G2 C-score Duplicated or non-duplicated

1 FAM50A FAM50B 0.793 D

2 RPP25L RPP25 0.770 D

3 CDS2 CDS1 0.677 D

4 EFR3A EFR3B 0.657 D

5 RAB6A RAB6B 0.639 D

6 INTS6 INTS6L 0.624 D

7 CHMP4B CHMP4C 0.618 D

8 ATP6V0E1 ATP6V0E2 0.610 D

9 TTC7A TTC7B 0.609 D

10 DNAJC19 DNAJC15 0.606 D

11 STX4 STX2 0.600 D

12 IRF4 PTK2 0.588 ND

13 PCYT1A PCYT1B 0.578 D

14 NMT1 NMT2 0.562 D

15 SNAP23 SNAP25 0.552 D

16 ATP1B3 ATP1B1 0.547 D

17 MYB CAMSAP2 0.547 ND

18 MYBL2 MYBL1 0.544 D

19 TP53BP1 EDA2R 0.540 ND

20 POP7 RPP25 0.537 ND
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include RPP25L/RPP2516–18, CDS2/CDS116 (Table 1) as well as other high C-score gene pairs, UAP1/UAP1L116,19,20, 
SMARC4/SMARC216,18,20,21, and ENO1/ENO222 (Supplementary Table S1). Comparing with nine other predic-
tions of synthetic  lethality23–31 to four larger scale studies of experimental  evidences16,19,20,32, the high C-score 
gene pairs demonstrated among the highest number of matches to experiments, even though matches between 
prediction to experiments remains few (0 to 14.3%, Supplementary Table S2). This result indicate identification 
of buffering and synthetic lethality is non-trivial, possibly due to a wide variety of biological mechanisms, and 
the CEBU concept may be one of these mechanisms. Furthermore, based on the concept of CEBU, a high C-score 
should be indicative of marked variability in cell-specific essentiality and expression. Indeed, we observed higher 
variability in both G1 dependency and G2 expression for high C-score gene pairs (Supplementary Fig. S2A). 
Nevertheless, high variation alone is insufficient to grant a high C-score. A high C-score requires consistent 
pairing between G1 and G2 across cell lines and, as anticipated, disrupting the pairing between G1 dependency 
and G2 expression by shuffling G2 expression amongst cell lines (without changing variability) abolished the 
C-score relationship (compare the right and left panels of Supplementary Fig. S2B). Moreover, both mean G1 
dependency and mean G2 expression in high C-score gene pairs were lower than those parameters in randomly 
selected gene pairs (Supplementary Fig. S2C), implying that G1s and G2s in high C-score gene pairs tend to be 
more essential and less expressed, respectively.

The proposed CEBU mechanism describes an intrinsic buffering mechanism that functions under normal 
physiological conditions. Consistent with this notion, when we examined if the C-score index could be biased 
due to the usage of cancer cell lines, we found that only a low percentage (2.3% per gene pair, Supplementary 
Fig. S3A) of mutant cell lines contributed to our C-score measurements. Moreover, excluding mutant cell lines 
did not qualitatively affect our C-score measurements, especially for high C-score gene pairs (Supplementary 
Fig. S3B). The same trend holds for cancer-related genes (Supplementary Fig. S3B). These results indicate that 
mutant cell lines are not the major determinants of C-scores. Similarly, since copy number variation (CNV) is 
a major mechanism for oncogenic expression, we checked if CNV contributes to G2 expression. As shown in 
Supplementary Fig. S3C, the correlation between G2 expression and copy number decreases with increasing 
C-score, indicating that CNV is not a primary mechanism regulating G2 expression. Thus, the C-score index 
is likely not biased by the utilization of cancer cell lines. Moreover, genes located chromosomal adjacently in 
the same topological associating domain (TAD) tend to co-express33. Hence, we interrogated if G2 is adjacent 
to a duplicated gene of G1. We found only 15,582/64,439 (24.2%) G2s are on the same chromosome as any G1 
duplicated gene. Within these, the minimum distances between a G2 to any G1 duplicated gene are generally 
greater than the typical size of a TAD (750  kbp34 to 2.5  Mbps35), indicating that G2 is not selected by adjacency 
to G1 duplicated gene (Supplementary Fig. S3D).

