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Proposing a novel deep network 
for detecting COVID‑19 based 
on chest images
Maryam Dialameh1*, Ali Hamzeh1, Hossein Rahmani2, Amir Reza Radmard3 & 
Safoura Dialameh4

The rapid outbreak of coronavirus threatens humans’ life all around the world. Due to the insufficient 
diagnostic infrastructures, developing an accurate, efficient, inexpensive, and quick diagnostic 
tool is of great importance. To date, researchers have proposed several detection models based on 
chest imaging analysis, primarily based on deep neural networks; however, none of which could 
achieve a reliable and highly sensitive performance yet. Therefore, the nature of this study is primary 
epidemiological research that aims to overcome the limitations mentioned above by proposing a 
large‑scale publicly available dataset of chest computed tomography scan (CT‑scan) images consisting 
of more than 13k samples. Secondly, we propose a more sensitive deep neural networks model for 
CT‑scan images of the lungs, providing a pixel‑wise attention layer on top of the high‑level features 
extracted from the network. Moreover, the proposed model is extended through a transfer learning 
approach for being applicable in the case of chest X‑Ray (CXR) images. The proposed model and 
its extension have been trained and evaluated through several experiments. The inclusion criteria 
were patients with suspected PE and positive real‑time reverse‑transcription polymerase chain 
reaction (RT‑PCR) for SARS‑CoV‑2. The exclusion criteria were negative or inconclusive RT‑PCR and 
other chest CT indications. Our model achieves an AUC score of 0.886, significantly better than its 
closest competitor, whose AUC is 0.843. Moreover, the obtained results on another commonly‑used 
benchmark show an AUC of 0.899, outperforming related models. Additionally, the sensitivity of 
our model is 0.858, while that of its closest competitor is 0.81, explaining the efficiency of pixel‑wise 
attention strategy in detecting coronavirus. Our promising results and the efficiency of the models 
imply that the proposed models can be considered reliable tools for assisting doctors in detecting 
coronavirus.

The early and accurate diagnosis of coronavirus disease of 2019 (COVID-19) plays a vital role in disease treatment 
and isolation. Current clinical methods such as nose swab PCR-test1 are insufficient in terms of both availability 
and accuracy, e.g., high rate of false-positive and low rate of  sensitivity2,3. Apart from that, such methods are 
costly in terms of safety, human resources, and financial  burdens4. Therefore, governments and hospitals cannot 
effectively tackle such a devastating pandemic, and novel screening methods should be adopted.

Chest radiography, such as chest X-ray (CXR) and CT computed tomography (CT), is another possibility to 
facilitate the process of screening COVID-195; however, direct examination of such images by experts/specialists 
is tedious, time-consuming3, and possibly not accurate. In other words, it becomes tedious because, during the 
pandemic waves, hospitals are often faced with a massive number of patients and, hence, the amount of analysis/
diagnosis that has to be done by experts/specialists will drastically  increase6. Moreover, the early detection of 
COVID-19 by only visually monitoring chest imaging data would be almost inaccurate, as human visual systems 
cannot easily detect the patterns of lung infectious during the first days of the disease (supported by informal 
reported observations). Therefore, developing an automatic and precise image processing tool seems promising 
to address the problems mentioned above.

Due to the outstanding achievements of deep learning methods in a variety of  domains7–10, researchers have 
proposed several interesting deep learning approaches for automatically classifying chest images as positive/
negative COVID-1911–14. In brief,  COVNET15 is one of the firstly proposed deep models for screening COVID-19 
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from the CT-images. COVNET consumes several lungs’ images at the same time and feeds each of which into 
a separated backend of RESNET-5016 whose weights are shared between its backends. The main limitation of 
COVNET, however, is a high level of computation with a low level of sensitivity. Hybrid-3D17 is another deep 
screening network that builds the 3D shape of lungs and then feeds both 2D and 3D inputs into two Densnet 
 backbones18 and combines their predictions. However, its prediction is dependent on the accuracy of the esti-
mated 3D shape of the lungs. Apart from that, the 3D estimation imposes a heavy computation, resulting in a 
lower screening speed. Unet++19, on the other hand, is computationally better than others. However, it does not 
satisfy the sensitivity requirements, i.e., the chance of false-negative is high. Table 3 summarizes the performances 
of these models on CT-COV19, which is a public benchmark. Detailed information about datasets and other 
related methods can be explored  in20–24.

