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Deep learning for fully 
automatic detection, 
segmentation, and Gleason grade 
estimation of prostate cancer 
in multiparametric magnetic 
resonance images
Oscar J. Pellicer‑Valero1*, José L. Marenco Jiménez2, Victor Gonzalez‑Perez3, 
Juan Luis Casanova Ramón‑Borja2, Isabel Martín García4, María Barrios Benito4, 
Paula Pelechano Gómez4, José Rubio‑Briones2, María José Rupérez5 & 
José D. Martín‑Guerrero1

Although the emergence of multi‑parametric magnetic resonance imaging (mpMRI) has had a 
profound impact on the diagnosis of prostate cancers (PCa), analyzing these images remains still 
complex even for experts. This paper proposes a fully automatic system based on Deep Learning that 
performs localization, segmentation and Gleason grade group (GGG) estimation of PCa lesions from 
prostate mpMRIs. It uses 490 mpMRIs for training/validation and 75 for testing from two different 
datasets: ProstateX and Valencian Oncology Institute Foundation. In the test set, it achieves an 
excellent lesion‑level AUC/sensitivity/specificity for the GGG ≥ 2 significance criterion of 0.96/1.00/0.79 
for the ProstateX dataset, and 0.95/1.00/0.80 for the IVO dataset. At a patient level, the results are 
0.87/1.00/0.375 in ProstateX, and 0.91/1.00/0.762 in IVO. Furthermore, on the online ProstateX grand 
challenge, the model obtained an AUC of 0.85 (0.87 when trained only on the ProstateX data, tying 
up with the original winner of the challenge). For expert comparison, IVO radiologist’s PI‑RADS 4 
sensitivity/specificity were 0.88/0.56 at a lesion level, and 0.85/0.58 at a patient level. The full code 
for the ProstateX‑trained model is openly available at https:// github. com/ Oscar Pelli cer/ prost ate_ 
lesion_ detec tion. We hope that this will represent a landmark for future research to use, compare and 
improve upon.

Prostate cancer (PCa) is the most frequently diagnosed malignancy in males in Europe and the USA and the 
second in the number of  deaths1. Magnetic resonance imaging (MRI) is a medical imaging technique that 
employs very strong magnetic fields (typically 1.5–3T) to obtain three-dimensional (3D) images of the body; 
multi-parametric MRI (mpMRI) extends MRI by combining several MRI sequences into a multi-channel 3D 
image, each sequence providing different information on the imaged tissue. mpMRI has drastically changed the 
diagnostic approach of PCa: The traditional pathway includes screening based on the determination of prostate 
serum antigen (PSA) levels and digital rectal examination followed by a systematic random transrectal  biopsy2. 
However, in recent years, the introduction of pre-biopsy mpMRI has enabled better selection of patients for 
prostate  biopsy3, increasing the diagnostic yield of the  procedure4 and allowing for more precise fusion-guided 
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biopsy examinations and focal therapies as compared with cognitive fusion  approaches5. Additionally, mpMRI-
derived parameters, such as tumor volume or PSA density (PSA divided by prostate volume) have proven helpful 
prognosis and stratification  tools6.

To promote global standardization in the interpretation of prostate mpMRI examinations, the Prostate Imag-
ing Reporting and Data System (PI-RADS) in its latest 2.1 version combines available evidence to assign scores to 
objective findings in each  sequence7. However, mpMRI interpretation is time-consuming, expertise  dependent8, 
and is usually accompanied by a non-negligible inter-observer  variability9. This is particularly the case outside 
of expert high-volume  centers10. Although promising alternative mpMRI scoring criteria are being developed, 
such as  Likert11, PI-RADS remains still the most widely used criterion for both clinical and academic purposes.

Computer-aided diagnosis (CAD) systems have been broadly defined as “the use of computer algorithms to 
aid the image interpretation process”12. In this sense, CAD is one of the most exciting lines of research in medi-
cal imaging and has been successfully applied to interpret images in different medical  scenarios13. CAD poses 
several theoretical advantages, namely speeding up the diagnosis, reducing diagnostic errors, and improving 
quantitative  evaluation14. On the topic of mpMRI-based PCa CAD, different methods have been proposed since 
the early  2000s15. These pioneered the field but were nonetheless limited in some important aspects (e.g. they 
lacked proper evaluation, expert comparison, and large enough datasets). In 2014, Litjens et al.16 proposed the 
first CAD system able to provide candidate regions for lesions along with their likelihood for malignancy using 
pharmacokinetic and appearance-derived features from several MRI sequences using classical (non-Deep Learn-
ing) voxel-based classification algorithms and evaluated the results on a large cohort of 347 patients.

Since the advent of Deep  Learning17, however, Deep Convolutional Neural Networks (CNNs) have quickly 
dominated all kinds of image analysis applications (medical and otherwise), phasing out classical classification 
techniques. In the context of the prostate, the turning point can be traced back to the ProstateX challenge in 
 201616,18,19. The challenge consisted in the classification of clinically significant PCa (csPCa) given some tenta-
tive locations on mpMRI. More importantly, a training set of 204 mpMRIs (330 lesions) was provided openly 
for training the models, hence enabling many researchers to venture into the problem (further details of this 
dataset can be found in “Data description” section). At the time, half of the contestants employed classical clas-
sification  methods20 and the other half  CNNs21. In all cases, a patch (or region of interest, ROI) of the mpMRI 
around the lesion was extracted, and a machine learning algorithm was trained to classify it as either csPCa or 
not. The second-highest-scoring  method21, with a receiver operating characteristic -ROC- curve (AUC) of 0.84, 
used a simple VGG-like22 CNN architecture trained over the mpMRI ROIs to perform classification. The main 
limitation of all these approaches is that ROIs have to be manually located beforehand (even after the model has 
been trained), hence limiting their interest and applicability to clinical practice.