Characterization of C‑score‑inferred CEBU gene pairs. Since several duplicated gene pairs have been 
implicated as displaying functional buffering via gene  expression10–12, we checked if C-score identified duplicated 
gene pairs are over-represented. Among the high C-score gene pairs, 210 pairs are duplicated gene pairs. We 
found that duplicated gene pairs are more enriched among high C-score gene pairs as C-score increases (Fig. 2A 
and see “Methods”), where statistically significant enrichment is reached at C-scores > 0.255 (p-value = 0.05 by 
using a hypergeometric test). This enrichment increases with higher C-scores suggests a higher likelihood that 
CEBU describes a potential buffering mechanism utilize by a portion of duplicated genes (Fig. 2A). Interest-
ingly, the majority of high C-score gene pairs are non-duplicated (> 90%, Fig. 2B). In these cases, we asked if 
G2s may be functional analogs of the respective G1s, acting as surrogate genes. Accordingly, we examined if 
the high C-score gene pairs are more likely to participate in the same function or biological pathway or physi-
cally interact. We calculated the enrichment of curated gene sets in terms of Gene Ontology (GO)36 and Kyoto 
Encyclopedia of Genes and Genomes (KEGG)37 from the Molecular Signatures  Database38 (Fig. 2C). Gene pairs 
with high C-scores consistently exhibited greater functional enrichment. Likewise, we observed a monotonic 
increase in the enrichment of protein–protein interactions (PPI) [using the  STRING39 and  CORUM40 databases] 
between G1s and G2s in accordance with increasing C-score cutoff (Fig. 2D). To gain insight into which func-
tions are represented in the proposed CEBU mechanism, we considered that G1 may be paired with multiple 
G2s and vice versa, and constructed a C-score network consisting of G1s, G2s, and genes that act as both G1s 
and G2s (Fig. 2E). The enriched functions include housekeeping functions such as regulating redox homeostasis, 
gene transcription, mRNA translation, as well as NTP synthesis (Fig. 2E). Moreover, some cancer-related path-
ways are also enriched in the C-score-identified buffering network, including the proto-oncogenes EGFR and 
MYC (Fig. 2E). Both duplicated and non-duplicated gene pairs contribute to the observed functional and PPI 
enrichments. However, notably, the increase in functional and PPI enrichment as C-score increases are primarily 
attributable to non-duplicated genes as there is an observable increase in enrichment for all genes while enrich-
ment for duplicated genes is relatively constant with increasing C-scores (compare Fig. 2C,D to Supplementary 
Fig. S4A,B). These results indicate a strong likelihood for intrinsic buffering among analogous genes in the same 
pathway or proteins in the same protein complex. Thus, high C-score gene pairs are enriched in duplicated gene 
pairs, as well as non-duplicated gene pairs that are members of the same biological pathway and/or encode phys-
ically interacting proteins, supporting that the proposed CEBU mechanism (which is the basis of the C-score 
index) may provide an explanation to a part of intrinsic buffering between such gene pairs.

Experimental validation of C‑score‑inferred CEBU gene pairs. To validate putative C-score-inferred 
buffering gene pairs, we conducted experiments on the highest C-score gene pair, i.e., FAM50A–FAM50B, both 
members of which belong to the same duplicated gene family. Based on a C-score plot of FAM50A–FAM50B 
(Fig. 3A), we expected that FAM50B would display a stronger buffering effect on FAM50A for cell lines located 
at the top-right of the plot (e.g. MCF7) relative to those at the bottom-left (e.g. U2OS). Accordingly, growth of 
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the cell lines at the top-right of the plot would be more sensitive to dual suppression of FAM50A and FAM50B. 
We used gene-specific small hairpin RNAs (shRNAs) to suppress expression of FAM50A and FAM50B, individu-
ally and in combination. The suppressive effects of the shRNAs were verified using RT-qPCR (Supplementary 
Fig. S5C). Consistent with our expectations, we observed stronger growth suppression in the MCF7 cell line 
relative to the U2OS cell line in two experimental repeats (Fig. 3B, Supplementary Fig. S5A,B). An additional 
cell line, A549, located at the middle of the C-score plot, however, showed a medium growth suppression rela-
tive to MCF7 and U2OS cells (Supplementary Fig. S5A,B). Next, we quantified FAM50A and FAM50B genetic 
interactions in these different cell lines by Bliss  score41, where scores lower than one implies stronger synergistic 
interactions (see “Methods”). Indeed, the FAM50A–FAM50B gene pair in MCF7 cell lines was calculated to have 
a potential synergistic effect, whereas the calculation showed no synergistic effect in the U2OS cell line (Bliss 
score: 0.89 in MCF7 and 1.20 in U2OS). Importantly, a recent study focusing on genetic interaction of duplicated 
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genes identified the FAM50A and FAM50B gene pair as the most significant interacting duplicated gene pair in 
the human  genome16, further supporting the inference power of our C-score index. Moreover, the A375 cell line 
was used in that recent study, and it is predicted to display strong synergy based on our C-score plot of FAM50A 
and FAM50B (Fig. 3A).

Although duplicated genes are well recognized for their buffering relationship, there is limited evidence sup-
porting intrinsic buffering among non-duplicated genes. Thus, we sought to experimentally examine a pair of 
non-duplicated genes with a high C-score, so we targeted the POP7–RPP25 pair. These two genes encode protein 
subunits of the ribonuclease P/MRP complex. In the C-score plot of POP7–RPP25 (Fig. 3C), the HT29 cell line 
lies in the top-right region and the U2OS and LN18 cell lines are in the bottom-left region, inferring a likelihood 
for a stronger buffering effect in the HT29 cell line. To validate buffering effects, we suppressed expression of 
POP7 and RPP25 using gene-specific shRNAs in these three cell lines (verified using RT-qPCR, Supplementary 
Fig. S5F). Since expression of RPP25 is too low to be quantified using RT-qPCR, we validated suppression of 
RPP25 using western blot (Supplementary Fig. S6). Consistent with the C-score plots, we observed that dual 
suppression of POP7 and RPP25 corresponded with calculations of strong synergistic effects for the HT29 cell 
line but not for the U2OS or LN18 cell lines (Bliss scores for POP7–RPP25 genetic interactions are 0.931 in 
HT29 and 1.51 in LN18, shown in Fig. 3D; and Bliss score of 1.03 in U2OS is shown in S5D. Experimental repeat 
shown in Supplementary Fig. S5E). Collectively, the results suggest that C-score-inferred buffering gene pairs 
can be non-duplicated functional analogs in the same protein complex or duplicated genes of the same family.