One of the main limitations of the current deep learning models is the size of datasets being used for learning 
the models, i.e., the number of publicly available training samples used for optimizing parameters. To the best of 
our knowledge, current models have been trained on small-sized datasets, mostly due to privacy concerns and 
the unavailability of COVID-19 CXR/CT  images25,26. Consequently, it does lead to a lower generalization ability 
of the trained  models27. Age and regional diversities are two other essential  factors28–30, playing a vital role in the 
generalization of the learned models and preventing the models from the danger of overfitting. As elderly people 
are at a higher risk of being infected by the coronavirus, current public datasets of COVID-19 are often biased 
towards older people, resulting in a lower chance of generalization for younger patients. Additionally, people of 
different regional backgrounds are not necessarily common in their lung functioning, respiration abilities, and 
several other breathing  factors31. Hence, if a dataset is built based on the samples provided by one hospital/city, 
the models learned on such datasets would be very likely to become biased toward that specific region. The lack 
of sensitivity in predictions is another critical limitation of the current deep neural models, causing less reliable 
detection. In other words, it is currently very likely to predict a positive sample as a negative, particularly during 
the incubation period of disease when there are no clear patterns of infection in the lungs.

This study aims to overcome the limitations above, resulting in more accurate and reliable deep neural models 
for being a helpful side-tool in screening COVID-19. Accordingly, this study, firstly, builds a publicly available 
CT-scan dataset of COVID-19, consisting of 13k CT-images captured from more than 1000 individuals. The 
images are collected from four regions with entirely different climate conditions. A wide range of age diversi-
ties has also been included, ages varying from 19 to 73. Additionally, images are saved at a high level of quality. 
Overall, the proposed dataset, named CT-COV19, provides a reliable set of CT-scan images for the researchers 
to develop more accurate and general models. Secondly, the present study suggests a novel deep neural model, 
i.e., Deep-CT-Net, trained on the proposed CT-COV19 dataset and provides baseline results. Deep-CT-Net 
benefits from a simple but accurate architecture, enabling the possibility of early screening the infection patterns 
of COVID-19 from the CT-images of lungs. More precisely, the proposed model takes advantage of pyramidal 
attention  layers32, providing pixel-wise attention on top of the extracted high-level features and, consequently, 
enabling the whole model to accurately detect COVID-19 even when there are less symptoms of the disease in 
the lungs. The pixel-wise attention empowers the final model to detect more positive cases whose primary swabs 
are negative. Furthermore, having no heavy pre-processing steps, such as lungs  segmentation17,33, is another 
virtue of the proposed network, enabling the model to detect COVID-19 in a lower computational time. This 
property is particularly desirable during the waves of COVID-19, as the detection process becomes much faster 
than those models containing the pre-processing steps.

Extensive experiments on several benchmarks of COVID-19 are conducted, and the results are compared with 
several state-of-the-art  methods15,17,19,34–37. Moreover, a transfer-learning version of Deep-CT-Net, i.e., Deep-
CXR-Net, is further developed to detect COVID-19 based on CXR images. The choice of transfer learning enables 
the network to learn from unlabeled CXR images and, therefore, adjusts the weights by a small set of labelled CXR 
images. Additionally, the results of Deep-CXR-Net are compared with several related methods, e.g.,  Refs11,13,38.

Results
This section provides a detailed explanation of CT-COV19 and reports the performance results of proposed 
models over several popular benchmarks, including CT-COV19. The performance criteria are described in 
Ref.39. Additionally, Li’s  procedure40 is applied as a post-secondary statistical test over the results in terms AUCs.

CT‑COV19: a public CT‑scan dataset for COVID‑19. Approving by the institutional review board 
(IRB), this section describes the details of our publicly available CT-scan dataset named CT-COV19 for screen-
ing COVID-19. CT-COV19 consists of 13k CT-images of the lungs and is obtained by a non-contrast chest CT, 
in which the reconstructions of the volume are set at 0.3 to 1 mm slice thickness. The images are taken from 
more than 1000 randomly selected male and female individuals, i.e., Male : 59%, Female : 41% . Among the 
patients, 500 cases were infected with COVID-19. An RT-PCR test was performed to confirm their infections 
with COVID-19. Moreover, the age of individuals ranges from 19 to 73. Therefore, CT-COV19 is diverse in 
terms of both gender and age groups. The regional diversity has also been included in CT-COV19, as it has been 
collected from four different regions with diverse climates. It is worthwhile noting that the collected data are 
anonymous, and privacy concerns are satisfied.

