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Machine Learning analysis 
of high‑grade serous ovarian cancer 
proteomic dataset reveals novel 
candidate biomarkers
Federica Farinella1,8, Mario Merone2,8*, Luca Bacco2,3,7, Adriano Capirchio4,5, 
Massimo Ciccozzi6 & Daniele Caligiore4,5

Ovarian cancer is one of the most common gynecological malignancies, ranking third after cervical and 
uterine cancer. High‑grade serous ovarian cancer (HGSOC) is one of the most aggressive subtype, and 
the late onset of its symptoms leads in most cases to an unfavourable prognosis. Current predictive 
algorithms used to estimate the risk of having Ovarian Cancer fail to provide sufficient sensitivity and 
specificity to be used widely in clinical practice. The use of additional biomarkers or parameters such as 
age or menopausal status to overcome these issues showed only weak improvements. It is necessary 
to identify novel molecular signatures and the development of new predictive algorithms able to 
support the diagnosis of HGSOC, and at the same time, deepen the understanding of this elusive 
disease, with the final goal of improving patient survival. Here, we apply a Machine Learning‑based 
pipeline to an open‑source HGSOC Proteomic dataset to develop a decision support system (DSS) 
that displayed high discerning ability on a dataset of HGSOC biopsies. The proposed DSS consists 
of a double‑step feature selection and a decision tree, with the resulting output consisting of a 
combination of three highly discriminating proteins: TOP1, PDIA4, and OGN, that could be of interest 
for further clinical and experimental validation. Furthermore, we took advantage of the ranked list 
of proteins generated during the feature selection steps to perform a pathway analysis to provide a 
snapshot of the main deregulated pathways of HGSOC. The datasets used for this study are available 
in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal (https:// cptac‑ data‑ portal. 
georg etown. edu/).

Ovarian cancer is the seventh most common cancer in women and the eighth-most common cause of cancer 
death overall, with five-year survival rates below 45%. Along with the increasing life expectancy, the number of 
cases diagnosed each year is also growing, with only a minimal improvement in  mortality1,2.

Although once considered a single entity, ovarian cancer can be subdivided into different histological subtypes 
that differ in molecular patterns, cells of origin, and clinical features. Among these types, high-grade serous ovar-
ian carcinoma (HGSOC) is the most commonly  diagnosed3 and is responsible for an elevated number of deaths. 
Its molecular features consist of a p53 mutation for 96% of the cases, while BRCA1/BRCA2 accounts for 22% 
of  cases4. One of the principal factors influencing the elevated mortality of HGSOC patients is the inability to 
perform an early diagnosis, due to the symptoms being diverse and non-specific5. While the long-term survival 
of patients with stage I and II of ovarian cancer is respectively up to 90% and 70%, 4/5 of patients with HGSOC 
are diagnosed during stage III, and IV, resulting in a significantly lower survival rate of less than 20%6,7. Several 
studies have shown the importance of an accurate pre-operative evaluation and correct staging to enhance the 
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prognosis of patients with a pelvic mass suspected of HGSOC. In fact, those treated by gynecologic oncologists 
had significantly lower morbidity and overall increased survival than those treated by general gynecologists and 
general  surgeons5, 8–10.

Several biomarkers, such as  CA12511,  HE412 and  osteopontin13 have been used for the risk assessment of 
ovarian cancer in patients with a pelvic mass. Each of the biomarkers can be used alone or combined in multiple-
biomarker algorithms (e.g.  RMI14,  ROMA15,  OVA116), having received both FDA and EU approval 17.

However, the screening methods based on these multiple-biomarker algorithms show different limits hamper-
ing their usage in clinical practice. All of them include CA125, a marker expressed in only 80% of Ovarian Cancer 
cases, and only in the 50% in the early stage of the  disease18. The lack of expression in CA125 levels exhibited 
in some ovarian cancer cases and especially in the early stages of the disease is reflected by the sensitivity of 
the algorithms based on CA125. Furthermore, other studies show that different physiological and pathological 
conditions exhibit an increased expression of CA125 levels, thus limiting its specificity for the detection of this 
 disease19,20. The use of additional biomarkers to overcome the limits of CA125 usually improves the sensitivity of 
the algorithm but always leads to a reduced specificity to detect ovarian  cancer21–23. Hence, the necessity to find 
new molecular distinctive features that could both improve the disease understanding and be used as a starting 
point to develop new diagnostic tools, in order to establish one of the most appropriate treatment strategies, with 
the intention to improve ovarian cancer survival rates.

With this in mind, the purpose of this study was to dissect the pathways deregulated in HGSOC and find new 
possible biomarkers with high discriminating power, sensitivity and specificity that are localized in the serum, 
in order to be potentially assessed without invasive or expensive approaches. To reach this goal, we analyzed a 
publicly available ovarian cancer proteomic dataset using Machine Learning based algorithms, which can man-
age optimally such large scale omic datasets. The data used in this publication were generated by the Clinical 
Proteomic Tumor Analysis Consortium (NCI/NIH) 24.