In 2019, Cao et al.23 employed a slice-wise segmentation CNN, FocalNet, not only to predict csPCa but also 
a to obtain a map of the Gleason grade group (GGG)24,25 of the prostate. Very briefly, GGG is a standard 1–5 
grading system for PCa, where GGG1 cancer cells look normal and are likely to grow slowly (if at all), while 
GGG5 cells look very abnormal and are likely to grow very quickly. Segmentation-based models are a step up 
from previous patch classification approaches because they provide a csPCa map of the prostate; however, they 
cannot directly identify lesions as individual entities and assign a score to each one, as is common procedure 
in clinical practice. This is natively solved in an instance detection+segmentation framework, which is very 
common in natural image detection  tasks26; but has never been applied to csPCa detection. Additionally, two-
dimensional (2D) slice-wise CNNs are known to generally underperform as compared with actual 3D CNNs in 
lesion detection  tasks27. Indeed, in 2020 several authors turned to 3D CNNs, such as Arif et al.28 or Aldoj et al.29.

To the best of our knowledge, the model we propose is the first to leverage a proper instance detection and 
segmentation network, the 3D Retina U-Net27, to simultaneously perform detection, segmentation, and Glea-
son Grade estimation from mpMRIs to a state-of-the-art performance level. It is also one of the few works that 
combines two very different mpMRI datasets into a single model: the ProstateX dataset and the IVO (Valencian 
Institute of Technology Foundation) dataset (view “Data description” section), achieving similarly excellent 
results in both. It uses prior prostate zonal segmentation information, which is provided by an automatic seg-
mentation model, and leverages an automatic non-rigid MRI sequence registration algorithm, among other 
subsystems, allowing for a fully automatic system that requires no intervention. The code of this project has been 
made available online at https:// github. com/ Oscar Pelli cer/ prost ate_ lesion_ detec tion.

Results
Lesion detection, segmentation, and classification. Quantitative results. A comprehensive quanti-
tative evaluation of the trained model on the ProstateX and IVO test sets has been compiled in Table 1 (showing 
sensitivity and specificity) and in Supplementary Table 1 (showing positive predictive value and negative predic-
tive value). The computation procedure for patient- and lesion-level metrics is explained in “Lesion matching 
and evaluation” section. For the evaluation of sensitivity and specificity, the model-predicted scores were thresh-
olded at two working points (computed a posteriori on the test data): maximum sensitivity and balanced (similar 
sensitivity and specificity). Furthermore, radiologist-assigned pre-biopsy PI-RADS scores for all IVO patients 
with no missing sequences and with PI-RADS information available ( N = 106 patients, 111 lesions) has also 
been included in Table 3 for comparison. Please notice that PI-RADS≥ 3 is omitted since all IVO lesions were as-
signed at least a PI-RADS 3 score, and hence PI-RADS≥ 3 acts just as a naïve classifier that considers all samples 
as positive (sensitivity 1 and specificity 0). A graphical representation of the area under the receiver operating 
characteristic (ROC) curve for the main significance criterion (GGG ≥ 2) can be found in Fig. 1. Also, Supple-
mentary Table 2 uses a single threshold for all tests (but different for IVO and ProstateX datasets), computed a 
priori from the training data; this table might be a better proxy for the prospective performance of the model.

https://github.com/OscarPellicer/prostate_lesion_detection
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Focusing on the results for the GGG ≥ 2 significance criterion, at the highest sensitivity working point, the 
model achieves a perfect lesion-level sensitivity of 1 (no csPCa is missed) and a specificity of 0.786 and 0.875 for 
ProstateX and IVO, respectively (AUCs: 0.959 and 0.945). At the patient level, the specificity falls to 0.375 and 
0.762 for each dataset (AUCs: 0.865 and 0.910).

For the GGG ≥ 1 significance criterion, the model achieves a lesion-/patient-level maximum sensitivity of 
0.941 (spec. 0.788)/1 (spec. 0.138) in the ProstateX dataset, and a maximum sensitivity of 1 (spec. 0.350)/1 (spec. 
0.667) in the IVO dataset. In summary, no GGG ≥ 1 patient was missed, although at a cost of low specificity. 
Using the GGG ≥ 3 significance criterion the model reaches a lesion- and patient-level sensitivity of 0.714 (spec. 
0.887)/1 (spec.: 0.395) in the ProstateX dataset, and a maximum sensitivity of 1 (spec. 0.800)/1 (spec. 0.778) in 
the IVO dataset.

Regarding lesion segmentation performance, the mean DSC across all patients for segmenting any type of 
lesion irrespective of their GGG (including GGG0 benign lesions), was 0.276/0.255 for the IVO/ProstateX dataset 
when evaluated at the 0.25 segmentation threshold, and 0.245/0.244 when evaluated at 0.5.

Qualitative results. Figure 2 shows the output of the model evaluated on two IVO test patients and three Pros-
tateX test patients. For the sake of clarity, GGG0 (benign) bounding boxes (BBs) are not shown and, for highly 
overlapped detections (Intersection over Union, -IoU- > 0.25), only the highest-scoring BB is drawn. Detec-
tions with confidence below the GGG ≥ 2 lesion-wise maximum sensitivity threshold (0.173 for IVO, and 0.028 

Table 1.  Quantitative results for IVO (top) and ProstateX (bottom) test data evaluated with different Gleason 
Grade Group (GGG) significance criteria (e.g. lesions with GGG ≥ 1, 2, or 3 are considered positive), at lesion- 
and patient-level ( Npositives/Ntotal ), and at two thresholds (t): maximum sensitivity and balanced. For IVO data, 
results are compared with radiologist-assigned pre-biopsy PI-RADS scores for all IVO patients with no missing 
sequences and with PI-RADS information available (N=106 patients, 111 lesions). AUC: Area under the ROC 
curve.

(Dataset) & Significance criterion Level AUC 

Max. sensitivity Balanced PI-RADS≥4 PI-RADS=5

t Sens. Spec. t Sens. Spec. Sens. Spec. Sens. Spec.