One of the main advantages of CT-COV19 is the number of COVID-19 samples, which is the most con-
siderable size among the publicly available datasets of COVID-19 by far. Another aspect of CT-COV19 is the 
existence of samples from other pneumonia, providing learning algorithms with an opportunity to distinguish 
between infections caused by COVID-19 and other lung diseases. Table 1 provides a brief comparison between 
CT-COV19 and several other similar datasets, explaining the quantitative superiority of CT-COV19 to others.
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CT-COV19 consists of CT-scan images from three different labels, including COVID-19, other pneumonia, 
and normal with the ratios of 61.5%, 5.8%, 32.7% , respectively. Although the number of samples belonging to 
the class of other pneumonia is small, one can easily find plenty of such samples via the Internet. In this study, 
we deliberately merge the labels of other pneumonia with all samples of normal class and consider the merged 
set as the normal class. Therefore, CT-COV19 is generally a two classes dataset. This dataset, which now has two 
classes, i.e., COVID and Normal, is further randomly divided into train, validation, and test parts with ratios of 
70%, 10%, and 20%, respectively. Table 2 summarizes this division. The minimum and maximum heights/widths 
of images are respectively 484× 484 and 1024× 1024 . Additionally, the minimum resolution of the images is 
150dpi, and the bit depth is 24. Figure 1 provides several samples of this dataset.

The results of Deep‑CT‑Net. This subsection reports the empirical results of the proposed deep neural 
architecture (Deep-CT-Net), which can classify CT-scan images into two classes: positive-COVID and negative-
COVID. Figure 2 depicts the workflow of Deep-CT-Net.

Deep-CT-Net is assessed through several experiments. In the first experiment, we evaluate the performance 
of Deep-CT-Net on two datasets, i.e., CT-COV19 (proposed in this study) and COVID-CT36, and compare its 
performance against several related deep network  models15,17,19,35. In brief, COVID-CT has a small number of 
samples with a lower image quality compared to CT-COV19. Figure 6 depicts several images of this dataset.

As shown in Tables 3 and 5, and Fig. 4, Deep-CT-Net achieves an area under curves (AUC) of 0.886 and 
0.899 on each dataset. Also, the rates of precision, sensitivity, and F-measure for Deep-CT-Net are respectively 
0.720, 0.858, 0.783 on CT-COV19 and 0.884, 0.905, 0.894 on COVID-CT. The performances of other models 
are summarized as follows:

With CT-COV19, the obtained precision, sensitivity, F-measure, and AUC are respectively equal to: 0.750, 
0.810, 0.779, 0.842 in case of COVNET, and 0.769, 0.75, 0.759, 0.804 in case of DL-system, and 0.808, 0.797, 0.802, 
0.843 in case of Hybrid-3D, and 0.724, 0.746, 0.735, 0.826 in case of Unet++. With COVID-CT, the obtained 
precision, sensitivity, F-measure, and AUC are, respectively, equal to: 0.897, 0.886, 0.892, 0.886 in case of xDNN, 
and 0.97, 0.762, 0.853, 0.824 in case of its Baseline, and 0.817, 0.85, 0.833, N.A., in case of Modified SqueezeNet, 
where N.A. stands for being not available. Moreover, the p-values obtained by Li’s procedure are: 0.05 for Hybrid-
3D, and 0.0376 for the rest. Li’s procedure rejects those hypothesis whose p-values are lower or equal to 0.0376.

The next experiment assesses the generalization ability of Deep-CT-Net. Accordingly, Deep-CT-Net is trained 
on CT-COV19 but tested on COVID-CT  dataset36 without applying any fine-tuning or post-processing step. 
Table 4 reports the obtained results of Deep-CT-Net on COVID-CT dataset and provides a comparison with 
the baseline methods reported in Ref.36. As the table reports, Deep-CT-Net achieves AUC = 0.92 and F-measue 
= 0.801 (Table 5).

The final experiment is conducted to have a better view of the functionality of Deep-CT-Net. Figure 5 depicts 
Class Activation Mapping (CAM)45 for a test sample taken from COVID-19, visualizing the attention regions 
inside the lungs. As shown in this figure, the attention regions detected by our proposed Deep-CT-Net are pre-
cisely related to COVID-19 symptoms, i.e., the highlighted lungs’ regions in red.

