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Novel connections and physical 
implications of thermal 
metamaterials with imperfect 
interfaces
Tungyang Chen* & Jun‑Hong Lin

Thermal metamaterials are of great importance in advanced energy control and management. 
Previous studies mainly focused on interfaces with perfect bonding conditions. In principle, 
imperfectness always exists across interface and the effect is intriguingly important with small‑
length scales. This work reports the imperfect interface effect in thermal metamaterials thoroughly. 
Low conductivity‑ and high conductivity‑type interfaces are considered. We show that an object can 
always be made thermally invisible, with the effect of imperfect interface, as that of a homogeneous 
background material. This unprecedented condition is derived in an exact and analytic form, 
systematically structured, with much versatile and physical implications. Conditions for thermal 
shielding and enhancements are analytically found and numerically exemplified, highlighting 
the specific role of material and geometric parameters. We find that both types of interfaces are 
complementing with each other which, all together, will constitute a full spectrum to achieve the 
thermal invisibility. The analytic finding offers a general perception that adds to the understanding of 
heat transport mechanism across interfaces in thermal metamaterials, in ways that drastically distinct 
from that of ideal interfaces. This finding opens up new possibilities for the control and management 
of thermal metamaterials with imperfect bonding interfaces.

Management and control of heat is familiar to all of us and is ubiquitous in our daily life. The phenomena of heat 
transfer across solid interfaces between different materials are of central importance in modern technologies and 
applications, particularly with scaling down of the  devices1. On the other hand, thermal devices that are capable 
of confine energy, preferably with an enhanced intensity, are becoming imperative especially in the field of energy 
harvesting. To realize these functionalities in various applications, it would require an in-depth understanding 
on the transfer mechanism across  interfaces2, particularly counting into the effect of bonding imperfectness.

In the last decade, significant progress was made in the compositions of materials, referred to as thermal meta-
materials, to control the flow of heat along a certain path. Among them, by surrounding an artificially designed 
material, it is possible to make an object undetectable from thermal  measurements3,4. The coordinate transforma-
tion  method5, originally proposed in optics for invisibility cloaks, offers a systematic approach capable of precisely 
manipulating wave-based as well as diffusion-based  phenomena6 in a desired manner. Han et al.7 showed that 
a circular anisotropic layer can serve as a tunable device to control thermal energy within a certain area. Other 
relevant works on thermal devices have been studied theoretically and  numerically8–12. Substantial progress has 
also been made in experimental verifications of thermal  devices13–23. For a general exposition of the subject, 
one can refer to the review  articles24–28 and the  monograph29. All these aforementioned studies mainly consider 
ideal interfaces. In principle, imperfectness of bonding always exists across the interface between two dissimilar 
solids in contact. Particularly, in small-length scales, an ideal interface framework could not be adequate and that 
interfacial thermal contact will become non-negligible2,30. For a given volume fraction, the smaller the partcle 
size, the larger will be the total contact surface area between different materials. Yet very little work focused on the 
effects of imperfect interface effect, nor on the general transport mechanisms of thermal energy across interfaces 
of thermal metamaterials. Zheng and  Li31 recently demonstrated that, with the interfacial thermal resistance, the 
temperature field outside the cloak could be greatly distorted, in contrast to that of ideal interfaces.

In this study, we consider steady-state heat conduction, under a macroscopic scale, governed by Fourier’s 
law. We examine the effect of imperfect interface in the design of a homogeneous thermal metamaterial, mostly 