IVO GGG ≥1
Lesion ( 13/33) 0.892 0.027 1.000 0.350 0.105 0.923 0.700 0.741 0.604 0.328 0.962

Patient (15/30) 0.920 0.253 1.000 0.667 0.301 0.867 0.800 0.710 0.649 0.290 0.973

IVO GGG ≥2
Lesion (8/33) 0.945 0.173 1.000 0.800 0.301 0.875 0.920 0.882 0.558 0.441 0.922

Patient (9/30) 0.910 0.219 1.000 0.762 0.262 0.889 0.810 0.850 0.576 0.400 0.924

IVO GGG ≥3
Lesion (3/33) 0.856 0.301 1.000 0.800 0.315 0.667 0.867 0.727 0.440 0.455 0.840

Patient (3/30) 0.840 0.301 1.000 0.778 0.315 0.667 0.852 0.727 0.432 0.455 0.832

ProstateX GGG ≥1
Lesion (17/69) 0.898 0.028 0.941 0.788 0.053 0.824 0.865 – – – –

Patient (16/45) 0.866 0.108 1.000 0.138 0.104 0.938 0.655 – – – –

ProstateX GGG ≥2
Lesion (13/69) 0.959 0.028 1.000 0.786 0.108 0.923 0.911 – – – –

Patient (13/45) 0.865 0.028 1.000 0.375 0.108 0.923 0.688 – – – –

ProstateX GGG ≥3
Lesion (7/69) 0.751 0.195 0.714 0.887 0.195 0.714 0.887 – – – –

Patient (7/45) 0.767 0.016 1.000 0.395 0.026 0.857 0.500 – – – –

Figure 1.  ROC curve of the model for significance criterion Gleason Grade Group ≥ 2, evaluated at the lesion 
level (left) and the patient level (right). For comparison, triangular marks represent the radiologist-assigned pre-
biopsy PI-RADS. AUC: area under the ROC curve.
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for ProstateX) are not shown either. The first IVO patient (Fig. 2, row 1) is of special interest, as it is one of the 
relatively few IVO cases where the targeted biopsy did not find csPCa (as evidenced by the GGG0 BB in the GT 
image to the left), but the massive biopsy (20–30 cylinders) detected GGG2 csPCa. As can be seen, the model 
was able to detect this GGG2 lesion while ignoring the benign GGG0 one, hence outperforming the radiologists 
for this particular instance. For the second IVO patient (Fig. 2, row 2) a GGG3+ GT lesion (GGG4 specifically) 
was properly detected by the model with very high confidence.

The first ProstateX patient (Fig. 2, row 3) is a case of failure, where the model detects a non-existent GGG2 
lesion, albeit with relatively low confidence; in fact, it would have been ignored at the balanced sensitivity setting 
( t = 0.108 ). For the next patient (Fig. 2, row 4), the model has been able to segment both GT lesions; however, 
only the csPCa lesion is detected, while the other is ignored (actually, the model correctly detected the other 

Figure 2.  Output of the model (every row corresponds to a different patient) evaluated on two IVO test patients 
(first two rows) and three ProstateX test patients (last three rows). For each patient, first image from the left 
shows the ground truth on the T2 sequence; the rest show the output predictions of the model on different 
sequences (from left to right: T2, b800, ADC, Ktrans -IVO- / DCE t = 30 -ProstateX-). Gleason Grade Group 
(GGG) 0 -benign- bounding boxes (BBs) are not shown and only the highest-scoring BB is shown for sets of 
highly overlapped detections (intersection over union > 0.25 ). Detections with confidence below the GGG ≥ 2 
lesion-wise maximum sensitivity threshold (0.173 for IVO, and 0.028 for ProstateX) are not shown either.
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lesion as a GGG0, but BBs for those lesions are not shown). For the third patient (Fig. 2, row 5), the model could 
correctly identify the GGG2 GT lesion but also identified an additional GGG2 lesion. This might be a mistake 
or might show a real lesion that was missed by the radiologists (we cannot know, as no massive biopsy informa-
tion is available for the ProstateX dataset). Due to this uncertainty, lesion-level evaluation should not penalize 
detections for which GT information was not available (such as this one), as discussed in “Lesion matching and 
evaluation” section.

Sequence ablation tests. In “Model training and validation” section, Random Channel Drop is presented as a 
training-time data augmentation technique that should help alleviate the problem of missing sequences. For a 
model trained in such a fashion, we can assess the individual importance of the different sequences by dropping 
them (i.e.: setting them to 0) at test time and analyzing the performance penalty that the model incurs. The AUCs 
after dropping different sequences (or combinations of them) are shown in Table 2.

As can be seen, removing the low b-valued (b400 for ProstateX/b500 for IVO) DW sequence seems to have 
minimal impact on both datasets, as is to be expected. Conversely, while removing the high b-valued (b800 for 
ProstateX/b1000 or b1400 for IVO) DW sequences has little impact on the ProstateX data, it severely affects the 
performance on the IVO data, likely due to the higher b values employed in this dataset (which may prove more 
informative). Furthermore, removing all DW sequences severely affects the IVO dataset, but has almost no impact 
on ProstateX. The removal of the ADC map has a similar negative impact on both datasets, although the results 
vary depending on how they are analyzed (lesion- or patient-wise). Likewise, dropping the Ktrans sequence on 
the ProstateX data or the DCE sequences on the IVO data clearly harms the performance. For the final test, all 
sequences are dropped except for the T2; despite it, the model still has a commendable performance, especially 
in the ProstateX set, which might indicate that the proposed Random Channel Drop augmentation has served 
its purpose of making the model more robust to missing sequences.

