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A multi‑objective optimization 
using response surface model 
coupled with particle swarm 
algorithm on FSW process 
parameters
Parviz Kahhal1,2*, Mohsen Ghasemi3, Mohammad Kashfi2, Hossein Ghorbani‑Menghari1 & 
Ji Hoon Kim1*

In this study, multi‑objective optimization of mechanical properties in friction‑stir‑welding of 
AH12 1050 aluminum alloy is performed using a combination of the response surface method and 
multi‑objective particle swarm optimization algorithm. The process parameters are considered as 
tool pin diameter, shoulder diameter, rotational speed, feed speed, and tool tilt angle. The heat‑
affected zone’s yield strength, fracture strain, impact toughness, and hardness on the advancing and 
retreating sides are selected as the objective functions. Threaded and simple conical pins are utilized 
to evaluate the effect of the pin geometry on the specimen mechanical properties. Optimization 
model outputs are in agree with the obtained experimental results. The effects of process parameters 
on the mechanical properties of the friction‑stir‑welded sheets are studied. Results reveal that the 
lower rotational speed and higher feed speed improve the material strength and hardness. Moreover, 
the microstructural analysis demonstrates that the proposed methodology can achieve a fine‑grained 
structure with the minimum defects. Improvement in the material flow is observed for the threaded 
cylindrical pin compared with the conical pin due to the geometric shape of the tool pin leading to 
more functional mechanical properties. It is found that the combination of the response surface 
methodology and the multi‑objective particle swarm algorithm led to the modeling and optimization 
of the process with outstanding accuracy and low experimental cost.

Friction stir welding (FSW), which involves making the joint without melting the parts, was introduced in 1991 
by The Welding Institute (TWI)1. As shown in Fig. 1, two pieces of sheet metal are placed close to each other. A 
rotating tool is then placed at the joint, and welding is performed by moving the tool towards the  joint2. Since 
the welding process in FSW is simultaneously performed by rotational and linear motions, the formed distortion 
and residual stress are reduced compared to the conventional welding processes. As the FSW process does not 
contain melted metal, the temperature of this process is lower than fusion welding, which reduces the thermal 
gradient in the welding zone and improves the mechanical properties and welding  quality1,3.

Several studies have been conducted on FSW technology for similar and dissimilar alloys.  Sahin4 investigated 
the parameters affecting the FSW of high-speed and medium–carbon steel. After finding the optimum welding 
parameters, the strengths of the joints have been determined by mechanical tests as well as hardness variations 
and microstructures examination. They compared the results with the strengths of the base materials. Leon and 
 Jayakumar5 studied the effect of process parameters on the tensile strength, microstructure, and stiffness in the 
FSW of aluminum 6061. The changes in mechanical properties have been compared with the base metal. The 
key role of the tool rotational speed and welding speed on joint characteristics has been revealed. They reported 
that the tensile properties and impact strength of the FSW joints have been improved duo to the higher hardness 
and fine microstructure. Yousef et al.6 utilized an artificial neural network (ANN) to model the FSW parameters 
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on the mechanical properties of aluminum sheets. They combined the influence of feed speed and pin rotational 
speed on the mechanical properties of welded aluminum sheets and achieved a good performance of ANN model. 
Sandaram and  Muragan7 investigated the effect of pin geometry in the FSW of 2024 and 5083 aluminum alloys. 
They used five different tool pin profiles and four process parameters to create a predictive response surface 
model for ultimate tensile strength and tensile elongation. Results revealed that joints fabricated using a tapered 
hexagon tool pin profile achieve the highest tensile strength and tensile elongation. In contrast, the straight 
cylinder tool pin profile gives the lowest tensile strength and tensile elongation. Ghaffarpour et al.8 analyzed the 
effect of FSW process parameters on the 5083 and 6061 aluminum alloys joint mechanical properties. By using 
the response surface design methodology, they optimized the maximum tensile strength of the welding process 
and compared the results with those of the experimental test. Moreover, they studied the formability of welded 
sheets by using the limit dome height test. Yuvaraj et al.9 studied the effect of FSW process parameters on the 
tensile strength using the desirability function approach. The FSW parameters such as tool offset, pin profile and 
tilt angle have been considered for the experiments. Based on the ANOVA analysis, they revealed that the tilt 
angle of the tool has been the most controlling factor for improving the tensile properties of the joint, followed 
by tool pin profile and tool offset. Marimuthu and  Pandiyarajan10 optimized the FSW process using four effective 
parameters and two objective functions. Optimization was performed using the desirability function approach 
and examining more efficient parameters in the process. The Box-Behnken three levels and three factors have 
been used to classify the number of experiments. Jangra et al.11 investigated rotational and feed speeds, tool pin 
profile, and tool shoulder diameter. They conducted several experiments on two similar sets, AA 6082-T6 and 
cryogenic treated AA6082 to compare the optimization results. A combined approach of Taguchi method, grey 
relational analysis, and entropy measurement method have been developed to find an optimal single setting of 
process parameters for two response characteristics. By examining four effective parameters, Verma et al.12 opti-
mized the ultimate tensile strength and elongation percentage in aluminum alloy friction welding using genetic 
multi-objective optimization algorithm (MOGA) and hybrid genetic multi-objective optimization algorithm 
(HMOGA). Rotational speed, welding speed, and tilt angle have been used as input variables. They found that 
HMOGA provided better results than MOGA. In the aforementioned study, multi-objective optimization was 
performed using statistical methods, such as the desirability function.