OPEN

Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC. *email: tchen@
mail.ncku.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06719-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2734  | https://doi.org/10.1038/s41598-022-06719-1

www.nature.com/scientificreports/

in analytic forms, highlighting the specific role of material and geometric parameters. We show that, with the 
imperfect bonding across interfaces, under a certain universal connection, an object can still be made ther-
mally invisible as that of a homogeneous material. This connection, referred to as thermal invisibility condition, 
can be exactly constructed. The underlying theory is to utilize the neutral inclusion concept in mechanics of 
 composites32, which allows us to build the invisibility condition through a series of homogenization process. 
Two different types of imperfect interfaces, low conductivity—(LC) and high conductivity—(HC) types, are 
considered. The LC-type interface exhibits an interfacial thermal  resistance30, where when a heat flux passes 
through an interface, a proportional temperature jump will occur. On the other hand, a HC-type  interface33 is 
physically opposite to that of LC-type interface. In this kind of interface the temperature field is continuous across 
the interface, while the jump of the normal component of heat flux is proportional to the surface Laplacian of 
the temperature field at the contact boundary. Unlike the simple condition for perfect bonding situations, the 
thermal invisibility conditions now exhibit size effects, but have well-structured forms, fully elucidatory from 
the viewpoints of effective conductivity of composite cylinders  assemblages32. Quite a few previously known 
results can be deduced as simplified solutions. It appears that the field responses associated with LC- and HC-
type interfaces are exactly linked with each other, which implies that, irrespective of the material and geometric 
parameters, the LC- and HC-type interfaces, all together, will constitute a full spectrum to achieve the thermal 
invisibility condition. Conditions of thermal shielding and concentrating are analytically found. In general, the 
imperfect interfaces will broadly affect the energy flow across the interface, and that significant factors dominat-
ing the concentrating or shielding behavior are identified from the analytic result.

It is mentioned that thermal contact resistance could be due to poor mechanical contact and roughness at their 
common boundaries, and also due to the different physical properties in different  materials31. As demonstrated 
by Sanchez-Palencia34, the LC- and HC-type interface can be derived from the configuration of a thin interphase 
layer of relatively low or high conductivity. A mathematical derivation of the interface conditions can be found 
in Benveniste and  Miloh35. Apart from the LC- and HC-type interfaces, we mention that there is a third model, 
referred to as the general imperfect interface  model36,37, in which both the temperature and the normal heat flux 
could have possible jumps across the interface. This model is to simulate, in an asymptotic manner, the three-
phase medium as a two-phase medium but with a general imperfect interface condition. The original exposition 
of this general interface model was first proposed by  Bovik38 in the context of dynamic elasticity and acoustics.

We start from a summary of the main results, followed by a detailed exposition of the analytic thermal invis-
ibility condition. Numerical illustrations as well as finite-element simulations will be presented to highlight the 
interplay for the balance among the material and geometric parameters. At present, studies on the interface bond-
ing effects of thermal metamaterials are rather scarce and the current understanding on the effect of imperfect 
bonding in thermal metamaterials remains elusive, partly due to the complexity of the interface condition that 
obstructs a general image. The present analytic studies in this way shed light on this. Since the interface in general 
may not be perfect, the finding could provide a general guideline that facilitates the design and experiment of 
homogeneous thermal metamaterials.

Results
At a macroscale, heat conduction can be viewed as a diffusion process in which thermal energy flows from hot 
region to cold region. The heat equation, described by Fourier’s law and the conservation of energy, character-
izes the temperature field over space and time. Under a steady state condition, in the absence of heat source, the 
temperature field in a medium is governed by the Fourier law ∇ · (k∇T) = 0 , where T is the temperature field and  
k is the thermal conductivity tensor. For natural materials the values of thermal conductivity vary a great deal, 
ranging from poorly conducting materials with k ≈ 0.02 W  m−1  K−1 to good conductors with k ≈ 400 W  m−1  K−1.

We consider a two-dimensional model depicted as in Fig. 1. Region I is isotropic with conductivity k = k0, 
which is the region for heat flux control. Region II is the thermal metamaterial made of an anisotropic layer with 
constant radial and circumferential conductivities given as

Region III is the surrounding background material with the same isotropic conductivity k = k0 as in Region I. 
Along the x-direction, a uniform thermal intensity E is prescribed. The interfaces between Region I and Region 
II, and between Region II and Region III, could be imperfectly bonded, with either LC- or HC-type. We will show 
that a tailored set of constant materials and geometric parameters in Region II can act as a functional thermal 
metamaterial in such a way that the outer field in Region III will remain to have a constant temperature intensity 
E, as if the whole medium is spatially homogeneous. In addition, the thermal intensity in Region I can be tuned 
to be greatly enhanced or shielded.