The results of Deep‑CXR‑Net. The obtained results of Deep-CXR-Net, which is the CXR extension of 
Deep-CT-Net, and its workflow is depicted in Fig. 3, are reported in this subsection. To have a reliable com-
parison, we randomly divided  ieee802346 to train and test sets with the proportions of 70% and 30%, respec-

Table 1.  A brief comparison between several publicly available datasets for CT images of COVID-19.

Dataset # COVID-images # COVID-patients Availability

Jun et al41 20 N.A. Y

Covid-19-SEG42 100 60 Y

Lung-ct-scan43 15 k 95 Y

COVID-CT36 349 216 Y

SIRM COVID-19  Database44 100 60 Y

CT-COV19 (this study) 8500 500 Y

Table 2.  CT-COV19 is divided into three parts: Train, Test, and Validation. Each row illustrates how many 
samples from each class, i.e., COVID-19, other pneumonia, and normal, are included in each part. Each 
column shows the distribution of classes over the parts.

Data-part COVID-19 Other pneumonia Normal Total

Train 6120 543 3060 9723

Validation 680 60 340 1080

Test 1700 151 851 2702

Total 8500 754 4251 13,505
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tively. Then, we added 100 more CXR images of other pneumonia to the test set. This set of additional CXR 
data helps to evaluate the performance of each method in terms of false-positive rates. Table 6 compares the 
obtained screening results of Deep-CXR-Net to other related  methods11,13,38. As shown in Table 6 and depicted 
in Fig. 7, Deep-CXR-Net achieves an area under the curve (AUC) of 0.9839. Additionally, the corresponding 
precision, sensitivity, and F-measure rates are equal to 0.9872, 0.9824, 0.9848. The obtained precision, sensitiv-
ity, F-measure, and AUC for the other related models are, respectively, equal to: 0.9431, 0.915, 0.924, 0.9207 in 
case of CAAD, and 0.926, 0.916, 0.92, 0.9162 in case of COVID-ResNet, and 0.898, 0.894, 0.896, 0.8892 in case 
of VGG16. Moreover, Fig.  7 compares the obtained receiver operating characteristic (ROC) curves for each 
method. It is important to note that the same experimental settings have been used for other methods. Addition-
ally, Fig. 8 depicts the results of class activation map for a CXR-sample of COVID-19. The dotted areas are those 
regions of the lung that play an essential role in classifying this sample as COVID-19.

Figure 1.  Several different instances of the proposed dataset, i.e., CT-COV19: each column provides several 
examples of each class presented in the dataset.
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Figure 2.  (Deep-CT-Net) The figure depicts a graphical workflow of the proposed Deep-CT-Net for detecting 
COVID-19 based on the CT-image data. More information about the components used in the network is 
provided in Supplementary Figure 1.

Table 3.  Comparing the performance of each model over the proposed CT-COV19 dataset. Each method is 
trained and tested over the CT-COV19, and the results are reported as well.

Method Precision Sensitivity F-measure AUC 

COVNET15 0.750 0.810 0.779 0.842

DL-system35 0.769 0.750 0.759 0.804

Hybrid-3D17 0.808 0.797 0.802 0.843

Unet++19 0.724 0.746 0.735 0.826

Deep-CT-Net (this study) 0.720 0.858 0.783 0.886

Figure 3.  (Deep-CXR-Net) A graphical workflow of Deep-CXR-Net for screening COVID-19 based on the 
CXR data is depicted in the figure. Overall, Deep-CXR-Net consists of two pre-trained parts, extracting extra 
features to be concatenated with the features generated by the second part. The concatenated features are then 
passed through the fully connected layers to predict the label. More information about the components used in 
the network is provided in Supplementary Figure 1.
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Discussion
The experimental results certify the superiority of the proposed models in comparison with similar studies. 
Overall, both Deep-CT-Net and Deep-CXR-Net achieve higher sensitivity rates than the others, i.e., 0.905 for 
Deep-CT-Net and 0.9824 for Deep-CXR-Net. This observation certifies that the pyramid attention layer embed-
ded in Deep-CT-Net can successfully detect a diverse range of infection patterns caused by COVID-19. Addi-
tionally, although the results show lower precision for Deep-CT-Net, its overall score (F-measure) is better, 
enabling the proposed models to be used in clinical diagnostics. Finally, the main implications of this study can 
be summarized as follows:

• the proposed deep learning models have practical implications, and they can be used as an assistant in diag-
nosing coronavirus.