Prostate zonal segmentation. Regarding the prostate zonal segmentation model, which was developed 
with the sole purpose of automating the PCa detection system (view “Pre-processing” section), the results for all 
datasets can be found in Table 3, with mean Sørensen-Dice similarity coefficient (DSC) ranging from 0.894 to 
0.941. DSC is a metric between 0 and 1, employed to assess the relative overlap between predicted and ground 
truth (GT) segmentations. Some qualitative results for this segmentation model can be seen in Figs. 2, 4, and 5.

Discussion
Despite mpMRI interpretation being time-consuming and observer-dependent, it is a major clinical decision 
driver and poses great clinical relevance. In this paper we presented a CAD system developed with two main 
MRI datasets integrating T2, DW, b-value, and ADC maps in both of them as well as Ktrans for ProstateX and 
DCE for the IVO dataset. These were compared against fusion and transperineal template biopsies, which is 
considered the pre-operative gold standard to evaluate prostate cancer  extent30.

Different outcomes can be measured for this system. Regarding lesion detection as exposed in “Lesion 
detection, segmentation, and classification” section, the results for lesions GGG ≥ 2 significance criterion can 

Table 2.  Area under the ROC curve after dropping one (or several) particular sequences (i.e.: setting the value 
to 0) in test time for the Gleason Grade Group ≥ 2 significance criterion.

MRI sequence dropped

ProstateX IVO

Lesion Patient Lesion Patient

None (Baseline) 0.959 0.865 0.945 0.910

b400/500 0.944 0.861 0.940 0.868

b800/1000/1400 0.946 0.873 0.895 0.783

All b-numbers 0.951 0.844 0.845 0.720

ADC 0.905 0.870 0.940 0.836

K
trans 0.894 0.865 – –

All DCE – – 0.895 0.820

All but T2 0.804 0.808 0.782 0.545

Table 3.  Results for the prostate zonal segmentation model. DSC:Sørensen-Dice similarity coefficient.

Dataset N

Mean DSC

Prost. CG PZ

Private train 80 0.941 0.935 0.866

Private test 12 0.915 0.915 0.833

NCI-ISBI train 60 0.894 0.860 0.690
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be considered optimal: all csPCa lesions were detected while maintaining a very high specificity, except for the 
patient-level ProstateX evaluation, and a great AUC ranging from 0.865 to 0.959. Furthermore, the IVO results 
outperform the PI-RADS scores, especially at the high sensitivity setting (PI-RADS≥ 4 ) which is of most interest 
in clinical practice. This can be seen in Fig. 1, where the ROC is at all instances above and to the left of the PI-
RADS scores. For further comparison, several studies have reported radiologist sensitivities/specificities for the 
detection of csPCa from mpMRI at a patient level of 0.93/0.414, or 0.58–0.96/0.23–87 as shown in a systematic 
 review31. The results vary wildly due to their single-center nature, their differing criteria for the definition of 
csPCa, and the often-inaccurate reference standards employed.

Considering GGG ≥ 3 significance criterion, caution is required when interpreting these results due to the very 
low number of positive cases (e.g.: only three in the IVO test set). Furthermore, the 0.714 patient-level sensitivity 
does not mean that the model missed GGG3 lesions, but rather that they were assigned to a lower GGG (such 
as GGG2) and were therefore ignored for the GGG ≥ 3 classification problem.

In addition to the previous tests, the ongoing ProstateX challenge was used for external lesion-level validation, 
achieving an AUC of 0.85, which would have been the second-best AUC in the original ProstateX  challenge19. 
Additionally, an identical model trained only on the ProstateX data (which has been made publicly available 
alongside this paper), achieved an AUC of 0.87, which would have tied with the best contender in the challenge. 
There are now higher AUCs in the online leaderboard but, unfortunately, we were unable to find any publica-
tions regarding them, and hence no further analysis can be performed. In any case, these results must be also 
interpreted with caution: on one hand, the proposed system solves a much more complex problem (namely 
detection, segmentation & classification) than the comparatively simpler ROI classification systems which are 
typically employed for this task, and it is therefore in a disadvantage compared to them. On the other hand, as 
indicated in “Data description” section, the ProstateX challenge mpMRIs were used for training the segmenta-
tion and detection components of the model, but not the classification head (as GGG information is kept secret 
by the challenge, and hence unavailable for training). The inclusion of this data was useful for increasing the 
number of training samples, but it might have introduced some unknown bias for the evaluation of this dataset.

Outside the ProstateX challenge, one of the very first works on the topic by Litjens et al.18 reported a sensitivity 
of 0.42, 0.75, and 0.89 at 0.1, 1, and 10 false positives per normal case using a classical radiomics-based model. 
More recently, Xu et al.32 used a csPCa segmentation CNN whose output was later matched to GT lesions based 
on distance (similar to ours). He reported a sensitivity of 0.826 at some unknown specificity; also, despite using 
the ProstateX data, unfortunately, no ProstateX challenge results were provided. Cao et al.23 proposed a segmenta-
tion CNN that also included GGG classification as part of its output, reporting a maximum sensitivity of 0.893 at 
4.64 false positives per patient and an AUC of 0.79 for GGG ≥ 2 prediction. Interestingly, the authors employed 
histopathology examinations of whole-mount specimens as GT for the model. Aldoj et al.29 utilized the ProstateX 
data to perform csPCa classification on mpMRI ROIs around the provided lesion positions, reporting an AUC 
of 0.91 on their internal 25-patient test set; once again, despite using the ProstateX data exactly as conceived for 
the challenge, they do not provide any challenge results for comparison.

In an interesting prospective validation study, Schelb et al.33 obtained a sensitivity/specificity of 0.99/0.24 
using a segmentation CNN, a performance that they found comparable to radiologist-derived PI-RADS scores. 
Woźnicki et al.34 proposed a classical radiomics-based model (no CNNs involved) achieving an AUC of 0.807. As 
for patient-level csPCa classification results, Yoo et al.35 achieved an AUC of 0.84 using slice-wise CNN classifier 
whose predictions were later combined into a patient-wise total score and Winkel et al.36 achieved a sensitivity/
specificity of 0.87/0.50 on a prospective validation study using a segmentation-based detection system which is 
most similar to the one proposed here.