Low conductivity‑type interface. The LC-type interface is that the interface exhibits thermal contact 
resistance, or Kapitza  resistance30, between the two surfaces in contact. In this case, the temperature will have a 
drop across the interface, while the normal component of heat flux q · n = −(k∇T) · n will be continuous. For 
theoretical and numerical studies in the context of composites, we mention the works of Refs.39–43. Specifically, 
the interface conditions for the LC type of interface at r = a are

(1)k =

(
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0 kθθ
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The interface condition at r = b will be given in Supplementary Material S3 for brevity. Here ∂/∂n is the 
normal derivative at the interfaces and T1, T2 and T3 represent the temperature fields in Regions I, II and III, 
respectively. The interface parameter β is defined as the ratio between the temperature drop and the heat flow 
across the interface, with a dimension of W  m−2  K−1. When β → ∞ , the LC-type interface will reduce to that of 
the perfect bonding interface. We shall use βa to denote the LC-type interface parameter at interface r = a, and 
similarly βb for r = b. It should be emphasized that the mathematical framework of LC-type interface can be 
formulated by considering a thin interphase layer, of a constant thickness t with relatively low conductivity kc, 
compared to those of the two neighboring  regions39. By taking an asymptotic analysis with equilibrium consid-
erations, one can show that the effect of the interphase is equivalent to an interface between the two phases with 
a LC-type of interface condition, where β = lim

t→0,kc→0
kc/t . We will show that, in the presence of thermal contact 

resistances, it is possible to achieve the thermal invisibility in the outer Region III. The exact connection for the 
LC-type can be exactly determined as

where c = (a/b)2 is the area fraction of Region I, g = k0/kG, β̃a = k0
/
(aβa) and β̃b = k0

/
(bβb). The quantity 

kG =
√
krkθ  is the geometric average of kr and kθ, and � =

√
kθ /kr  is a parameter that signifies the anisotropy 

of the conductivity tensor in Region II. Apparently, λ = 1 stands for an isotropic material in Region II. We note 
that all the parameters in (3) are non-dimensional. Here the top tilde of β̃ is used for the non-dimensional 
interface parameter with LC-type interfaces, while a top hat will be used for those of HC-type interfaces to be 
described later. The constant g is a parameter indicating the relative magnitude of kG and k0. For example, g < 1 
means k0 < kG, whereas g > 1 indicates k0 > kG. Note that g = 1 is exactly the thermal neutrality condition for the 
ideal interfaces. In our formulation, we consider that both the interfaces at r = a and r = b are imperfectly bonded 
with different interface parameters. When only one interface is imperfect, we can simply let β̃a = 0 or β̃b = 0 
in (3) and directly deduce a simplified version of (3). Particularly, when the thermal invisibility condition (3) is 
fulfilled, the temperature field in the Region III will remain as T3 = −Er cos θ . This suggests that Regions I and 
II, togther with the effect of the imperfect interfaces, are effectively equivalent to that of a homogenous circular 
cylinder with conductivity k0. We note that, in addition to the interface parameters β̃a and β̃b , the thermal invis-
ibility condition (3) also depend on three parameters, g = k0/kG, λ and c = (a/b)2. Note that in the case of perfect 
bonding interfaces, we have βa → ∞,βb → ∞ , that is β̃a → 0 , β̃b → 0 . Equation (3) will exactly reduce to the 
effective conductivity of composte cylinder  assemblage44, an isotropic inclusion of conductivity k0 coated with a 
cylindrically orthotropic layer with conductivity tensor (1). It can be verified analytically, by direct expansion, that 
the thermal invisibility condition (3) will recover exactly to the known neutrality condition for the perfect bond-
ing  situation7, krrkθθ = k20 . Note that this latter connection under the perfect bonding condition is independent 
of the absolute sizes of the regions I and II, nor of the area fraction. Physically, the LC-type interface, compared 
to that of perfect interface, exhibits a thermal contact resistance at interface. Thereby, in the presence of a positive 
interface parameter β, to fulfill the thermal invisibility condition, one would necessarily have kG > k0, i.e., g < 1.