Tissue specificity of CEBU. One key feature of intrinsic buffering is cross-cell variation in the expression 
of buffering genes (G2s) in conjunction with cell-specific dependency of the buffered genes (G1s) (Fig. 1). We 
hypothesized that the source of this cross-cell variation in G2 expression is embedded in the distinct transcrip-
tional programs of different tissues. Therefore, we examined if the expression of high C-score G1s and G2s is 
tissue-specific. We calculated a tissue specificity index, τ42, for each gene to establish if it displays low (low τ, 
broadly expressed across tissues) or high tissue specificity (high τ, only expressed in one or a few specific tissues). 
As shown in Fig. 4A, G2s generally presented higher tissue specificity compared to G1s (significant with t-test, 
p < 2.2e−16) and compared to the control generated by randomly shuffling G2s across cell lines (Supplementary 
Fig. S7A). Together, these results indicate that G1s are generally expressed in the majority of cell types, whereas 
expression of G2s is more tissue-specific.

The pronounced tissue-specificity of G2 expression supports the cell-specific buffering concept proposed 
by CEBU and may be extended to tissue-specific intrinsic buffering. To further explore tissue distribution of 
the CEBU concept, we generated normalized C-score plots for all high C-score gene pairs whereby the G1 
dependency scores across all cell lines were quantile-normalized to be between − 1 and 0 and the G2 expression 
values were normalized to be between 0 and 1 (Fig. 4B). We plotted these values against each other and then 
divided the resulting plot into nine equal regions by radiating lines out from zero (R1 to R9, Fig. 4B). As per 
the examples suggest in Fig. 3A,C, we hypothesized that there would be specific tissue types enriched in the 
regions R1–R4, which we speculated to display stronger CEBU-mediated buffering capacity. Similarly, there 
would be enrichment of specific tissue types in regions R6–R9, which we speculated to infer lower buffering 
capacity. Accordingly, considering a total of 29 tissue/cell types, we calculated the proportion of each tissue/cell 
type in each region of the plot in Fig. 4B, as well as the percentage of CEBU-enriched gene pairs for each tissue/
cell type (see “Methods”). For each plot region, we indeed observed specific enrichment in one to three tissue/
cell types presented a high percentage of CEBU-enriched gene pairs (Fig. 4C and Supplementary Fig. S7B). For 
example, for region R1, 98.0% of the CEBU-enriched gene pairs are highly expressed in cells derived from bone 
tissue (Fig. 4C), whereas region R9 encompasses a high percentage of strongly-expressing CEBU-enriched gene 
pairs in blood cells (lymphoma: 13.9%, leukemia: 10.6%, and multiple myeloma: 9.2% Fig. 4C). We also noted 
a few reoccurring tissue/cell types across regions speculated to infer high buffering capacity (central nervous 
system in R2, R3, and R4) or in low buffering regions (leukemia in R7, R8, and R9; lymphoma in R8 and R9) 
(Fig. 4C), indicating that particular tissue/cell types are with specific distributions given a CEBU setting. These 
results strengthen that CEBU may be capable of reflecting tissue-specific intrinsic buffering, and that whereas 
buffered G1s are generally expressed across tissue types, the buffering G2s are expressed in specific tissue/cell 
types, potentially contributing to tissue-specific functions.

Harnessing C‑score to calculate the buffering capacity of CEBU. As suggested by our experimental 
results in Fig. 3, cell lines located in the upper right of a C-score plot are more sensitive to dual gene suppression, 
indicating a possibility of higher buffering capacity from G2s. Adding to this notion, specific tissues tend to be 
enriched at the upper right of the C-score plot (Fig. 4), prompting investigation on cell/tissue-specific buffering 
capacity. To quantify G2 buffering capacities in various cells or tissues, we calculated buffering capacities as the 
relative G2 expression (compared to that of all other cell lines) of the cell line of interest adjusted by the C-score 
of the gene pair (Fig. 5A and “Methods”). We hypothesized that the C-score-derived buffering capacities can be 
an indirect inference of functional buffering and genetic interaction. Hence, we sought to validate these C-score-
derived buffering capacities between G1 and G2 using experimental results from four independent studies in 
human cells (Supplementary Table S3)19,32,43,44. The four studies are described as follows: Rosenbluh et al. inves-
tigated the genetic interaction map of beta-catenin-active and beta-catenin-inactive cancers with combinatorial 
CRISPR screening in four cancer cell  lines43. Shen et al. examined 73 gene pairs in combination (141,912 interac-
tions) in three different cell  lines32. With a more robust CRISPR screening approach, Najm et al. performed pair-
wise combinations of 158 genes knockout in six cancer cell  lines44. Focusing on metabolic genes, Zhao et al. did 
a combinatorial CRISPR screening in two cell  lines19. Using the receiver operating characteristic (ROC) curve 
to assess the performance of buffering capacity predictions, we observed that the resulting area under curve 