Our computational approach allows us to overcome the decline in the specificity of existing tests, maintaining 
both sensitivity and specificity respectively at 98.2% and 97.2%.

Materials and methods
Database. For this study, we used the publicly available database generated by the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) 24. The Decision Support System (DSS) was trained, tested, and validated using 
the CPTAC Ovarian Cancer Confirmatory Study Proteomic Dataset, which includes the analysis form Ovarian 
tissue sample from a cohort of 100 individuals with HGSOC and 25 Non-Tumor ovarian samples, performed by 
the Johns Hopkins University (JHU) and Pacific Northwest National Laboratory (PNNL) using isobaric Tags for 
Relative and Absolute Quantification (iTRAQ) protein quantification  method25. Clinical features were present 
only for Tumor patients. The Tumor cohort was composed of women ranging from 36 to 85 years, with an aver-
age age of 59. The 7% of the participants had an history of other malignancies. The anatomic site of origin of 
tumor specimens are: ovary 52%, omentum 41%, peritoneum 3%, pelvic mass 3% and unknown origin 1%. All 
samples are classified as “Serous Adenocarcinoma”. FIGO staging ranges from IIB to IV (not specified whether A 
or B), with the majority of the samples classified as stage IIIC (63.8%), followed by IV (15.2%), IIIB (7.6%), IIIA 
(2.9%), IC (1.9%), IIB (1%) and a remaining 7.6% of specimens having uncertain classification. The 80.8% of the 
samples are classified as Grade 3, 5.8% as Grade 2, 0.9% as Grade 1, while for 12.5% of the samples grading was 
not reported. The efficacy of the DSS was further tested on the dataset generated from the CPTAC and TCGA 
Cancer Proteome Study of Ovarian Tissue, including the analysis of samples from 174 Ovarian tumors, of which 
169 from HGSOC, also performed by JHU and PNNL using  iTRAQ26. Cohort is composed of women ranging 
from 35 years to 87, with an average age of 60.5. Tumor tissue site is Ovary for 98% of the samples, Omentum 
in 1% of the samples and Peritoneum ovary in 1%. All samples are classified as “Serous Cystadenocarcinoma”. 
FIGO staging of the samples goes from stage IC to IV (not specified whether A or B), where stage IIIC accounts 
for 69.9% of the samples, IV for 17%, IIIB and IIC accounting each one for 4.4%, IC for 1.5%, and IIA, IIB and 
IIA accounting each one for 1%. The 81.5% of the samples are Grade 3, 16.5% are Grade 2, 1% are Grade 1, while 
grading is unknown for 1% of the samples. Datasets were subsequently processed in Python (distribution 3.9.1) 
using NumPy and pandas libraries to merge JHU and PNNL datasets and remove protein columns containing 
more than 10% of missing values. After that, the data were processed and analyzed using a software tool coded 
in MATLAB2020b (Mathworks Inc., MA).

Machine Learning pipeline. Here we describe the Machine Learning pipeline used to develop the Deci-
sion Support System. Each sample from the dataset is described by its features (i.e., the proteins). We report such 
pipeline in Fig. 1. It includes the following steps:

Feature selection based on correlation analysis. In this step, we computed for each feature the Pearson correla-
tion coefficient with respect to the target variable (tumor/non tumor). The correlation coefficient between two 
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Figure 1.  Machine Learning pipeline.
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random variables is a measure of their linear dependency. If each feature has N scalar observations, then the 
Pearson correlation coefficient of the i-th feature fi is defined as

where µfi , σfi , µt , σt are the mean and standard deviation of the i-th feature and the target variable, respectively. 
The values of the coefficients can range from − 1 to 1, with − 1 representing a direct, negative correlation, 0 rep-
resenting no correlation, and 1 representing a direct, positive correlation. All features with an absolute value of 
the correlation coefficient higher than 0.6 are then selected. In this way, we selected all the features with a high 
(positive or negative) correlation with the target variable.

Feature selection based on relief method. All the features selected from the Correlation Analysis are then exam-
ined with a second feature selection step based on the ReliefF  algorithm27. Such an algorithm ranks the impor-
tance of the features with respect to the target value. The importance of a feature is represented by the weight of 
that feature. The values of those weights can range from −1 to 1, with the largest positive weights assigned to the 
most important features. The algorithm penalizes the features that provide different values to k neighbors of the 
same class while rewarding the ones that provide different values to k neighbors of different classes.