Considering lesion segmentation concordance, as exposed in “Lesion detection, segmentation, and classifi-
cation” section, our results are unfortunately not directly comparable to other papers in the literature (as those 
focus on segmenting exclusively csPCa and benign lesions are ignored) and were mostly added for complete-
ness. For instance, Schelb et al.33 reported a DSC of 0.34 for csPCa segmentation, similar to Vente et al.37’s 0.37 
DSC. Secondly, the reference segmentations for the ProstateX dataset were generated in an automatic manner; 
hence, the performance for this dataset is not compared against a proper ground truth. Thirdly, mpMRI lesions 
tend to be small with ill-defined margins and a very high inter-observer  variability38. For all these reasons, these 
relatively low DSC metrics must be interpreted with caution. Instead, the previously discussed metrics provide 
a more objective outlook on the actual performance of the model.

With respect to the ablation tests, there is an ongoing debate regarding the need for DCE sequences. Bi-
parametric MRI (bpMRI) (without DCE sequences) seems to be a more cost- and time-effective alternative to 
mpMRI, with little detriment to  accuracy39,40. Likewise, the role of DCE sequences is currently minor in the 
final score of the PI-RADS system, being used only in peripheral zone regions with value 3 in the DW sequence 
(which rises to 4 if an early focal uptake is detected in DCE sequences). Conversely, the results of the present 
study hint towards a greater importance of DCE sequences, which turned out to be the second most important 
sequences for the model, only behind b-numbers (T2 does not count as it was always included).

Lastly, regarding prostate zonal segmentation, we observed a great concordance between the model’s and 
expert radiologist’s prostate segmentation with a DSC that ranged from 0.894 to 0.941 depending on the MRI 
dataset. As can be seen, the results in the Private test set are extremely good, better in fact than any other model 
in the literature when evaluated in its internal test set and when evaluated blindly in the NCI-ISBI dataset. In 
Qin et al.41, for instance, the authors train one CNN on an internal dataset and another identical CNN on the 
NCI-ISBI train dataset independently, and evaluate them by cross-validation, achieving a DSC of 0.908 and 0.785 
at the CG and PZ in their internal dataset, and a DSC of 0.901 and 0.806 in the NCI-ISBI dataset. For a fairer 
comparison with our model, in Rundo et al.42, the authors train their model on two internal datasets (achieving 
a DSC of 0.829/0.859 in CG segmentation, and 0.906/0.829 in PZ segmentation), which then test blindly in the 
NCI-ISBI dataset, achieving 0.811 and 0.551 in CG and PZ segmentation, respectively. Finally, Aldoj et al.43, 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2975  | https://doi.org/10.1038/s41598-022-06730-6

www.nature.com/scientificreports/

training on a larger cohort of 141 patients and evaluating in their internal test set of 47, achieved a DSC of 0.921, 
0.895, and 0.781 for whole gland, CG, and PZ segmentation.

The interpretation of mpMRIs based on Artificial IntelIigence (AI) represents a very promising line of research 
that has already been successfully applied to prostate gland segmentation and PCa lesion detection using both 
transperineal prostate biopsy and radical prostatectomy specimens as GT with varying  results35,36. We went a 
step further and developed the first algorithm, to the best of our knowledge, that automatically contours the 
prostate into its zones, performs well at lesion detection and Gleason Grade prediction (identifying lesions of a 
given grade or higher), and segments such lesions albeit with a moderate overlapping. The model outperformed 
expert radiologists with extensive MRI experience and achieved top results in the ProstateX challenge.

The code has been made publicly available, including an automatic prostate mpMRI non-rigid registration 
algorithm and an automatic mpMRI lesion segmentation model. Most importantly, the fact that the code is online 
might allow future researchers to use this model as a reference upon which to build or to compare their models.

Our work presents some limitations. Firstly, further validation and prospective blinded trial would be required 
to compare histological results of targeted biopsies to the lesions identified by the model. Secondly, although 
the model was successfully trained on two datasets, it still behaves differently on each of them (e.g.: the optimal 
thresholds vary significantly between them), which is not desirable, but probably unavoidable. Obviously, more 
data from sources as varied as possible would be ideal to overcome such difficulties and further improve the 
performance and generality of the model. Thirdly, AI systems have proven cumbersome to integrate into clinical 
practice for a variety of reasons (costs, rejection, etc.); we hope that by making the code freely available some of 
these obstacles can be more easily overcome.

In any case, this is yet another step in the foreseeable direction of developing a strong collaborative AI net 
that progressively incorporates as many mpMRIs with the corresponding GT as possible. The clinical applica-
tions of this model are countless, amongst which we could consider assisting radiologists by speeding up prostate 
segmentation, training purposes as well as a safety net to avoid missing PCa lesions. Further, the ability to detect 
csPCa can easily highlight which MRIs would require prompt reporting and prioritizing biopsy. Moreover, given 
the recent trend towards conservative PCa approaches such as focal therapy or active surveillance (usually imply-
ing a more dedicated prostate biopsy), predicting the Gleason Grade, as well as the number of lesions pre-biopsy, 
could identify eligible men that could be offered transperineal targeted biopsy in the first place.

Materials and methods
Data description. For the development and validation of the model, two main prostate mpMRI datasets 
were employed:  ProstateX16, which is part of an ongoing online challenge at https:// prost atex. grand- chall enge. 
org and is freely available for  download18; and IVO, from the homonymous Valencian Institute of Oncology. 
The study was approved by the Ethical Committee of the Valencian Institute of Oncology (CEIm-FIVO) with 
protocol code PROSTATEDL (2019-12) and date  17th of July, 2019. All experiments were performed in accord-
ance with relevant guidelines and regulations. Informed consent was obtained from all participants and/or their 
legal guardians.