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2974  | https://doi.org/10.1038/s41598-022-06813-4

www.nature.com/scientificreports/

(AUC) is significantly larger than random (Mann–Whitney U test with false discovery rate, FDR < 0.1, Fig. 5B). 
Furthermore, predictive performance increased for higher C-score cutoffs, as indicated by their increasing AUC 
(Fig. 5B). Moreover, the buffering capacity is quantitatively correlated with the strength of genetic interaction. 
We observed a negative correlation between C-score-derived buffering capacities and experimentally validated 
genetic interactions (C-score cutoff = 0.25, correlation = − 0.231, p-value = 0.034, FDR = 0.081, Supplementary 
Fig. S8A), and this correlation is stronger for higher C-score cutoffs (Supplementary Fig. S8B). Even though 
this correlation coefficient of − 0.231 is not strong (although it is statistically significant), the intrinsic vari-
ability associated with collating experimental results from four independent studies must be considered a con-
tributory factor to weakening that  correlation19,32,43,44. Moreover, predictions of genetic interactions based on 
CEBU buffering capacity are robust even when different thresholds for calculating buffering capacity are applied 
(“Methods” and Supplementary Fig. S8C). Accordingly, CEBU buffering capacity may be used to infer genetic 
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Figure 4.  Tissue specificity of CEBU. (A) Tissue specificity (τ) of G1 and G2 pairs. τ was calculated for G1 and 
G2 from high C-score gene pairs. Statistical significance was assessed by paired-t test. (B) Density plot showing 
overlay of 100,000 randomly selected high C-score gene pairs. D.S. (G1s) and expression (G2s) were normalized 
to be between − 1 and 0 or 0 and 1, respectively. Each dot represents a cell line based on its normalized D.S. 
for G1 and normalized expression for G2. Color gradient indicates low to high density as blue to dark red, 
respectively. The normalized C-score plot was divided equally into nine regions (R1–R9) by radiating lines out 
from zero. (C) Tissue/cell-type specificity of each region (R1–R9) of the normalized C-score plot. The heatmap 
represent the relative percentage of statistically enriched gene pairs for the corresponding tissue/cell types. The 
heatmap is created by the Conditional Formatting function of Excel.
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interactions in human cells. Since CEBU may be reflective of tissue-specific intrinsic buffering (Fig. 4), we also 
quantified buffering capacity in various tissue/cell types. We calculated the average buffering capacity for each 
tissue/cell type based on high C-score gene pairs (Fig. 5C). In line with our enrichment analysis presented in 
Fig. 4, the top three most buffered tissues are the central nervous system, bone and the peripheral nervous sys-
tem. In contrast, blood cells—including multiple myeloma, lymphoma, and leukemia cell lines—exhibited the 
lowest buffering capacities.

CEBU‑mediated buffering capacity is indicative of cancer aggressiveness. Inspired by the proto-
oncogenes we identified according to C-scores (Fig. 2E), we wondered if cancers in various tissues may take 
advantage of the buffering capacities endowed by the CEBU mechanism for robust proliferation. In other words, 
would higher CEBU-mediated buffering capacity render cancers more robust and aggressive, thereby result-
ing in a poorer prognosis? To test this hypothesis, we established a “ground-truth” of expression-based cancer 
patient prognosis by analyzing patient gene expression and survival data for all 30 available cancer types from 
The Cancer Genome Atlas (TCGA)45. Here, we assessed differential patient survival against gene expression 
using Cox regression and controlling for clinical characteristics including age, sex, pathological stage, clinical 
stage, and tumor grade, followed by multiple testing correction (FDR < 0.1). Then, we examined the performance 
of CEBU-mediated buffering capacity in terms of predicting the ground-truth dataset. As an example, in Fig. 6A 
we present potential buffering to NAMPT of the  NAD+ salvage pathway, where cancers may be addicted to 
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Figure 5.  C-score-derived tissue-specific buffering capacity. (A) Illustration showing how cell-specific buffering 
capacities were derived from C-scores. Buffering capacity was calculated based on: (1) the regression line of the 
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as ROC curves for predicting genetic interactions using cell-specific buffering capacity. Prediction sets consist of 
84 data-points (37 unique genetically interacting gene pairs) across 8 cell lines with a C-score cut-off of 0.25. (C) 
Mean buffering capacity for each tissue type (lower panel) and the corresponding proportion of enriched gene 
pairs for each region (upper panel).
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this  pathway46. We discovered that the NAMPT-CALD1 gene pair, comprising the NAMPT dependency score 
and CALD1 gene expression, demonstrate a high C-score of 0.446, and its CEBU-mediated buffering capacity 
is high in CNS but low in blood cells. When we stratified patients based on CALD1 expression, we observed a 
considerable difference in survival for patients suffering lower grade glioma (LGG—a cancer of the CNS, see 
Supplementary Table S4 for cross-referencing between cell lines and TCGA cancers and for the full names of 
cancer abbreviations), but not for patients with acute myeloid leukemia (LAML—a cancer of the blood, Fig. 6B 
left panel for LGG and right panel for LAML). Mean CEBU-mediated buffering capacity for the NAMPT:CALD1 
gene pair is 1.47 in the CNS (i.e. tissue/cell types displaying strong buffering capacity), but only − 0.88 in leu-
kemic blood cells (i.e. exhibiting weak buffering capacity) (Fig. 6A). Thus, based on our ground-truth dataset, 
the buffering capacity of the NAMPT and CALD1 gene pair in different tissue/cell types can be used to predict 
patient survival for specific cancer types.