• applying the pyramidal attention layers plays a significant role in detecting coronavirus accurately. Future 
deep neural models can take advantage of this layer, increasing the overall performance of models.

• Deep-CXR-Net offers a transfer learning approach for training deep neural models while less data is available 
for training.

To discuss more in related methods and compare their main ideas,  COVNET15 combines several  ResNets16 
with shared weights along with a series of CT images, in which each ResNet consumes one CT image. Finally, a 
pooling layer aggregates their outputs. Although the weights are shared, the computational time/cost is high in 

Figure 4.  The obtained receiver operating characteristic (ROC) curves over the proposed CT-COV19 dataset. 
The figure plots the ROC curve obtained by Deep-CT-Net and several related models.

Table 4.  An Evaluation of the generalization ability of Deep-CT-Net: the proposed Deep-CT-Net was trained 
on our proposed CT-COV19 dataset and tested on COVID-CT without any fine-tuning. Other models in the 
table have been trained and tested on CT-COV19. The results show the generalization ability of the proposed 
method.

Method F-measure AUC Accuracy

DenseNet-169 0.760 0.901 0.795

ResNet-50 0.746 0.864 0.774

Deep-CT-Net (trained on CT-COV19) 0.801 0.92 0.86

Table 5.  Comparing the performance of Deep-CT-Net against other related models on COVID-CT. All 
models in this table are trained and tested on COVID-CT.

Method Precision Sensitivity F-measure AUC 

xDNN37 0.897 0.886 0.892 0.886

Baseline36 0.970 0.762 0.853 0.824

Modified  SqueezeNet34 0.817 0.850 0.833 N.A.

Deep-CT-Net 0.884 0.905 0.894 0.899
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practice. COVNET reports a sensitivity of 0.81 and an AUC of 0.842 over CT-COV19. Similarly, DL-system35 is 
computationally complex. It uses three main stages: lungs’ segmentation, segment suppression, and prediction, 
consuming high level of computation. Moreover, it uses 3D convolutions, which even need more computational 
power. Another limitation is that the prediction accuracy becomes dependent on the segmentation accuracy, 
causing this model to be not operational in practice. Overall, DL-system reports the lowest accuracy in prediction, 
i.e., 0.75 of sensitivity and 0.804 of AUC over CT-COV19. Hybrid-3D17 works in a similar approach to DL-system. 
It first segments lungs and then applies Densnet-121 for classification. Although its performance is better than 
DL-system, it still suffers from the same limitations of DL-system. Hybrid-3D reports a sensitivity of 0.797 and 
an AUC of 0.843 over CT-COV19.  CAAD11, which is a CXR model, suggests an anomaly detection loss on an 

Figure 5.  Plotting the results of Class Activation Mapping (CAM) for a CT-image instance of COVID-19 (left) 
based on Deep-CT-Net: The CAM image (right) highlights the class-specific discriminative/attention regions. 
The highlighted areas inside of the lungs are the discriminative regions for screening COVID-19.

Figure 6.  Several instances of COVID-CT dataset: The images come with diverse illumination, format, and 
shapes.
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18-layer residual convolutional neural network, enabling the model to increase the probability of positive class in 
prediction. Other CT/CXR models such as Unet++, xDNN, and VGG16 are popular deep architectures in other 
tasks, and they have no special contribution for detecting COVID-19. Overall, Unet++ reports a sensitivity of 
0.746 and an AUC of 0.826 over CT-COV19.

This work is significant from three main perspectives. First, we built a publicly available dataset of CT-images 
of COVID-19 that is large and diverse enough to train reliable models and, therefore, can be considered for train-
ing and evaluation in future studies. Second, the proposed deep neural networks can extract pixel-wise informa-
tion accurately and, thus, detect COVID-19 with higher accuracy. That is why Deep-CT-Net and Deep-CXR-Net 

Table 6.  The obtained results over the CXR dataset, i.e., ieee8023.

Method Precision Sensitivity F-measure AUC 

CAAD11 0.9431 0.9150 0.9240 0.9207

COVID-ResNet13 0.9260 0.9160 0.920 0.9162

VGG1638 0.8980 0.8940 0.8960 0.8892

Deep-CXR-Net (this study) 0.9872 0.9824 0.9848 0.9839

Figure 7.  The obtained ROC curves for ieee8023 dataset. The figure plots the ROC curve obtained by Deep-
CXR-Net and compares it with that of several related models.