Decision tree. The features (i.e. the proteins) selected by the reliefF method are used to train the CART 28 algo-
rithm for the binary (Tumor/Non-Tumor) classification task. We chose to use a decision tree classifier for its 
high interpretability and explainability, unlike other methods of machine and deep learning. The CART tree is a 
binary decision tree that is constructed by splitting a node into two child nodes repeatedly, beginning from the 
root node that contains the whole learning sample. The basic idea of the tree growth is to choose a split among 
all the possible splits at each node so that the resulting child nodes are the “purest”. The purity metric defines a 
node as 100% impure when its samples evenly belong (50:50) to both the classes while defining a node as 100% 
pure when all of its data belongs to a single class. In this algorithm, only univariate splits are considered. That 
is, each split depends on the value of just one feature. At node t, the best split s is chosen to maximize a splitting 
criterion �i(s, t) . When the impurity measure for a node can be defined, the splitting criterion corresponds to 
a decrease in impurity. In our case, we used a Gini criterion as the impurity measure. During the training, we 
chose not to impose a control on the tree’s depth, fixing the maximum number of splits as the size of the training 
set −1 and the minimum leaf size (the minimum number of samples in the leafs) as 1. Furthermore, we fixed the 
cost of classifying a sample into class j if its true class is i equal to:

• Ci,j = 1 , if i  = j
• Ci,j = 0 , if i = j

We decided also not to implement a pruning strategy.

Performance evaluation. To evaluate the performance of our system we computed the confusion matrix. 
A confusion matrix is an N × N matrix used for evaluating the performance of a classification model, where N is 
the number of target classes. In our case, the task performed by the model is a binary classification task, thus N 
is equal to 2. From the confusion matrix we calculated the classification accuracy 

(

Acc = TP+TN
P+N

)

 , the precision 

per class (PTumor =
TP

TP+FP
 and PNonTumor =

TN
TN+FN ) , sensitivity and specificity 

(

Sensitivity =
TP
P , Specificity =

TN
N

)

 . 
Furthermore for each class we compute the F1 score, a relevant metric in case of unbalanced dataset, 

F1Tumor = 2 ∗

(

PTumor∗Sensitivity
PTumor+Sensitivity

)

 and F1NonTumor = 2 ∗

(

PNonTumor∗Specificity
PNonTumor+Specificity

)

.
As usual, P and N denote the number of positive patients (with Tumor) and negative patients (Non-Tumor) 

records, whereas TP, TN, FP and FN stands respectively for true positive, true negative, false positive and false 
negative classifications. A true positive classification implies that the patients are correctly detected by the system 
as patients without tumor, whereas a true negative classification indicates that the system correctly recognizes 
the patients with HGSOC. We developed two main performance test:

• Test 1 This test is developed to evaluate the performance of the system only on CPTAC dataset using a 5-fold 
cross-validation procedure as follows. First, we randomly shuffled the dataset and split it into 5 groups. For 
each group, a single group is taken as a hold out or test data set and the remaining groups as a training data 
set. After training and test, the evaluation score is retained and the model is discarded. This operation is then 
repeated for each group. Importantly, each sample in the data set is assigned to an individual group and stays 
in that group for the duration of the procedure. This means that each sample is given the opportunity to be 
used in the hold out set once and used to train the model 4 times. This procedure results in a less biased or 
less optimistic estimate of the system performance than other methods, such as a simple train/test split.

• Test 2 This test is developed to evaluate the robustness of our system. We trained the system on CPTAC 
Dataset and tested it on a different dataset called Cancer Proteome Study of Ovarian Tissue (TCGA). This 
latter dataset is composed of 216 tumor patients.

(1)ρ(fi , t) =

N
∑

j=1

(

fi(j)− µfi

σfi

)(

t(j)− µt

σt

)
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Pathway enrichment analysis. We used the ranked lists of proteins resulting from the correlation analy-
sis, as input to perform a Pathway Enrichment Analysis using  GSEA29,30 v.4.1.0 desktop software. The pathway 
gene set database was: Human_GO_AllPathways_with_GO_iea_January_13_2021_symbol.gmt release 
13-01-2021, downloaded from http:// bader lab. org/ GeneS ets. This file includes pathways from GO, Panther, Net-
Path, NCI, Reactome and MSigDB, both C2 and Hallmark collection. The number of permutations was set to 
1000 and the maximum size of the sets was set to 200. Visualization of enrichment results was performed with 
 Cytoscape31 v.3.8.2 using EnrichmentMap Pipeline Collection  apps32, setting the FDR Q value cutoff to 0.01. In 
this work, we selected all the features with a coefficient higher than the average value taken by the positive coef-
ficients.

Results
As the first step of feature selection, the correlation was assessed between each feature and the tumor or non 
tumor variable, in order to possibly identify the most relevant molecular features of the tumor phenotype. The 
dataset after the pre-processing step consisted of 209 samples and 6223 proteins. In Table 1 we reported the results 
obtained setting the correlation coefficient cutoff to 0.6, thus reducing the significant features to 137 proteins. 
After the second step of feature selection, the list was further reduced to 46 proteins.

We then used the entire set of proteins and their respective correlation coefficient as a ranked list to perform a 
GSEA pathway enrichment analysis. The output was subsequently visualized and interpreted using the Cytoscape 
add-on EnrichmentMap. Resulting Normalized Enrichment Scores (NESs) ranged from -3.3251 to 3.4016. A 
subnetwork (Fig. 3) was generated from the main enrichment map selecting the most enriched pathways, setting 
the cutoff of NES to +− 2.5, in order to drive the attention only on the most represented pathways. As in Fig. 3A, 
B the over-represented pathways are related to three main categories: RNA maturation and export, Translation 
and DNA Repair. By contrast, under-represented pathways (Fig. 3C) include: immune response, cell-matrix adhe-
sion and extracellular matrix adhesion, protease activities, G-Protein coupled receptors signalling, myogenesis, 
muscular contraction, wound healing and blood coagulation.