High conductivity‑type interface. The behavior of HC-type interface is physically opposite to that of 
LC-type interface. The mathematical framework of HC-type interface can be derived by considering a thin 
interphase layer of a constant thickness t with relatively high conductivity kc. Related studies on the effect of HC-

(3)g

[
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)]
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[
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(
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[
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+ c�
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)] + β̃b = 1, for g < 1,

Figure 1.  A schematic illustration of a circular thermal device with imperfect interfaces. Region I has an 
isotropic conductivity k = k0 and is the targeted region for heat flux control. Region II is the designed region with 
constant radial and circumferential conductivities. Region III is the surrounding background material with the 
same isotropic conductivity as in Region I. The interfaces at r = a and r = b are imperfectly bonded with different 
interface parameters.
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type interfaces in composite systems can be found, for example, in the  papers33,45–49. In the context of elasticity, 
HC-type interface is relevant to the interface conditions with surface stress  effects50. Specifically, the HC-type 
interface conditiond at r = a are

where �s is the surface Laplacian operator. The interface condition at r = b is omitted here and is expressed in 
(S4) for conciseness. The parameter of the HC-type interface can be derived as α = lim

t→0,kc→∞
kct , where α has 

a dimension of W  K−1. We note that αa = αb = 0 will correspond to ideal interface conditions. For the configura-
tion of Fig. 1, we find that, in the presence of HC-type interfaces, when the material and geometric parameters 
fulfill the condition

the temperature field in Region III will remain to have T3 = −Er cos θ , as if the whole medium is homogeneous. 
In (5), we have defined the dimensionless parameters α̂a = αa

/
(ak0) , α̂b = αb

/
(bk0) . Note again, as in (3), in 

addition to the interface parameters α̂a and α̂b , the invisibility condition (5) also depend on the three param-
eters, g, λ and the area fraction c. Note also that for perfect bonding interfaces we have αa → 0 , αb → 0 , namely 
α̂a → 0 and α̂b → 0. It can be shown that Eq. (5) will recover the known condition under the perfect bonding 
 conditions7 krrkθθ = k20 . Physically, the HC-type interface represents a more conductive behavior than that of 
the perfect bonding interface. As such, when we have k0 > kG, to fulfill the invisibility condition it is necessary 
to have HC-type interfaces to balance the mismatch between k0 and kG. To address the point, in Fig. 2 we plot 
the relation between k0/kG and the dimensionless interface parameters, β̃a or α̂a . In the numerical illustrations, 
we have assumed βa = βb = β and αa = αb = α, as both interfaces separate Region II and a region with isotropic 
conductivity k0. For numerical illustrations, we specify c = (a/b)2 = 1/4. Note that the horizontal axis is expressed 
in logarithmic scale. The left panel of Fig. 2 corresponds to the range of k0/kG <  100, where a LC-type interface is 
needed to compensate the conductivity of Region II so that the outer field in Region III will remain unaffected.

The associated dimensionless interface parameter k0/aβ is indicated on the vertical axis on the left panel. 
On the other hand, when k0/kG >  100, a HC-type interface will be invoked to render the outer field invisible, as 
that of a homogeneous medium. The corresponding non-dimensional interface parameter α/ak0 is labelled on 
the vertical axis on the right side. Different curves for various values of λ are plotted. The curves corresponding 
to λ = 10 and λ =  102 are nearly overlapping, and thus for λ >  102 the corresponding curve can be viewed as an 
asymptotic limit. We note that all curves are intersecting at a single point kG/k0 =  100, which is the situation for 

(4)T1 = T2|r=a,

(

k0
∂T1

∂r
− kr

∂T2
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)∣
∣
∣
∣
r=a

= (αa�sT)|r=a,
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(
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)
+ 1