For ProstateX, the data consisted of a total of 204 mpMRIs (one per patient) including the following sequences: 
T2-weighted (T2), diffusion-weighted (DW) with b-values b50, b400, and b800 s/mm2, apparent diffusion coef-
ficient (ADC) map (calculated from the b-values), and Ktrans (computed from dynamic contrast-enhanced -DCE- 
T1-weighted series). For each of these patients, one to four (1.62 per patient on average) lesion locations (i.e.: a 
point marking their position) and their GGG are provided (GGG is provided as part of the ProstateX2 challenge, 
which shares the same data with ProstateX). The lesion locations were reported by or under the supervision of an 
expert radiologist with more than 20 years of experience in prostate MR and confirmed by MR-guided biopsy. 
Furthermore, 140 additional mpMRIs are provided as part of the challenge set, including all previous informa-
tion except for the GGG of the lesions. All mpMRIs were acquired by two different Siemens 3-Tesla scanners.

For IVO, there were a total of 221 mpMRIs, including the following sequences: T2, DW with b-values b100, 
b500, and b1000 s/mm2 (in 1.36% of the cases, b1400 was available, instead of b1000), ADC (4.52% missing) and a 
temporal series of 30 DCE T1-weighted images (42.53% missing). For each mpMRI, one to two (1.04 per patient) 
lesions were segmented by one of several radiologists with two to seven years of experience in PCa imaging, and 
their PI-RADS were provided. The Gleason Score (GS)24 was assessed by transperineal fusion-guided with two 
to three cylinders directed to each of the ROIs. Additionally all patients underwent systematic template biopsy 
comprising 20–30 cylinders to sample the rest of the prostate.

Four PCa classes were considered: GGG0 or benign (57.32% of all lesions), GGG1 (GS 3+3, 17.28%), GGG2 
(GS 3+4, 12.70%), and GGG3+ (GS ≥ 4+3, 12.70%); therefore, lesions of GGG ≥ 3 were grouped into a single 
category to try to balance the classes, and also because the protocol for a suspect GGG 3+ lesion would be similar 
irrespective of its specific grade (i.e.: the lesion would be biopsied for confirmation).

Pre‑processing. After collecting them, mpMRIs had to be pre-processed to accomplish three main objec-
tives, namely: (1) homogenize differences within datasets, (2) homogenize differences between datasets, and (3) 
enrich the images with extra information that might be useful for the model. Additionally, the preprocessing 
pipeline was designed to require as little human intervention as possible, in pursuit of developing a system easily 
implementable in clinical practice.

For the first objective, all images were cropped to an ROI around the prostate of size 160× 160× 24 voxels 
with a spacing of (0.5, 0.5, 3)mm, which corresponds with the median (and mode) spacing of the T2 sequences 
for both datasets. The rest of the sequences were applied the same processing for the sake of homogeneity. 
B-Spline interpolation of third order was employed for all image interpolation tasks, while Gaussian label inter-
polation was used for the segmentation masks. For the IVO dataset, the time series of 30 DCE images per 

https://prostatex.grand-challenge.org
https://prostatex.grand-challenge.org
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patient was sampled at times 10, 20, and 30, approximately coinciding with the peak, progression, and decay of 
the contrast agent. Then, all sequences were combined into a single multi-channel image, in which any missing 
sequences were left blanks (value of 0), such as the three DCE channels in every ProstateX image, or the Ktrans 
channel in every IVO image. The intensity was normalized by applying Equation 1 to every channel of an image 
I independently, as introduced in Pellicer-Valero et al.44.

Regarding objective (2), the procedure for homogenizing lesion representations between datasets is described in 
“Pre-processing” section, and a special data augmentation employed to alleviate the problem of missing sequences 
is presented in “Model training and validation” section. Additionally, sequences b500 (from IVO) and b400 
(from ProstateX) were considered similar enough to conform to the same channel in the final image; likewise, 
sequences b1000/b1400 (from IVO) and b800 (from ProstateX) were assigned to a single common channel too.

Concerning objective (3), “Pre-processing” section argues that prostate zonal segmentation is an important 
input for PCa assessment and describes the conception of a model for producing such segmentations automati-
cally. Additionally, DW and ADC sequences were found to be misaligned to the rest of the sequences in several 
patients; hence an automated registration step was added, which is presented in “Pre-processing” section.

Figure 3 shows the channels of one image from each dataset after all the mentioned pre-processing steps.

Automated lesion growing. To enable training a single model on both datasets, it was mandatory to homogenize 
how lesion information was to be provided to the model: while the IVO dataset provided the full segmentation 
mask for each lesion, in ProstateX only the center position of the lesion was available. Although detection sys-
tems can be adapted to detect positions, they are typically designed to work with much more semantically rich 
 BBs26, or segmentations, or  both45.

To solve this inconsistency between the datasets, a similar approach to Liu et al.46 was employed: for the 
ProstateX dataset, lesions were automatically segmented by growing them from the provided image position 
(used as seed), using a threshold level set method from Python library  SimpleITK47. Concretely, the algorithm 
was applied independently to sequences T2, b800, and Ktrans , and all segmented areas present in at least two 
of these three sequences were kept. Figure 4 shows the process of applying this segmentation algorithm to one 
image. This figure (and several others in this paper) were generated using Python library  plot_lib48.

Automated prostate zonal segmentation. Following McNeal’s  criterion49, the prostate is typically partitioned into 
two distinct zones: the Central Gland (CG, including both the transition zone and the central zone, which are 
difficult to distinguish) and the Peripheral Zone (PZ). PCa lesions vary in frequency and malignancy depending 
on  zone50 and, as such, PI-RADS v2 considers them when assessing  mpMRIs51. Therefore, just like a radiologist, 
a model for automated PCa detection and classification will likely benefit from having both CG and PZ mask 
priors provided as inputs, in addition to the mpMRI.