Explainable decision support system for tumor/non‑tumor classification and biomarker dis‑
covery. With respect to test 1, we evaluated our method on the dataset presented in “Database” section. So, 
we started with a full dataset consisting of 209 samples and 6223 proteins. After the first step of Feature Selection 
based on Correlation Analysis, 137 features were left. Then, after the ReliefF-based Feature Selection step, we 
obtained 46 proteins. Finally, the dataset comprising 209 samples of 46 features was used to train the decision 
tree classifier. The model and the biomarkers achieved are shown in Fig. 2. The model is characterized by a 
graph with split conditions on three proteins: TOP1, PDIA4 and OGN. Furthermore, in Table 2 we report the 
classification confusion matrix that was computed collecting the prediction at the end of each iteration of the 
5-fold cross-validation. All computed metrics from the confusion matrix are equal to 98.1% for accuracy, 98.2% 
for the sensitivity, 97.6% for specificity, 93% for precision of Non-Tumor class and 99.4% for precision of Tumor 
class, and 95.3% and 98.8% for F1-score of Non-Tumor and Tumor classes, respectively. With respect to test 2 we 

Table 1.  Here are summarized the results of the correlation between proteomics data and tumor phenotype. It 
appears that a vast portion of the proteins displayed no evident correlation, and the majority of the proteins 
were negatively correlated.

Tumor

Positive correlation 20

Negative correlation 117

Noncorrelation 6086

TOP 1

PDIA4 OGN

NON-
TUMOR

NON-
TUMORTUMOR TUMOR

< - 0.530785 >= -0.530785

>= 1.67545< 1.67545>= -0.23506< -0.23506

Figure 2.  Final decision tree, with focus on the biomarkers.

http://baderlab.org/GeneSets
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analyze the robustness of our system: for this reason we trained it on a dataset (CPTAC) and tested on a different 
one (TCGA). This latter dataset is composed of 216 tumor patients. In Table 3 we report the confusion matrix 
achieved. Furthermore, we calculate the accuracy of the system and the precision, sensitivity and F1-score per 
Tumor class that are equal to 98.2%, 100%, 97.2%, and 98.6% respectively. We did not computed metrics regard-
ing the Non-Tumor class since the TCGA dataset does not present samples of this class.

Discussion
Given the impact and the high mortality rate of HGSOC, numerous studies from the past few years took advan-
tage of ’-omic’ scale expression data to characterize its underlying molecular features and to discover novel 
biomarkers. Nevertheless, the vast majority of existing studies makes use of RNA expression rather than pro-
tein expression. The main reason is the advantage of transcriptomics being a robust and cost-effective high-
throughput technology. However, mRNA levels do not always correlate to protein abundance, given the number 
of regulatory processes occurring after mRNA  transcription33,34. Hence, to find novel biomarkers suitable for 
cost-effective and non-invasive diagnostic methods such as blood or serum testing, we choose to base our analysis 
on Proteomics data.

Correlation‑based overview on the most deregulated pathways. We first performed a correlation 
analysis. In this way, we reduced the number of features in the dataset, and at the same time, removed the “back-
ground noise” represented by the proteins that had a random correlation with the Tumor  phenotype35. We then 
used the gene set enrichment analysis to extract biological insight from the ranked list of proteins that emerged 
from the correlation analysis. Among the over-represented pathways, displayed in Fig. 3 and summarized in 
Table 4, we found established and well-known cancer signatures, such as the increase of MYC and E2F down-
stream genes and DNA-Repair related genes such as MCMs and  RAD2136–39. Interestingly, as shown in Fig. 3B, 
pathways related to mRNA splicing, export, metabolism, and translation were strikingly abundant and pre-
dominant among all the over-represented pathways. Given the crucial role of splicing as a source of biological 
complexity and plasticity, this same mechanism can be exploited by cancer cells to adapt and thrive in tumor-
induced pathological conditions such as  hypoxia40 and, favoring tumor progression, by contributing to the 
reprogramming of the cellular  processes41. In accordance with this, a study shows that the spliceosome inhibi-
tory drug Sudemycin is able to induce selective cytotoxicity in chronic lymphocytic leukemia (CLL) cells by 
targeting SF3B1, a component of U2 snRNP, which is also found in 13 nodes of our network. At the level of RNA 
export, there are several forms of cancer associated with dysregulation of some nucleoporins (Nup98, Nup214), 
components of the transcription-export complex TREX (THOC1), and exportines (XPO1, XPO5) that are also 
included in several nodes of our network and may be worth investigating further for their involvement in 
 HGSOC42–44. As shown in Fig. 3A a large portion of pathways involved in the assembly of the initiation complex 
and ribosome biogenesis were significantly over-represented. Increasing evidence links deregulation of transla-
tional control to cancer insurgence and progression. Indeed, one of the most regulated steps during translation 
is its initiation, given its role in the decision of the rate of production of every protein, or if it is produced at  all45. 
It is therefore not surprising that initiation factor encoding genes (eIFs) are overexpressed in a variety of cancers, 
such as breast, prostate and pancreatic  cancer46, 47. Altered ribosome biogenesis also concurs to the altered trans-
lational activity of cancer cells; for example, it has been observed that in the aggressive breast cancer cell line 
MA-, 43S pre-rRNA was abnormal, resulting in an impaired ability to initiate p53 cap-independent translation 
via  IRES48. Another cluster of pathways that stood out from our analysis involves nonsense-mediated decay 