]
+ c�

[
g
(
1+ α̂a

)
− 1

]

[
g
(
1+ α̂a

)
+ 1

]
− c�
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Figure 2.  Numerical illustrations of the geometric and material parameters that fulfill the thermal invisibility 
conditions (3) and (5) for c = 1/4. The horizontal axis is k0/kG, expressed in logarithmic scale. The left panel, 
corresponding to the range of k0/kG <  100, will invoke a LC-type interface parameter k0/aβa. Different curves 
(dashed lines) correspond to different values of λ. The right panel, corresponding to the range of k0/kG >  100, will 
involve a HC-type interface parameter αa/ak0. Different curves (solid lines) corresponds to different values of λ 
and the vertical axis is marked on the right-side. Note that the curve λ =  100 corresponds to an isotropic material 
in Region II in which kr = kθ .
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perfect bonding interfaces corresponding to α → 0 or β → ∞. Interestingly, the curves between the two sides 
along the line k0/kG =  100 appear to possess a reflection symmetry. We will confirm this later in “Methods”  sec-
tion. In Fig. 3, we plot the value of β̃b = k0

/
bβb versus the anisotropy parameter λ for the case of g = 2/3, c = 1/4 

and b = 1 μm. It is seen that when λ  → 0, we have β̃b → 0 . On the other hand, when λ  → ∞, we have β̃b → 1
/
3 . 

Also we observe when λ <  10−2, or λ >  10−2, the curves are virtually unchanged. Note Fig. 3 also applies to the case 
of g = 3/2, but now the vertical axis needs to be replaced by the scale of α̂b.

In short, the exact thermal invisibility conditions are expressed in analytical forms in Eq. (3) for the LC-type 
and in Eq. (5) for the HC-type interfaces. The explicit expressions depend on the material properties as well as 
the geometric parameters. Note that all these parameters are non-dimensional, including the interface parameters 
β̃ and α̂ , the anisotropic ratio � =

√

kθ
/
kr  , the ratio g = k0/kG and the area fraction c = (a/b)2. A detailed study 

on the effects of extreme values of � , g = k0/kG and c = (a/b)2 is given in Supplementary Materials. This will provide 
theoretical examinations, in complement with the numerical illustrations given in Figs. 2 and 3, on the trend 
under the extreme values of g = k0/kG, � and c to achieve the thermal neutrality conditions (3) or (5). Both theo-
retical and numerical results agree perfectly under extreme values of g for Fig. 2 and � for Fig. 3.

Theoretical analysis
We now present the theoretical analysis of the conduction of the geometric model shown in Fig. 1. The governing 
temperature fields for Regions I and III are simply the Laplace equation, while the field equation for Region II 
can be written as ∂

2T
∂r2

+ 1
r
∂T
∂r + �

2

r2
∂2T
∂θ2

= 0. Boundary condition T(x = r cos θ = ±x0) = ∓T0 are prescribed on 
the left and right surfaces of the configuration (Fig. 1), with T0 = −Ex0 and E is the prescribed constant intensity. 
Taking into account the boundary condition and the geometric symmetry, the temperature potentials in the three 
regions are given in (S2). If the medium is homogeneous throughout, the temperature gradient will be spatially 
uniform. But in the presence of the Region II together with the imperfect interfaces along r = a and r = b, heat 
flows will be generally distorted. We find that under the condition of (3) or (5), the outer field in Region III will 
remain to possess a uniform intensity E, as if the Region II and the imperfect interfaces are entirely invisible. A 
direct outline of the solution procedure will be given in Supplementary Material. In “Methods” section, instead, 
a simple exposition of the thermal invisibility condition based on the neutral inclusion concept is presented 
through a series of homogenization process (see Fig. 6). Now under the invisibility condition (3), we find that 
the temperature field in Regions I and II can be exactly expressed as

where T3 = −Er cos θ . Here the subscript β on the left-hand side is used to signify the fields for LC-type inter-
faces, in distinction with that of HC-type interfaces to be presented later. We are particularly interested with the 
ratio of T1/T3, in which a value of T1/T3 > 1 will represent a concentrating effect, while a value of T1/T3 < 1 will 
indicate a cloaking or shielding effect. We first note that when c → 0, that is a ≪ b , we have T1/T3 → 0. On the 
other hand, when c  →  1, that is a ≈ b, we have T1/T3 → 1. Since 0 < c ≤ 1, it is evident that −∞ < ln c ≤ 0 and 
1 ≤ c−1/2 = b