We systematically assessed how buffering capacity from C-score-identified gene pairs could help predict 
cancer patient survival for all 30 TCGA cancer types. We found that for 15 of those cancers, at least 1% of 
genes across the genome can predict patient survival (with statistical significance assessed by Mann–Whitney 
U test), and for 7 of these 15 cancer types, the performance of CEBU-mediated buffering capacity for at least 
one C-score cutoff was significantly better than random (AUC > 0.5, FDR < 0.1) (Fig. 6C). In general, buffering 
capacity-based predictions performed better for higher C-score cutoffs. Taken together, our results show that the 
CEBU-mediated buffering capacity derived from our C-score index can be indicative of cancer aggressiveness, 
as illustrated by patient survival.

Discussion
In multicellular organisms, different cells and tissues conduct various functions via specialized cellular structures 
and/or according to specific states (e.g., signaling and/or metabolic states) by regulating cell- and tissue-specific 
gene expression. Our study proposes that this cell- and tissue-specific gene expression not only contributes 
directly to tissue-specific functions, but also allows buffering for functional enhancement. This type of functional 
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Figure 6.  Harnessing cell-specific high C-score gene pairs for cancer patient prognosis. (A) C-score plot of 
NAMPT dependency score and CALD1 gene expression (C-score = 0.447). Yellow circles represent central 
nervous system (CNS) cell lines and blue circles denote leukemia cell lines. (B) Kaplan–Meier overall survival 
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cancer patients. Patients were stratified by high (> 75%) or low (< 25%) expression of CALD1, and p-values 
were calculated using Cox regression controlling for age, sex, pathological staging, clinical staging, and tumor 
grade, and corrected for multiple testing (FDR < 0.1). (C) AUC of ROC curves based on C-score gene pair-based 
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buffering, which we have termed cell-specific expression buffering (CEBU), suggests essential functions of a gene 
can be buffered by increased expression of another gene. Accordingly, essentiality of broadly expressed genes, 
such as housekeeping genes, are coupled with increased expression of another gene, potentially maintaining 
housekeeping functions in specific tissues. Furthermore, the CEBU relationship appears to be especially preva-
lent in tissues of low regenerative capacity (e.g., bone and neuronal tissues) and it can stratify cancer patient 
survival, inferring tumor aggressiveness. Although functional buffering has long been known as critical to 
biological robustness, the mechanisms underlying functional buffering remain largely  unknown3. The proposed 
CEBU concept represents a possible buffering mechanism in multicellular organisms that is critical for tissue 
homeostasis and cancer robustness.

One key feature of CEBU is the distinct patterns of expression and dependency (essentiality) between the buff-
ered genes (G1s) compared to buffering genes (G2). In general, G1s tend to be broadly expressed with stronger 
dependency, whereas expression of G2s is more tissue-specific and less essential (Fig. 4A and Supplementary 
Fig. S2C). Generally, the essentiality of genes is correlated with their expression level and tissue  specificity47–49. 
Housekeeping genes that are broadly expressed in most cells exhibit stronger essentiality. In contrast, genes 
expressed in specific cell types are considered to have weaker essentiality. Here, cooperation of housekeeping 
genes and tissue-specific genes of similar functions may be associated by the proposed CEBU mechanism, ena-
bling regulation of cellular functions via functional buffering across tissue/cell types. Specifically, house-keeping 
functions like metabolism, transcription, translation, and cell-cycle-related processes are highly enriched among 
high C-score gene pairs (Fig. 2E), likely inferring that house-keeping functions can be robustly maintained via 
CEBU-mediated functional buffering.

As a cell- and tissue-specific buffering mechanism, we postulate that CEBU may endow buffering capacity 
on specific cells/tissues in order to maintain their functions and survival, such that CEBU may compensate for 
the lack of regenerative capacity in certain tissues. Our analysis shows neuronal and bone tissues to have the 
strongest CEBU-mediated buffering capacities (Fig. 4C, 5C), both of which exhibit relatively low regenerative 
 capacities50–52. In contrast, human blood cells, which are fully regenerated in 4 to 8  weeks53, are predicted to 
have the weakest buffering capacities (Fig. 5C). Therefore, it is tempting to speculate that cell types of weaker 
regenerative capacities, such as neurons, need to sustain robust cellular functions through buffering. In contrast, 
highly regenerative tissues are frequently replaced, so they have less need for functional buffering.

Unlike the needs-based buffering mechanism, whereby the buffering gene is only activated when its buffered 
function is compromised, the CEBU-mediated intrinsic buffering proposed herein maintains a constitutively 
active state with cell- and tissue-specificity. Since the buffering gene (G2) is continuously expressed, there is no 
need for a control system to monitor if a function has been compromised and to activate the expression of the 
buffering genes. As a result, no response time is needed for intrinsic buffering, unlike for needs-based buffering. 
Intrinsic buffering thus poses an advantage in its capability to buffer housekeeping genes, which is performed 
constitutively, differing from the needs-based buffering that is mostly characterized as stress-responsive54. 
Accordingly, the proposed intrinsic CEBU mechanism may enable or adjust buffering capacity by regulating 
the expression of buffering genes via cell- or tissue-specific epigenetic regulators. Overall then, CEBU describes 
a simple, efficient and potentially versatile mechanism for functional buffering in humans and potentially other 
multicellular organisms.