Table 2.  This Confusion Matrix is achieved in fivefold-cross-validation on CPTAC Ovarian Cancer 
Confirmatory Study Proteomic Dataset (209 samples). The matrix compares the actual target values (Truth) 
with those predicted (Pred.) by our model. On first diagonal are reported the samples correctly classified, 
whereas on second diagonal are reported the misclassified samples.

Pred.

Truth

Non-tumor Tumor

Non-tumor 40 3

Tumor 1 165

Table 3.  This Confusion Matrix reports the performance of our system trained on CPTAC Ovarian Cancer 
Confirmatory Study Proteomic Dataset and tested on TCGA Cancer Proteome Study of Ovarian Tissue (216 
samples). The matrix compares the actual target values (Truth) with those predicted (Pred.) by our model. On 
first diagonal are reported the samples correctly classified, whereas on second diagonal are reported the 
misclassified samples. The TCGA dataset only presents samples from the Tumor class.

Pred.

Truth

Non-tumor Tumor

Non-tumor 0 6

Tumor 0 210
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Figure 3.  A Subnetwork was created from the main network to increase the interpretability. Red and blue 
nodes represent pathways that are upregulated (A, B) and downregulated (C). The diameter of each node is 
proportional to the number of proteins included. Pathways sharing proteins are connected with blue edges, 
with the thickness of the edges proportional to the number of protein shared. Clusters of nodes were manually 
annotated.
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Table 4.  Summary of the 100 top-most deregulated pathways, ranked by their NES values, selected from the 
pathways composing the Subnetwork in Fig. 3. Pathways are named according to their Gene Ontology name 
or their standard name. In the left column are listed the 50 pathways that are found to be less represented in 
HGSOC tumor biopsies, a lower NES score corresponds to a lower representation. The right column displays 
the 50 pathways that appear to be the most over represented. A higher NES score correspond to a higher over 
representation.

Less represented pathways Over-represented pathways

Pathway description NES Pathway description NES

Regulation of vascular smooth muscle cell proliferation − 1.8195 Pre-mRNA splicing 3.4016

Positive regulation of phospholipid metabolic process − 1.818 mRNA Splicing 3.3727

Neutrophil chemotaxis − 1.8175 Regulation of mRNA processing 3.3537

Positive regulation of lipid transport − 1.8168 Cap-dependent translation initiation 3.2584

Positive regulation of protein kinase B signaling − 1.8157 rRNA processing 3.2518

IGF1R signaling cascade − 1.8154 rRNA processing in the nucleus and cytosol 3.2488

Allograft rejection − 1.8151 Influenza viral RNA transcription and replication 3.2475

Positive regulation of transporter activity − 1.8148 Influenza infection 3.2379

PID_IFNG_PATHWAY − 1.8141 Major pathway of rRNA processing in the nucleolus and cytosol 3.2266

BIOCARTA_BIOPEPTIDES_PATHWAY − 1.8141 L13a-mediated translational silencing of ceruloplasmin expression 3.2208

Regulation of heart rate − 1.8134 Spliceosomal complex 3.2119

Tertiary granule lumen − 1.8111 Viral gene expression 3.2043

PID_CXCR4_PATHWAY − 1.8088 Eukaryotic translation initiation 3.1978

Negative regulation of small molecule metabolic process − 1.8082 GTP hydrolysis and joining of the 60S ribosomal subunit 3.1919

Negative regulation of cell-substrate adhesion − 1.8075 Regulation of mRNA splicing, via spliceosome 3.1886

Regulation of glucose transmembrane transport − 1.8065 Cytosolic ribosome 3.1753

Monocarboxylic acid transport − 1.8039 Ribosome 3.1709

Positive regulation of cholesterol transport − 1.8038 Formation of a pool of free 40S subunits 3.1677

Gastrin signaling pathway − 1.8037 Viral transcription 3.1615

Activation of MAPKK activity − 1.8037 Ribosomal subunit 3.1467

Cortical cytoskeleton − 1.8036 Structural constituent of ribosome 3.1382

Amine metabolic process − 1.8035 Eukaryotic translation elongation 3.137

Negative regulation of cell projection organization − 1.8027 Translational initiation 3.1285