/
a < ∞ .  Also,  from elementary algebra,  we know that cosh

(
�

2
ln c

)

≥ 1 and 
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Figure 3.  The value of β̃b = k0

/
bβb versus the anisotropy parameter λ. In this illustration, we specify g = 2/3, 

c = 1/4 and b = 1 μm. Note the curve also applies to the case of g = 3/2, but the vertical axis is now changed to the 
scale of α̂a.
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−1 < tanh

(
�

2
ln c

)

< 0 . Thus, in view of (6), we conclude that the constant intensity in Region I is always 
bounded by the ratio b/a,

where the upper limit is attained by the perfect bonding conditions, that is g = 1,β̃a = β̃b = 0 , and λ  → 0. Note 
that for perfect bonding interfaces, the internal fields will be exactly reduced to the known solutions 
T1

/
T0 =

(
a
/
b
)�−1 and T2

/
T0 =

(
r
/
b
)�−17. To illustrate the variation of intensity in Region I, we see that the 

constant intensity in (6) will depend on c, λ, and 
(

1+ β̃a

)/

g . Note these three parameters need to follow the 
thermal invisibility condition (3). For convenience, let us define � =

(

1+ β̃a

)/

g and rewrite (3) as in Eq. (S5). 
In Fig. 4, we plot the value of T1/T3 versus λ for different values of Λ, where the area fraction c is specified as 
c = 1/4 . Since β̃a ≥ 0 and 0 < g < 1, the value of Λ is always greater than 1 and that Λ = 1 corresponds to the perfect 
bonding condition. If one defines �cr as the value of λ such that T1/T3 = 1, it can be seen from Fig. 4 that, for a 
fixed value of c, when the value of Λ is increased, a smaller value of λ is needed to attain the value T1/T3 = 1.

Next, we consider the HC-type interfaces. Now under the condition (5), we find that the temperature field 
in the Regions I and II can be exactly expressed as

We note that the two terms in the denominator, as in (6) and (7), are always greater than unity, thus it is seen 
that T1/T3 ≤ b/a. The upper limit of is achieved for λ  → 0 under the perfect bonding condition, that is g = 1 and 
α̂a = α̂b = 0 . Again, the expressions (9) and (10) can be shown to reduce to the known solution for perfect bond-
ing interfaces. For simplicity, we can define Ŵ = g

(
1+ α̂a

)
 and rewrite the thermal invisibility condition (5) as 

in (S6). The value of Ŵ is always greater than 1, since α̂a ≥ 0 and g > 1, and that Γ = 1 corresponds to the perfect 
bonding situation. For a fixed value of c, one can draw diagrams for the value of T1

/
T3

∣
∣
α
 versus λ for different 

values of Ŵ. Note that the illustration for HC-type interfaces will be exactly the same with that of the LC-type 
interface simply by replacing Λ by Γ, which will be explained later in “Methods” section.

In Fig. 5a,b, we plot the temperature and heat flux profiles based on the analytical solutions, (6), (7), (9), (10), 
and numerical simulations based on finite element calculations (COMSOL). The left panel in Fig. 5 is the analyti-
cal solutions based on (6) and (7) for the LC-type interfaces, and (9) and (10)for the HC-type interfaces. The 
right panel is numerical simulations based on finite element calculations (COMSOL). We mention that the finite 
element software COMSOL considers that the interfaces are perfect. To simulate the effect of imperfect bonding, 
we model the imperfect interface as a thin interphase layer of a constant thickness t  with isotropic conductivity 
kC , prescribed by either k0t