Figure 8.  (Deep-CXR-Net) Plotting the Class Activation Mapping (CAM) results for Deep-CXR-Net: The 
CAM highlights the class-specific attention regions. All images belong to positive COVID-19 cases. The dotted 
regions inside of the chests are discriminative areas.
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achieve higher rates of sensitivities than other related methods. For instance, the closest method to Deep-CT-Net, 
in terms of sensitivities on CT-COV19, is COVNET with a value of 0.81, while that of Deep-CT-Net is 0.858. The 
same observation can be seen from the obtained results over COVID-CT, in which the sensitivity rate achieved 
by Deep-CT-Net is 0.905, while that of the closest related method, i.e.,  xDNN37, is 0.886. Third, the proposed 
Deep-CXR-Net, which is the CXR extension of Deep-CT-Net, is able to be trained on small-sized CXR datasets 
and efficiently compensate for the lack of enough CXR data of COVID-19. Compared with other CXR-based deep 
models, we found that the choice of using additional features results in much better performances for unseen 
CXR data and significantly reduces the rate of false-positive. In contrast, other methods have shown higher false-
positive rates in their predictions, i.e., they wrongly tend to predict samples of other pneumonia as COVID-19.

The results of class activation map (CAM) for each model are also depicted in Figs. 5 and 8, which are derived 
from Deep-CT-Net and Deep-CXR-Net respectively. The highlighted regions (red colour inside the lungs) in 
the CAM results depict those parts of the lungs where the COVID pneumonia appears. Interestingly, we can see 
from the figures how well the models could detect the infectious regions of COVID.

One of the main advantages of the proposed models is their efficiency in terms of computational complexities, 
allowing them to be used in ordinary computing systems of hospitals. More accurately, the size of models is not 
huge, particularly for the Deep-CT-Net, and also, there are no complex pre-processing steps. For instance, the 
models in Refs.17,33 are based on complex lung segmentation steps, imposing more computational cost in practice 
and limiting the final screening results to the segmentation accuracy. Being efficient and accurate, the proposed 
models have the potential to be used in hospitals’ emergency rooms. Accordingly, a regular computer equipped 
with an ordinary Nvidia graphic card can be connected to the imaging system, either CT-scan or CXR, making 
the prediction in a fraction of a second. In contrast, deep neural models with complex network or overhead 
processing need advanced graphic cards and computers to predict online, often not applicable in all hospitals 
due to the lack of computing hardware.

On the other hand, this study has faced several limitations. First, more experiments should be conducted to 
examine the generalization ability of Deep-CT-Net on the datasets of different medical centers; second, although 
the attention layers increase the sensitivity rate, the precision rate decreases. Finally, the proposed models only 
detect positive and normal classes and are not able to quantify other pneumonia, e.g., bacterial pneumonia. 
Future studies may address such limitations.

In conclusion, this study proposed a publicly accessible benchmark of COVID-19 CT images of lungs, allow-
ing further studies to build more general models. We further proposed a baseline model called Deep-CT-Net, 
benefiting from a pyramidal attention layer that helps to extract discriminative pixel-wise features. Moreover, 
we extended our model for the case of CXR images of lungs using a transform learning strategy, enabling it to be 
trained on a small number of samples. The experimental results show that: (1) the choice of pyramidal attention 
layers can significantly increase the sensitivity rate, increasing the overall prediction metrics, i.e., AUCs, and (2) 
the proposed Deep-CT-Net is likely to have more false positives in favour of having a lower rate of false negatives. 
Overall, we found that the pixel-wise features extracted by pyramidal attention layers can significantly enhance 
the prediction performance of deep neural models.

As for future work, we plan to design a deep neural decoder for extending the current models to accurately 
segment the infected parts of the lungs with COVID-19, resulting in discovering biomarkers for COVID-19. This 
result could further be used to categorize the infection patterns of COVID-19, providing valuable data sources 
for revealing the unknown aspects of the virus and eventually being helpful in medical prescriptions. Addition-
ally, Deep-CT-Net provides a baseline result over the proposed CT-COV19 dataset, and there is still room for 
developing more accurate deep models.