PID_ERBB1_DOWNSTREAM_PATHWAY − 1.8018 Peptide chain elongation 3.1255

Negative regulation of neuron projection development − 1.8012 Regulation of RNA splicing 3.122

IRS-related events triggered by IGF1R − 1.8001 SRP-dependent cotranslational protein targeting to membrane 3.1111

Growth factor receptor binding − 1.7996 Nonsense mediated decay (NMD) independent of the exon junction complex (EJC) 3.1079

Regulation of reactive oxygen species biosynthetic process − 1.799 Viral mRNA translation 3.1065

Neuronal system − 1.7989 Eukaryotic translation termination 3.0998

Negative regulation of axonogenesis − 1.7965 HALLMARK_MYC_TARGETS_V1 3.0941

Opioid signalling − 1.7963 Response of EIF2AK4 (GCN2) to amino acid deficiency 3.0812

Cell–cell adhesion via plasma-membrane adhesion molecules − 1.7957 Protein targeting to ER 3.0792

BIOCARTA_HER2_PATHWAY − 1.7956 Nonsense mediated decay (NMD) enhanced by the exon junction complex (EJC) 3.0764

PID_ERBB1_RECEPTOR_PROXIMAL_PATHWAY − 1.795 Nonsense-mediated decay (NMD) 3.0737

Phosphatidylinositol binding − 1.7946 Catalytic step 2 spliceosome 3.072

Phosphatidic acid biosynthetic process − 1.7934 Selenocysteine synthesis 3.0554

Granulocyte chemotaxis − 1.7913 SRP-dependent cotranslational protein targeting to membrane 3.0479

Regulation of blood vessel endothelial cell migration − 1.791 Establishment of protein localization to endoplasmic reticulum 3.0463

B cell receptor signaling pathway − 1.7905 Regulation of expression of SLITs and ROBOs 3.0373

Monocarboxylic acid binding − 1.7896 Cotranslational protein targeting to membrane 3.0326

Toll-like receptor cascades − 1.7875 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 3.0094

Regulation of calcium-mediated signaling − 1.7874 Regulation of alternative mRNA splicing, via spliceosome 3.0092

Triglyceride metabolism − 1.7864 Selenoamino acid metabolism 2.972

Multicellular organismal movement − 1.7857 Protein localization to endoplasmic reticulum 2.9604

Hydrogen peroxide catabolic process − 1.7848 Ribonucleoprotein complex assembly 2.9379

Negative regulation of cellular response to growth factor stimulus − 1.7846 Ribonucleoprotein complex subunit organization 2.9292

Gamma carboxylation, hypusine formation and arylsulfatase activation − 1.7846 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and 
subsequent binding to 43S 2.9227