/

aβ̂a(LC-type) or α̂aak0/t (HC-type). Here we consider a thin thickness 
t = b/103 =  10−3 μm. In the numerical illustrations, we consider c = 1/4, b = 1 μm and the value of λ = 1. For the 
LC-type case, we consider g = 2/3, while for the HC-type interface we consider g = 3/2. To perceive the temperature 
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Figure 4.  The ratio of T1/T3 versus λ for different values of Λ. The area fraction c for the numerical illustration 
is specified as c = 1/4. Note that the figure will be identical to that of the HC-type interface if Λ is replaced by Γ.
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Figure 5.  The temperature and heat flux profiles based on the analytical solutions, (6), (7), (9) and (10), and the 
numerical simulations based on finite element calculations (COMSOL). The left panel is the analytical solutions 
based on (6) and (7) for LC-type interfaces, and (9) and (10) for HC-type interfaces. The right panel is the 
numerical simulations based on finite element calculations (COMSOL). In numerical calculations, we consider 
c = 1/4 and b = 1 μm. For g = 2/3, LC-type interfaces are invoked. Temperature contours for λ =  100 is illustrated 
in (a). For g = 3/2, HC-type interfaces are necessary, and contour plots for λ =  100 are given in (b). A temperature 
or heat flux profile along the x-axis is shown below the contour diagram to highlight the jump of relevant 
quantity across the interface.
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drop or heat flux drop across the interface, a profile along the x-axis is highlighted just below the contour diagram. 
It is seen that both solutions, analytical solutions and finite-element simulations, agree well. For completeness, 
additional demonstrations for the temperature contours are presented for λ =  10−1 and λ = 10 in Supplementary 
Materials, which demonstrate the effect of material anisotropy in Region II. It is seen that the case of λ =  10−1 
will lead to a concentrating effect, while λ = 10 will result into a thermal shielding effect. In Supplementary 
Material Table S1, we also list a comparison of temperature field calculated from finite element numerical simula-
tions, based on COMSOL with three different interphase thickness, t = b/1200, t = b/1000 and t = b/800, and the 
analytic results for the LC-type interfaces, (6), (7), or for the HC-type interfaces, (9), (10). The percentage error 
is estimated by (COMSOL prediction − analytic result)/analytic result. We see that the error percentage for 
t = b/1200 and t = b/1000 are nearly the same within 0.3% at most.

Methods
Thermal invisibility condition. The thermal invisibility condition (3) for the LC-type interfaces and (5) 
for the HC-type interfaces can be constructed via the concept of neutral  inclusions32 through a series of homog-
enizations via composite cylinder assemblages (CCA)51. A schematic illustration is presented in Fig. 6, in which 
the derivation can be separated into three steps. First, we consider a circular cylinder of radius a (Region I) with 
a LC- or HC-type of boundary surface. The theoretical formulation is to identify an effective conductivity for 
Region I, without the surface effect, so that the heat flow pattern outside the circular cylinder will be identical for 

both configurations. The effective conductivity can be exactly derived as ̃k0 =
[

k−1
0 + (aβa)

−1
]−1

= k0

/(

1+ β̃a

)

 

for a LC-type interface, and k̂0 = k0 + αa
/
a = k0

(
1+ α̂a

)
 for a HC-type interface. Next we consider a circular 

cylinder with conductivity of either k̃0 or k̂0 , coated with a circular layer of cylindrically orthotropic material 
with conductivity tensor (1). This is an exactly solvable composite cylinder assemblage that is amenable to an 
exact determination for the effective  conductivity51.