We observed an enrichment of duplicated genes among high C-score gene pairs, supporting the notion that 
duplicated genes contribute to the context-dependent essentiality of their paralogous  genes10–12. In addition to 
duplicated genes, our C-score index identified a high percentage of non-duplicated gene pairs with high buffering 
capacities (Fig. 2B), and these non-duplicated gene pairs tend to belong to the same pathways and/or protein 
complexes (Fig. 2C,D). Therefore, it is possible that many of these G1s and G2s represent non-orthologous func-
tional analogs. As support, we identified the POP7 and RPP25 gene pair, both are subunits of the ribonuclease 
P/MRP complex, as potential buffering pairs (Fig. 3C,D, Supplementary Figs. S5D–F, S6). One simple scenario 
could be that G1 and G2 physically interact with each other to form a protein complex, wherein G1’s function can 
be structurally substituted by G2. More sophisticated and indirect functional buffering can also occur between 
G1s and G2s given the complex interactions among biological  functions55. We expect that CEBU exerts buffering 
effects through additional types of molecular interactions, which remain to be tested experimentally.

Experimental validations of functional buffering remain to be a challenging task. Buffering of one gene may 
be achieved through multiple mechanisms from multiple genes, leading to difficulties in selecting test targets 
and types of experiments. Moreover, functional buffering may be different across cell lines, which is in line with 
the proposed CEBU mechanism. Using CEBU as a base provides an approach to select for target gene pairs and 
cell lines and can test for buffering via expression. We have demonstrated the validity of using the C-score plot 
to identify functional buffering in two pairs of genes, FAM50A–FAM50B and POP7–RPP25 through shRNA-
silencing (Fig. 3, Supplementary Figs. S5, S6). However, the type of experiment remains to be a technical chal-
lenge. shRNA-silencing may not fully recapitulate the screening results from CRISPR. We noticed a discrepancy 
between DepMap screening data (average D.S. of FAM50B in A549 is 0.256) and our own validation results 
regarding the essentiality of FAM50B in A549 (Supplementary Fig. S5C). This discrepancy could be due to 
the incompleteness of shRNA-mediated gene silencing, leaving a low expression level of targeted endogenous 
genes. This low level of expression may trigger secondary responses that leads to different phenotypic outcomes. 
Nevertheless, our results showed potential synergistic effects upon dual suppression in predicted sensitive cells 
lines as oppose to single knockdowns (Fig. 3, Supplementary Figs. S5, S6), though other experimental methods, 
such as CRISPR, may provide additional validation.

C-score-derived cell-specific buffering capacities comply well with experimentally validated genetic interac-
tions in human cells (Fig. 5B and Supplementary Fig. S8), indicating that CEBU may potentially represent a 
critical mechanism for synthetic lethality in human cells. However, accurate inference of synthetic lethality is 
difficult as all computational predictions inevitably generate false positives. Despite a stringent selection with 
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low p-values and controls for multiple testing (Fig. 1C), it remains possible that some high C-score gene pairs 
are resultant of random chance. Validation of synthetic lethality interaction remains a daunting challenge in 
practice. To systematically characterize genetic interactions in organisms with complex genomes due to large 
numbers of possible gene pairs, i.e. ~ 200 million gene pairs in humans. Another method to infer authenticity of 
synthetic lethality is of recurring computational predictions across studies. However, predictions emanating from 
different studies exhibit little  overlap30, evidencing the marked complexity of synthetic lethality in humans. It is 
possible that each of the current predictions focuses on one or a few characteristics of synthetic lethality such that 
assembling them does not reveal the same predictions. In this sense, the CEBU mechanism proposed here can 
contribute both experimentally and computationally to a better characterization of human genetic interactions.

Using G2 expression of a high C-score gene pair to stratify cancer patients, we observed a significant differ-
ence in cancer patient survival, indicating that stronger CEBU-mediated buffering capacity could be indicative 
of cancer aggressiveness in patients (see Fig. 6A,B for an example). Indeed, buffering capacity helped predict 
cancer patient survival in 7 of 15 cancer types and, generally, the performance was better for higher C-score 
cutoffs (Fig. 6C). This result supports our hypothesis that stronger buffering capacity via higher G2 expression 
contributes to cancer robustness in terms of proliferation and drug resistance. Prognosis in cancer patients can 
be affected by multiple factors, and some of them are unmeasurable and not accounted for in current study. 
However, given the complexity of cancers, it is surprising to see the results possibly suggests a general predictiv-
ity of cancer prognosis by individual high C-score gene pairs. We suspect that some cancer cells may adopt this 
cell- and tissue-specific buffering mechanism to enhance their robustness in proliferation and stress responses 
by targeting the expression of buffering genes. Clinically, the expression of such buffering genes could represent 
a unique feature for evaluating cancer progression when applied alongside other currently used clinical charac-
teristics. Finally, experimental validation of C-score-predicted genetic interactions will help identify potential 
drug targets for tailored combination therapy against specific cancers.