Regulation of sodium ion transport − 1.7843 rRNA processing 2.9199

Detection of external stimulus − 1.7843 mRNA Processing 2.9151

Regulation of Rho protein signal transduction − 1.7842 Translation initiation complex formation 2.8601
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(NMD) activity. NMD is a mechanism of post-transcriptional gene regulation, whose main purpose is exerting 
quality control on the mRNA through the recognition of premature termination codons (PTC), that may be 
introduced because of genetic mutations, or errors occurring during transcription or splicing. Beyond quality 
control, NMD emerged also as a mechanism for fine-tuning the amount of certain  proteins49. An example is 
represented by the regulation of selenocysteine-containing proteins (SePs), such as glutathione peroxidase 1 (Se-
GPx1) abundance in response to a decrease in selenium (Se) concentrations via NMD recognition of a Sec TGA 
 codon50. Indeed, among the pathways present in this highly interconnected cluster, two groups of proteins are 
involved in selenocysteine  synthesis51. SePs are known to be oxidoreductases, using selenocysteine in their active 
site. Their role in malignancy progression may vary according to the stage: on one hand they can inhibit tumor 
development by dampening oxidative insults that could induce mutagenesis and genomic instability while, on 
the other, they could offer tumor cells a competitive advantage to oxidative stress and chemotherapeutics, at an 
advanced  stage52. This may indicate that in the context of HGSOC, they could favor tumor progression. The last 
members of this supercluster are proteins involved in the Slit/Robo pathway. Slits are a family of secreted pro-
teins, as they bind to the transmembrane Robo receptors, they activate a signalling pathway that regulates vari-
ous physiological processes, such as neural axon guidance, angiogenesis, cellular proliferation and motility, thus 
making it worthwhile to lead future research toward investigating their role as new druggable targets for 
 HGSOC53, 54. Conversely, Fig. 3C shows the pathways that are significantly less represented in tumor cells than 
expected in physiological conditions. The first recognizable cluster involves the immune response. The avoid-
ance of immune destruction is one of the hallmarks of cancer and has always represented a hot topic for research 
since the discovery of immunotherapy focused on targeting immune  checkpoints55. In particular, the central 
nodes are involved in the regulation of complement activation, suggesting that HGSOC cells counteract the 
complement activation also by downregulating proteins involved in its activation such as  CR256. The second 
cluster of Fig. 3C involves cell-substrate adhesion and extracellular matrix (ECM) organization. Under-repre-
sentation of pathways related to adhesion is a characteristic of cancer cells, in fact, adhesion molecules not only 
maintain contact with other cells or the substrate but also play a role as signalling molecules for a variety of cel-
lular functions, such as growth regulation and gene expression, moreover, loss of adhesion is related to the Epi-
thelial-Mesenchymal Transition (EMT), which leads to cell migration and  invasiveness57,58. Here we found that 
proteases inhibitor-related pathways are significantly underrepresented. Proteases are enzymes that catalyze the 
hydrolysis of proteins, they take part in a plethora of physiological functions and their deregulation is associated 
with as many pathologies such as neurodegenerative disorders, inflammatory diseases, cardiovascular diseases 
and  cancer59. Serpins, in particular, are serine protease inhibitors, regulating several biological activities, includ-
ing coagulation, regulation of blood pressure, angiogenesis and hormone transport. Among the Serpins present 
in the nodes of our networks, Serpin B1, Serpin B5 and Serpin B9 have been found to be associated to tumor 
suppression and increased overall survival in Colorectal Cancer, suggesting that they could exert the same role 
also in  HGSOC60–62. The next cluster examined in Fig. 3C belongs to the pathways involved in the negative regu-
lation of coagulation. Activated Protein C (APC) is One of the most recurrent proteins among the nodes, along 
with its interactors Thrombodulin (TM) and Endothelial Cell Protein C Receptor (EPCR). APC is a serine pro-
tease that acts as an anticoagulant by inhibiting thrombin formation when the latter is bound to TM. This func-
tion is enhanced by EPCR, which binds APC and presents it to the TM-Thrombin  complex63. The role of these 
three proteins in tumorigenesis is supported by the observation that the decrease or loss in their expression is 
related to tumor progression and poor  prognosis64. It is accepted that enhanced coagulation represents a risk 
factor for the development of metastasis, possibly due to the fact that thrombin may favor the adherence of can-
cer cells either to platelets and to endothelial  cells65. Interestingly, pathways related to myogenesis and muscular 
contraction were also found significantly under-represented. Among the nodes, Dystrophin (DMD) and other 
muscular distrophy-associated proteins: dysferlin and calpain-3 are found ubiquitously. These proteins are well-
known for their role in the Duchenne muscular dystrophy, however, a role in cancer pathogenesis is slowly 
emerging. In this respect, it has been observed that Duchenne muscular dystrophy mdx mouse model was prone 
to develop skeletal muscle-associated tumors and that the dystrophic muscle presented genomic instability ina 
tumor-like fashion both in the mouse model and in  humans66. Furthermore, DMD has been found to be down-
regulated in several tumors affecting the nervous system, hematological malignancies, melanoma and carcino-
mas, including lung adenocarcinoma, prostate, colon and breast  cancer67. Our results show that DMD has a 
strong negative correlation to the tumor phenotype ( −0.75 ), thus suggesting that an altered DMD expression 
may play a relevant role in the pathogenesis of HGSOC. The last underrepresented pathway is the G Protein-
coupled receptor (GPCR) signalling pathway. GPCRs are the largest family of transmembrane signal transduc-
tion proteins, involved in a variety of biological processes, ranging from neurotransmission to hormone release, 
tissue development and homeostasis. It is not surprising that their dysfunction leads to numerous  diseases68. 
Among the GCPRs present in the nodes of our network, the most relevant are GNA13, GNAS, SHH, FZD3 and 
SMO. These proteins exhibit loss of function mutations in cancers such as diffused B-cell lymphoma, Burkitt’s 
Lymphoma and basal cell  carcinoma69, suggesting a possible role as oncosuppressors also in HGSOC. Overall, 
this analysis offers a plausible overview of the relevantly deregulated pathways in HGSOC, with most the path-
ways already known to be related to tumor progression, and some that could represent new paths to explore, in 
order to dissect the mechanisms underlying this gynecological malignancy. Given these premises, it may be 
worth lead future researches on the emerged proteins and their link to HGSOC.

Decision support system based on three discriminating biomarkers. As shown in Fig. 1, the step 
following Correlation Analysis consisted in a second feature selection method based on Relief algorithm. This 
allowed a further reduction and a list of the most important features ordered by importance score. The topmost 
46 features were used as input to train and develop the highly discriminating Decision Support System, which 