Figure 5.  (continued)
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The effective conductivity of composite cylinder assemblages consisting of an isotropic core, with conduc-
tivity k̃0 or k̂0, coated with a cylindrically orthotropic material with conductivity tensor (1) can be expressed as 
k̃CCA or k̂CCA44,

where g̃ = k̃0

/

kG and ĝ = k̂0

/

kG . The last step is to consider a circular cylinder with isotropic conductivity 
k̃CCA or k̂CCA incorporating with the interface effect with surface parameter of βb or αb . The analytical result is 
similar to that in the first step. But now, to be fully compatible to the surrounding Region III, the effective con-
ductivity of the last step is necessarily identical to the surrounding medium, Region III, with conductivity k0. 
This will lead, respectively, to 

[

k̃−1
CCA + (bβb)

−1
]−1

= k0 and k̂CCA + αb
/
b = k0 , or equivalently,

By simple algebra, making use of (11), the thermal invisibility conditions given in (3) and (5) are readily 
deduced.

A duality relationship. For a two-dimensional medium, a duality relation is known to exist in the context 
of conduction phenomena, which links the effective conductivity of a composite to that of a composite with the 
same phase geometry but replacing its phase moduli with the inverse  conductivities32,52–54. The existence of the 
connection between the dual systems relies on the fact that a two-dimensional divergence free field, when rotated 
pointwise by a 90 degree, produces a curl free field, and vice versa.  Lipton45 proved that the duality relation is also 
applicable to a composite system with imperfect interfaces. Here we demonstrate that our invisibility conditions 
(3) and (5) can indeed be linked with each other via the duality relation. For simplicity of expositions, we will 
make use of Proposition 2 given in the  work55, recorded as k∗β(k1, k2, . . . , kn,β) = 1

/

k∗α
(

k−1
1 , k−1

2 , . . . , k−1
n ,α−1

)

. 
Here the superscript k∗β represents the effective conductivity of the composite system with LC-type interfaces, 
while k∗α is the effective conductivity of the dual system with HC-type interfaces. The arguments inside the 
parenthesis of k∗α or k∗β are simply the phase conductivities and the interface parameters of the composite sys-
tem. Now letting k0 → k−1

0  , k̃−1
CCA → k̂CCA and β−1 → α in (12)1, we can see that (12)2 is readily deduced. Like-

wise, one can deduce (12)1 from (12)2. We thus conclude that the system with LC- and HC-type interfaces are 
complementary with each other, that provides a link to achieve thermal invisibility for the case of kG > k0 or 
kG < k0.

Conclusions
Utilizing the theory of neutral inclusions in mechanics of composites, we provide a thorough analysis on the effect 
of imperfect interfaces in functional thermal metamaterials, made of homogeneous anisotropic conductivity. 
When the interfaces are perfectly bonded, the condition of k20 = krkθ will ensure that the temperature field in 
Region III will be the same as that of a homogeneous background material. While for interfaces, the neutrality 
conditions can be constructed in the well-structured forms (3) and (5). Specifically, they depend on the abso-
lute size, the material anisotropy � and the area fraction c. This finding now works at new levels of applicability, 
irrespective of the bonding perfectness g . In general, the imperfect interface will broadly affect the heat transfer 
across interface and will exhibit size effect. We demonstrate quantitatively the interplay between the material and 
geometric parameters of the configuration, and also explore the extent to which a thermal confinement or ther-
mal shielding can be actually achieved within a targeted region. Numerical simulations based on finite element 
calculations are also carried out to validate our analytical results. We prove that the thermal invisibility conditions 
with the LC- and HC-type interfaces are reciprocal to each other which, all together, will span a full spectrum 
for the feasibility of thermal invisibility. We believe that the study provides further insights to the understanding 
of heat transfer mechanisms across interfaces in the performances of thermal metamaterials, and will motivate 
future experiments for practical realization. Since the interface in general may not be always perfect, this find-
ing can serve as a general guideline in the design of thermal metamaterials that facilitates broad applications.

(11)k̃CCA=kG

(
g̃ + 1

)
+ c�

(
g̃ − 1

)

(
g̃ + 1

)
− c�

(
g̃ − 1

) ;k̂CCA=kG

(
ĝ + 1

)
+ c�

(
ĝ − 1

)

(
ĝ + 1

)
− c�

(
ĝ − 1

) ,

(12)
k0

k̃CCA
+

k0

bβb
= 1,

k̂CCA

k0
+

αb

bk0
= 1.
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