Methods
Retrieval and processing of dependency score and gene expression data. Data on dependency 
scores and CCLE (Cancer Cell Line Encyclopedia) gene expression were downloaded from the DepMap data-
base (DepMap Public 19Q4)14,15. Dependency scores modeled from the CERES computational pipeline based on 
a genome-wide CRISPR loss-of-function screening were selected. CCLE expression data was quantified as  log2 
TPM (Transcripts Per Million) using RSEM (RNA-seq by Expectation Maximization) with a pseudo-count of 
1 in the GTEx pipeline (https:// gtexp ortal. org/ home/ docum entat ionPa ge). Only uniquely mapped reads in the 
RNA-seq data were used in the GTEx pipeline. Integrating and cross-referencing of the dependency score and 
gene expression datasets yielded 18,239 genes and 684 cell lines. Genes lacking dependency scores for any one of 
the 684 cell lines were discarded from our analyses.

C‑score calculation. Our C-score index integrates the dependency scores of buffered genes (G1) and the 
gene expression of buffering genes (G2) to determine the buffering relationship between gene pairs. Genes with 
mean dependency scores > 0 or mean gene expression < 0.5  log2 TPM were discarded, yielding 9196 G1s and 
13,577 G2s. The C-score integrates the correlation (ρ) and slope between the dependency score of gene G1 and 
the gene expression of gene G2, defined as:

where ρ denotes the Pearson correlation coefficient and slopemin denotes the minimum slope of all considered 
gene pairs that present a statistically significant positive correlation, which is 0.00748 in this analysis. The nor-
malized slope can be weighted by cell- and tissue-type specific b. In this analysis, b is set as 1 for a pan-cell or 
pan-cancer analysis.

Construction of C‑score null distribution. As a control, expression of each gene was randomly shuffled 
amongst the 684 cell lines. The shuffled expression values were used in place of true expression in the C-score 
calculation to create a randomly shuffled null distribution. Five shuffled expression datasets were generated to 
calculate five null distributions, one of which is shown.

Duplicated gene assignment. Information on gene identity was obtained from ENSEMBL (release 98, 
reference genome GRCh38.p13)56. Two genes are considered duplicated genes if they have diverged from the 
same duplication event.

Enrichment analysis for buffering gene pairs. For enrichment analysis of duplicated gene pairs, we 
conducted hypergeometric test. Given a specified C-score cutoff, the test assesses statistical significance by cal-
culating the proportion of duplicated gene pairs higher than cutoff among all duplicated gene pairs, and then 
compare to the proportions of all high C-score pairs higher than cutoff among all high C-score pairs.

For enrichment analysis of same function or signaling pathways, we adopted a previously described 
 methodology57. Briefly, GO and KEGG gene sets were downloaded from the Molecular Signatures Database 
(https:// www. gsea- msigdb. org/ gsea/ msigdb/). The number of total possible gene pairs is 9196 (G1) × 13,577 
(G2). The condition of G1 and G2 being the same gene was excluded as a potential buffering gene pair under all 
C-score cutoffs. Enrichment was calculated as:

C-score = ρG1,G2

(

1+ b
slopemin

slopeG1,G2

)

,

https://gtexportal.org/home/documentationPage
https://www.gsea-msigdb.org/gsea/msigdb/
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where eac represents the number of gene pairs that are both annotated and with buffering capability, ea is the 
number of annotated gene pairs, ec is the number of buffering gene pairs, and et is the total number of gene pairs.

Protein–protein interaction (PPI) data was downloaded from the STRING database (version 11)39. Only 
high-confidence interactions (confidence > 0.7) in human were considered. The STRING database determines 
confidence by approximating the probability that a link exists between two enzymes in the KEGG database. Data 
on protein core complexes were downloaded from CORUM (http:// mips. helmh oltz- muenc hen. de/ corum). The 
enrichment calculation is the same as for GO and KEGG, except that eac represents the number of gene pairs 
that have PPI or are in the same complex and have buffering capability, and ea is the number of gene pairs that 
have PPI or are in the same complex.

Construction of our human buffering gene network. The directional human buffering gene network 
was constructed from gene pairs exhibiting high C-scores (> 0.25). For illustration, isolated subnetworks are not 
shown. We visualized the network using Cytoscape (https:// cytos cape. org/) and MATLAB. GO enrichment was 
conducted on each cluster using g:Profiler58. To identify functionally-related gene clusters in the human buffer-
ing gene network, the genes with enriched functions were inputted into the SAFE  algorithm59. The neighbor 
radius was determined by regional enrichment of sub-networks for each GO-enriched function.