Accordingly, a cascading system of two segmentation CNNs, similar to the one introduced by Zhu et al.52, 
was developed for automatic CG and PZ segmentation. As it can be seen in Supplementary Figure 1, the first 
CNN -a published  model44 based on the U-Net53 CNN architecture with  dense54 and  residual55 blocks-, takes 
a prostate T2 image as input and produces a prostate segmentation mask as output. Then, the second CNN 
takes both the T2 image and the prostate segmentation mask obtained in the previous step and generates a CG 
segmentation mask as output. Finally, the PZ segmentation mask can be computed by subtracting the CG from 
the prostate segmentation mask.

The second CNN employed an architecture identical to the first one but was retrained on 92 prostate T2 
images from a private dataset, in which the CG was manually segmented by a radiologist with two years of 
experience in PCa imaging. To be more precise, 80 of the 92 images were used for training the CG segmentation 
model, while the remaining 12 were employed for testing. Additionally, this model was also blindly tested (i.e.: 
with no retraining or adaptation of any kind) against the NCI-ISBI56 train dataset, which is freely available at 
http:// doi. org/ 10. 7937/ K9/ TCIA. 2015. zF0vl OPv. The results of this prostate zonal segmentation model are very 
briefly analyzed and compared to others in “Prostate zonal segmentation” section. Once trained and validated, 
this model was employed to obtain the CG and PZ masks of all the prostates in the current study.

(1)Inew =
I − percentile(I , 1)

percentile(I , 99)− percentile(I , 1)

Figure 3.  Final pre-processed image from a single patient (top: IVO, bottom: ProstateX). Channels (from left to 
right): T2, b400/b500, b800/b1000/b1400, ADC, Ktrans , DCE t = 10 , DCE t = 20 , DCE t = 30 , prostate mask, 
CG mask and PZ mask.

http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
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Automated sequence registration. In several patients, DW sequences and the ADC map were misaligned to T2 
and the other sequences. As a solution, non-rigid registration (based on a BSpline transformation) was applied 
between the spatial gradient of the T2 and the ADC map using Python library  SimpleITK47, with Mattes Mutual 
 Information57 as loss function and gradient  descent58 as the optimizer for the BSpline parameters. For every 
mpMRI, the registration algorithm was run 50 times with different parameter initializations, and the correlation 
coefficient between the spatial gradient of the T2 sequence and the spatial gradient of the registered ADC map 
was evaluated at the CG and the PZ areas. These custom metrics allowed to place a bigger emphasis to the areas 
of interest, as compared to image-wide metrics. Finally, the transformation associated with the run yielding the 
highest value for the average of all metrics and the loss was chosen as final and applied to both DW and ADC 
sequences. Figure 5 shows the result of applying this procedure to one mpMRI.

Model training and validation. After pre-processing the data, it was used to train a Retina U-Net27 CNN 
architecture, which allows for the simultaneous detection, segmentation, and classification of PCa lesions. 
“Model training and validation” section provides an overview of this architecture, while “Hyperparameters–
Epoch and CV ensembling during testing” sections deal with all engineering decisions related to the model 
training, validation, and testing.

Architecture: Retina U‑Net. The Retina U-Net27 architecture combines the Retina  Net59 detector with the U-Net 
segmentation CNN and is specifically designed for application to medical images. On one hand, Retina Net is a 
one-shot detector, meaning that classification and BB refinement (regression) are directly performed using the 
intermediate activation maps from the output of each decoder block in the Feature Pyramid Network (FPN) that 
conforms its  backbone60, making it not only more efficient but also better suited for lesion detection in medical 

Figure 4.  Automatic lesion segmentation for a ProstateX patient in sequences (from left to right: T2, b800 and 
K
trans ) before combining them. Prostate zonal segmentation and the original lesion position (in red) are shown 

for reference.

Figure 5.  Automatic registration between T2 sequence (left) and ADC map (center: before, right: after) for a 
sample mpMRI.
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images, which have distinct characteristics compared to natural images (e.g.: there is no overlap between detec-
tions).

Furthermore, in the Retina U-Net, the FPN has been extended with two more high-resolution pyramid 
levels leading to a final segmentation layer, hence making the extended FPN architecture extremely akin to 
that of the U-Net. Therefore, the lesions are segmented independently of the detections (unlike other similar 
detection+segmentation architectures, such as Mask R-CNN26). This simplifies the architecture significantly, 
while still being a sensible choice for segmenting lesions since they all represent a single entity irrespective of 
their particular classes. Supplementary Figure 2 shows an overview of the Retina U-net architecture applied to 
the problem of simultaneous PCa detection, classification, and segmentation.

Hyperparameters. An ensemble of five CNNs (see “Model training and validation” section) was trained with 
the ResNet101-like  backbone55 with batch  normalization61 and a batch size of 6, at 120 batches per epoch, for 
a total of 115 epochs. Please, refer to “Model training and validation” section  for more information on how 
data was split for training and validating the model. A triangular cyclical learning rate (LR) with exponential 
decay was  employed62, with LRs oscillating between a minimum of 8× 10−5 and a maximum of 3.5× 10−4 . For 
the BBs, a single aspect ratio of 1 (before BB refinement) was considered sufficient, with scales ranging from 
4× 4× 1 voxels (i.e.: 2× 2 × 3 mm), all the way to 28× 28× 9 voxels (i.e.: 14× 14× 27 mm), depending on 
the pyramid level on which the detection was performed. The rest of the parameters were left at their default 
 values27.

In particular, the encoder was a ResNet101-like CNN with the highest-resolution pyramid levels ( P0 and P1 ) 
consisting of a single convolution, and the rest ( P2, . . . ,P5 ) consisting of [3, 7, 21, 3] residual blocks, respectively. 
The stride of the last convolution of each pyramid level P0, . . . ,P5 was set to [1, 2, 2, 2, 2, 2], respectively for the x 
and y dimensions of the feature maps, and to [1, 1, 1, 2, 2, 2] for the z dimension, to account for the non-uniform 
voxel spacing. The decoder consisted in a single convolution per pyramid level followed by a simple upsampling; 
feature maps from the skip connections were merged with the upsampled feature maps by addition. Both the BB 
regressor head and the classifier head consisted of a stack of five convolutions. Convolution kernels were all of 
size 3× 3 and relu non-linearity was used as activation function.