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3041  | https://doi.org/10.1038/s41598-022-06788-2

www.nature.com/scientificreports/

is able to distinguish a tumor from a Non-Tumor patient based on the differential expression of three proteins: 
Topoisomerase 1 (TOP1), Protein Disulfide Isomerase Family A Member 4 (PDIA4) and Osteoglycin (OGN) ,as 
displayed in Fig. 2. Strikingly, as assessed in Test 1, the system showed 97.6% of specificity, 98.2% of sensitivity 
on the CPATC Ovarian Cancer Confirmatory Study Proteomic Dataset,with an F1 score of 98.8% for the tumor 
class and 93% for the fewer cases belonging to Non-Tumor class, while once tested on the second dataset (Test 2), 
it showed 97.2% sensitivity and 98.6% F1 score, thus eliminating the risk that the good performance was due to 
overfitting. Furthermore, these three proteins also appear to have a serum localization, thus making them ideal 
candidates, after clinical validation, for the development of non-invasive tests. The first biomarker is TOP1, one 
of the six human topoisomerases, whose function is to unwind negative DNA supercoilings occurring during 
the events of replication 70. TOP1 is also known to play a role in the maintenance of genomic integrity, in fact, a 
decrease in TOP1 activity, due to low expression or lack of recruitment to chromatin by SMARCA4, may result 
in DNA damage and genomic  breaks71,72. This is reflected by the upregulation of TOP1 in cancer cells, which 
undergo through replicative and transcriptional  stress73. Given this crucial role, there are several FDA-approved 
drugs targeting TOP1. The most famous are the camptothecin alkaloid derivatives, which act by binding at the 
interface between the DNA and the  topoisomerase74. The second biomarker, PDIA4, is one of the largest mem-
ber of the Protein Disulfide Isomerases family (PDIs), which are known to mediate protein folding via either the 
formation or the breakage of disulfide  bonds75. Other than its protein folding function, exerted when located 
in the endoplasmic reticulum, PDIA4 can also be present on the surface of the platelet, where it participates in 
thrombus  formation76. It has been observed to be over-expressed in a cohort of Epithelial Ovarian Cancer (EOC) 
patients, where it was associated with disease progression and poor  prognosis77, potential mechanisms involve 
the inhibition of apoptosis emerged in another study, where the over-expression of PDIA4 in tumor cells reduced 
caspase 3 and 7 activity favoring cell  growth78, thus potentially enabling tumor resistance to  therapy79. Lastly, 
OGN, a small leucine-rich proteoglycan (SLRP) protein. Its function is different in different cell types: in the 
extracellular compartment it is involved in collagen cross-linking, while in vascular smooth cells (VSMCs) and 
fibroblasts, a reduced expression leads to cellular proliferation. Its implications in tumor progression are quite 
recent but evident. For instance, OGN appears to be under the control of p53, and several studies show a reduc-
tion or lack of OGN expression in a variety of cancers, among which breast, colon, lung, ovarian and pancreatic 
 cancer80. It has been observed in bladder cancer that ECRG4 promotes OGN expression by upregulating NFIC, 
preventing the activation of NF-KB downstream pathways, thus inhibiting cell proliferation and  migration81.

Furthermore, in breast cancer, OGN seems to reverse epithelial to mesenchymal transition by repressing the 
PI3K/Akt/mTOR  axis82. Overall, the DSS managed to identify, among the HGSOC proteome, three proteins that 
are known to be linked to tumorigenesis. In addition, the high sensitivity and specificity of these biomarkers for 
the distinction between tumor and Non-Tumor patients, coupled with the fact that they also appear to be local-
ized in the serum, is promising for their possible clinical use for the diagnosis of HGSOC. It’s worth noting that 
in our analysis seral biomarkers CA125 and HE4 were found to not correlate with Tumor phenotype, and were 
consequently dropped at the fist step of the pipeline. This prevented us from performing a proper comparison, 
since the lack of correlation implies that if we build a classifier using only these two proteins, this will be with 
any probability unable to distinguish Tumor from Non Tumor samples if applied to our datasets.

Conclusions
To summarize, we provided a reliable overview of the most relevant deregulated pathways in HGSOC, focusing 
mainly on those genes that were not related directly to HGSOC before, thus providing novel associations and new 
starting points for future researches. Furthermore, we developed a Decision Support System able to find three 
possible Biomarkers for the diagnosis of HGSOC. These three proteins are ubiquitous and exert their primary 
function in physiological conditions. However, a role for TOP1 as an oncogene has been already strongly sug-
gested, being found upregulated in different types of tumors, including breast, liver and colorectal cancers 83–86. 
Indeed, several TOP1-targeting drugs have received FDA approval 74,87,88. The connection of PDIA4 and OGN 
with tumor progression is relatively recent, PDIA4 has been found overexpressed in a cohort of EOC patients, 
and associated with poor prognosis, cell gowth and resistance. On the other hand, a decrease in OGN expres-
sion was found in different types of cancers. This is coherent with the results of our dataset analysis, in which we 
found they showed a strong correlation with the tumor phenotype, with TOP1 and PDIA4 positively correlat-
ing and OGN being negatively correlated. Furthermore, the predictive efficiency of this system in considerably 
high in both of the tested datasets. Notwithstanding, further validation is crucial to support this in silico results, 
and, for a possible clinical use, further studies are needed to assess if the proportions of these biomarkers are 
maintained in the serum as they are in HGSOC biopsies. Finally, once clinically and experimentally validated, 
this pipeline could be easily applied to other tumor datasets for the purpose of discovering novel biomarkers 
and clinical predictors.

Data availability
The datasets analysed during the current study are available in the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC) data portal repository (https:// cptac- data- portal. georg etown. edu/).
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