Experimental validation. A549, HT29, LN18, MCF7, and U2OS cell lines were selected based on their 
distribution across the C-score plots (Fig. 3A,C), indicating different buffering capacities. All cell lines were pur-
chased from ATCC and they were cultured in Dulbecco’s Modified Eagle Media (LN18), Ham’s F-12K Medium 
(A549), or RPMI 1640 media (HT29, MCF7, and U2OS) supplemented with 5% fetal bovine, serum, 100 U/
mL penicillin, 100  μg/mL streptomycin, and 250  ng/mL fungizone (Gemini Bio-Products). Cell growth was 
monitored by time-lapse imaging using Incucyte Zoom, taking images every 2  h for 2–4  days. To suppress 
FAM50A, FAM50B, POP7 and RPP25 expression, lentivirus-based shRNAs were delivered individually or in 
combination. The gene-specific shRNA sequences are: FAM50A-CCA ACA TTG ACA AGA AGT TCT and GAG 
CTG GTA CGA GAA GAA CAA; FAM50B-CAC CTT CTA CGA CTT CAT CAT; POP7-CTT CAG GGT CAC ACC 
CAA GTA and CGG AGA CCC AAT GAC ATT TAT; and RPP25-CCA GCG TCC AAG AGG AGC CTA. To ensure 
better knockdown of gene expression, shRNAs were delivered twice (7 days and 4 days before seeding). Equal 
numbers of cells were seeded for cell growth measurements by time-lapse imaging using Incucyte Zoom. The 
lentivirus-based shRNAs were purchased from the RNAi core of Academia Sinica. The growth rate under each 
condition was measured by fitting cell confluence to an exponential growth curve using the Curve Fitting Tool-
box in MATLAB.

Bliss independence model. Cytotoxic synergy was measured using the Bliss independent  model41. The 
Bliss model is presented as a ratio of the expected additive effect to the observed combinatorial effect:

where E is the effect of drug A, B, or a combination of A and B. A ratio of lower than one indicates potential 
synergistic effect, while larger than one indicates no synergistic effect. Effect was measured by the relative cell 
growth, based on the fold-change of confluency between 0 and final hours upon suppression of FAM50A and 
FAM50B or suppression of POP7 and RPP25 in all cell lines.

Cell‑specific buffering capacity and comparison to experimental genetic interactions. Cell-
specific buffering capacity was derived from the C-score of a given gene pair and gene expression of the buffering 
gene (G2) in the cell line of interest following the equation:

where sd = standard deviation. The 25th percentile cutoff for expression is determined empirically, although dif-
ferent percentile cutoffs do not qualitatively affect the measurements of buffering capacities (Fig. 5A).

Combinatorial CRISPR screen-derived genetic interaction scores were pooled from four literature 
 sources19,32,43,44 (Supplementary Table S3). We only considered cell lines that appear in DepMap CERES 19Q4. 
There were two C-scores for each gene-pair of the experimental dataset (either gene could be a G1), and we 
assigned the higher C-score for that gene-pair. Overall, we curated 10,222 genetic interaction scores in various 
cell lines from the literature, and 1986 out of 10,222 genetic interaction scores had a C-score > 0.1. To evaluate 
the validity of buffering capacity, we generated a ground-truth dataset by assigning gene-pairs with a positive 
genetic interaction as false for buffering and a negative genetic interaction as true for buffering. The qualitative 
performance of buffering capacity against this ground-truth dataset was assessed by ROC curve. Additionally, we 

log

eac
ea
ec
et

,

Ebliss =
EA + EB − EA × EB

EAB
,

buffering capacity =
cell line expression− 25th percentile of all expression(G2)

slopemod

,

where slopemod = C-score×
sd(G2 expression

)

sd(G1 dependency
)
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correlated the buffering capacity directly via a ground-truth genetic interaction score for quantitative evaluation. 
We calculated the false discovery rate (FDR) using the Benjamini–Hochberg procedure with a threshold < 0.1.

Tissue specificity. To calculate tissue-specificity, cell lines were grouped by their respective tissues, and 
expression of genes in cell lines of the same tissue were averaged. Tissue specificity was calculated as tau (τ)42, 
where τ is defined as:

with N denoting the number of tissues, xi denoting the expression of a gene, and xmax denoting the highest gene 
expression across all tissues. Note, expression values were log-transformed, so  log2 TPM < 1 was considered as 
0 in tissue specificity  calculations60.

Cancer‑specific survival prediction according to C‑score gene pairs. Gene expression and survival 
data from The Cancer Genome Atlas (TCGA)45 was retrieved from  Xena61. The DepMap cancer cell lines were 
mapped to TCGA cancers based on the annotation in Supplementary Table  S4 (cancers that do not have a 
matched cancer type in CERES 19Q4 were not analyzed). To systematically analyze cancer prognosis, we first 
performed a multiple test correction on the p-values from Cox regression controlling for age, sex, pathological 
stage, clinical stage and tumor grade. We calculated the FDR using the Benjamini–Hochberg procedure with 
a threshold < 0.1. The ground-truth table for each cancer was constructed using the adjusted p-value. AUC of 
ROC curves were used to assess the performance of survival based on buffering capacity. AUCs and ROCs were 
generated using python and R. The statistical significance of AUC was assessed by Mann–Whitney U  test62 
to evaluate if gene expression with a positive Cox coefficient (poorer prognosis) reflected significantly higher 
buffering capacities in each cancer with different C-score cut-offs. We excluded the results where there are fewer 
than 50 positive genes when calculating ROCs. The p-values of the Mann–Whitney U test were adjusted using 
the Benjamini–Hochberg procedure with a threshold < 0.1.

Data availability
All C-score gene pairs (https:// figsh are. com/s/ 6f892 9c654 3687a 6062f) and programming code (https:// figsh are. 
com/s/ b7784 89bb2 f6fc3 b0069) are available in the FigShare repository.
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