Online data augmentation. To help with regularization and to expand the limited training data, extensive 
online 3D data augmentation was employed during training using the Python library  Batchgenerators63. Both 
rigid and non-rigid transformations, such as scaling, rotations, and elastic deformations were used.

Additionally, a custom augmentation was included to help deal with the issue of missing sequences, either 
because they never existed (such as Ktrans images in the IVO dataset), or because they were not available. This 
augmentation, named Random Channel Drop, consisted in setting any given channel to zero (blanking it) with 
a certain probability, hence accustoming the model to dealing with missing data. During training, every chan-
nel of every image had a 7.5% probability of being dropped, except for the T2 channel and the segmentation 
masks, which had a probability of 0% (since they are assumed to be always available). The three DCE channels 
were considered as a whole for the purposes of dropping them (i.e.: they could not be dropped independently 
of each other).

Data partitioning. The mpMRIs were split into two sets: the train/validation set and the test set. The test set 
only contained “complete” mpMRIs (with no missing sequences), amounting to 30 IVO patients (23.62% of all 
complete IVO patients) and 45 ProstateX patients (22.17% of all ProstateX patients). This set was kept secret 
during the development of the model and was only employed eventually to validate it. Instead, for internal vali-
dation, five-fold cross-validation (CV) was employed: the train/validation set was split into five disjoint subsets, 
and five different instances of the same Retina U-Net model were successively trained on four out of the five 
subsets and validated on the fifth, hence creating a virtual validation dataset that encompassed the totality of the 
training data (but not the test data, which were kept apart).

As mentioned in “Data description” section, there was an additional ProstateX challenge set containing 140 
mpMRIs with all the same information as the training set, except for the lesion GGG, which was not available. 
Hence, this dataset could also be employed for training both the segmentation and the BB regressor components 
of the Retina U-Net (but not the classifier). As such, this dataset was included as part of the training set (but not 
in the validation sets, as it contained no GT class information), and the classifier had to be modified to ignore 
any detection belonging to this dataset (i.e.: the loss was not propagated from such detections).

In summary, the model was trained and five-fold cross-validated with 191 IVO patients (of which only 45.55% 
were complete) + 159 ProstateX patients (all complete) + 140 ProstateX test patients (those coming from the 
ProstateX challenge set, for which GGG class information was not available). For testing, a secret subset consist-
ing of 30 IVO patients and 45 ProstateX patients (all complete) was employed. The model was also tested on the 
ongoing ProstateX challenge.

Epoch and CV ensembling during testing. During the final test set prediction, both epoch and CV ensembling 
were used to boost the capabilities of the model. In general, ensembling consists in training N models for the 
same task, using them to predict on a given test set, and then combining all N predictions to achieve a better joint 
performance than that of each model individually. Hence, the five CV models were used for ensembling and, 
additionally, for every one of these CV models, the weights from the best (i.e.: highest validation mean -over all 
classes- Average Precision) five epochs were used as further independent models, totaling an equivalent of 25 
virtual models.
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Then, the predictions from the ensemble on the test set were combined in the following way: for segmenta-
tion masks, the average mask (over all 25 proposals) was computed and, for the BBs, the weighted box clustering 
(WBC) algorithm with an Intersection over Union threshold of 1× 10−5 was applied to each class independently. 
The WBC algorithm is described in the original Retina U-Net  paper27.

Lesion matching and evaluation. The results were evaluated at three lesion significance thresholds 
(GGG ≥ 1, GGG ≥ 2, and GGG ≥ 3) and two levels: lesion-level and patient-level. Only predicted BBs with a pre-
dicted GGG equal or above the chosen significance threshold (e.g.: GGG ≥ 2) were considered, and the rest were 
completely ignored.

For lesion-level evaluation, each of the GT lesions was first matched with one (or none) of the detected 
lesions. First, all predicted BBs whose centroid was less than 15 mm away from that of the GT BB were selected 
as candidates for matching, and assigned a matching score computed as p̂+ k · (1− d/15mm) , where p̂ rep-
resents the actual score given by the model to that detection, d is the distance between the GT BB centroid and 
the candidate BB centroid, and k = 2 . That way, both the model confidence ( ̂p ) and distance to the GT ( d ) were 
considered for matching. The parameters for this matching procedure (e.g.: k = 2 , 15 mm) were adjusted directly 
on the training set. If no detections existed within a 15 mm radius of a GT BB, a score of 0 was assigned to it. This 
evaluation method measures the performance of the model only on GT lesions for which biopsy confirmation 
and GGG are available, without assuming anything about the rest of the prostate, which may or may not contain 
other lesions. Furthermore, it allows the model to compete in the online ProstateX challenge (despite it not being 
an ROI classification model) since it can assign a score to every GT lesion.

For patient-level evaluation, the patient score was computed as the highest score from any BB predicted for 
the patient, and the GT GGG of a patient was computed as the highest GGG among all his GT lesions and among 
all the 20–30 cylinders obtained in the systematic biopsy (which were only available for patients from the IVO 
dataset). Hence, for the IVO dataset, a patient without any significant GT lesions might still have csPCa; for 
ProstateX, however, we do not know, and we must assume that this does not happen.

Data availability
Data from the ProstateX challenge are available at https:// doi. org/ 10. 7937/ K9TCIA. 2017. MURS5 CL18; data from 
the Valencian Institute of Oncology is not publicly available, since the ethical committee (CEIm-FIVO) only 
approved its use for the current study. They might be made available for research purposes on reasonable request 
from the corresponding author. The code of the project is available at https:// github. com/ Oscar Pelli cer/ prost 
ate_ lesion_ detec tion.
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