Methods
Data pre‑processing. The data pre-processing stage consists of five consecutive steps. After resizing all the 
images into a similar resolution, e.g., 512× 512 , the first step is applying random data augmentation techniques, 
including a random rotation in a degree of [−15,15], and a random translation in a range of [−0.05,0.05]. The 
second step is performing a histogram equalization, which adjusts the contrast of a CT-scan image by modifying 
the intensity distribution of the histogram. The third step is fixing the aspect ratio of images (or image resizing) 
to a size of 256× 256× 3 . Afterward, a Gaussian blur filtering with a window-size of 3 is used for image smooth-
ing. Finally, images are normalized by subtracting from their mean and divided by their standard deviation.

Network architecture. This subsection introduces the proposed deep neural architectures, i.e., Deep-
CT-Net and Deep-CXR-Net, which can accurately classify CT-scan images into two classes: positive-COVID 
and negative-COVID. The following paragraphs explain their architectures and other implementation details to 
make them reproducible.

Figure 2 depicts the workflow of Deep-CT-Net. As it is shown, Deep-CT-Net consists of three main parts. The 
first part applies Densnet-12118 as the backbone, extracting high-level features from the input raw CT-images. 
The second part performs a pyramid attention  layer32 over the extracted high-level features to maximize pixel-
wise feature extraction, allowing the model to detect COVID-19 even during the first days of infection. A batch 
normalization layer, which standardizes the input to the next layer, is then used to avoid internal covariance 
 shifts47 and have a smoother objective  function48. Finally, the last part flattens the output of the previous part to be 
fed into fully connected layers for prediction. The backward pass then updates the weight parameters of all three 
components using the Adam  optimizer49 with a learning rate of 1e-5 to minimize a binary-cross-entropy loss.

The architecture of Deep-CXR-Net, which is a transfer learning extension of Deep-CT-Net for screening 
COVID-19 based on CXR-images of lungs, is depicted in Fig. 3. The choice of transfer learning allows the 
Deep-CXR-Net to learn from a small set of labelled CXR COVID-19 images while providing a high level of 



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3116  | https://doi.org/10.1038/s41598-022-06802-7

www.nature.com/scientificreports/

generalization ability. More accurately, the proposed Deep-CXR-Net consists of three main parts, where the 
first two parts are independent pre-trained models respectively on two large-sized datasets of non-COVID 
diseases of lungs, i.e.,  CheXpert50 and Kaggle-Pneumonia51. We consider these parts as two black-box functions 
whose inputs are CXR images, and the outputs are vectors of high-level features. More precisely, for a given CXR 
image, the output of the first part is a six-dimensional vector whose entries are the likelihood of six certain lung 
diseases, documented in Ref.50. Besides, the output of the second part is a two-dimensional vector, representing 
the likelihood of having pneumonia or not. These additional features compensate for the scarcity of CXR data 
in COVID-19, increasing the generalization ability of the Deep-CXR-Net. The last part, i.e., Part 3, is another 
deep network, concatenating all the extracted features, i.e., the extracted features of itself and those from parts 
one and two. This concatenation is the point where the idea of transfer learning comes to play. More precisely, 
the additional concatenated features provided by Parts 1 and 2 compensate for the lack of having enough CXR 
training samples of COVID-19, resulting in a high level of generalization during the test time. We use  ieee802346 
as a COVID-labeled dataset to train the parameters of the third part.

Additionally, a certain number of image augmentation techniques, such as rotation and translation (explained 
above), have also been applied in the learning phase. As parts 1 and 2 are pre-trained models, the backward pass 
only updates the weight parameters of the third part using the Adam optimizer with a learning rate of 1e-5 to 
minimize the binary-cross-entropy loss. As Fig. 3 shows, the backbone applied in all three parts is DensNet-121. 
Similar to Deep-CT-Net, the proposed Deep-CXR-Net uses a pyramidal attention  layer32 to provide pixel-wise 
attention on high-level features, enabling the whole model to effectively detect COVID-19 cases even when there 
are small clues of the disease in lungs.

Statement. All the experiments, as well as methods, were carried out under relevant guidelines and regula-
tions. All protocols used in the experiments were approved by Shiraz University. The process of collecting the 
CT-data, i.e., CT-COV19 was approved by the ethics committee of the Shiraz University of Medical Sciences. 
Informed consent was obtained from all subjects.

Data availability
Our proposed dataset, i.e., CT-COV19, is publicly reachable via this link: https:// github. com/ m2dgi thub/ CT- 
COV19. git.
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