Most problems in nature have several (possibly conflicting) objectives to be satisfied. Some of the nature-
inspired optimization algorithms have been used frequently in engineering optimization  problems13, including 
genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and artificial bee 
colony (ABC). The complexity of GA is more than PSO in principle for the same work. ACO is a time-consuming 
method, and the convergence time is also uncertain. ABC has a slow convergence rate, easy to fall in local 
optimum, and is difficult to find the best out of available feasible solutions. PSO is widely employed to solve the 
continuous problems because of the simplicity of concept and fewer parametric settings than other population-
based optimization  algorithms14,15.

Although, in the mentioned studies up to two objective functions are considered, in the present study, the 
FSW process of 1050 A-H12 aluminum is optimized using five objective functions and five influential design 
parameters. In addition, a multi-objective particle swarm optimization algorithm (MOPSO) is utilized known 
as a metaheuristic algorithm. The high convergence speed and relative simplicity of PSO make it a perfect 
candidate for the multi-objective optimization problems. The five objectives for optimization are considered as 
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Figure 1.  The FSW process nomenclature.
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yield strength, impact toughness, failure strain, and hardness of the heat-affected zone on the advancing and 
retreating sides. The process parameters include pin diameter, shoulder diameter, rotational speed, feed speed, 
and tool tilt angle. After preparing test samples, tensile, impact, and hardness tests are conducted. A relation 
between the parameters and objective functions is estimated using the available data and the response surface 
method. Finally, the optimal solutions are obtained, and the predictions are compared with the experiments.

Methods
Multi‑objective optimization procedure. Design of experiments: response surface model. The response 
surface method (RSM) is an approach for building approximations of objectives based on observations in the 
design space. This approach is functional when gradient-based methods  fail16. The choice of surrogate functions 
to estimate the actual performance is crucial. These functions can be defined as polynomials or sums of various 
basis functions (e.g., sine and cosine).

This study employs a second-order polynomial to construct the response surface model. If ns analyses are 
conducted and p = 1; 2; …; ns, then a second-order polynomial model has the following form

where y(p) is the response, x(p)j  and X(p)k  are the nv design parameters, and co; cj; and c(nv−1+j+k) are the problem 
 coefficients17. Taguchi method is used to design the experiment, and a quadratic model is defined to construct 
the response surface model. A quadratic relation is obtained for each objective function, as shown in Eq. (2).

where PD is the tool pin diameter, SHD is the shoulder diameter, S is the rotational speed, F is the feed speed, 
and TA is the tool tilt angle. The coefficients A, B, C, D, E, G, H, I, J, K, and L are determined during the mod-
eling process.

Optimization process. In this study, a MATLAB-based script is prepared to perform the multi-objective particle 
swarm procedure. Figure 2 shows a flowchart for the optimization process divided into the following six steps:

Step 1 Investigation of Experimental Condition, determining the process parameters, setting up the toolsets.
Step 2 Design of Experiment: Construction of Taguchi Design based on process parameters and boundaries.
Step 3 Performing DOE: based on the Taguchi design matrix, welding operations are performed and the 
objective functions are evaluated for each matrix point.
Step 4 Constructing RSM: according to Eq. (1), the RS functions can be constructed based on the DOE results.
Step 5 Running MOPSO: once the RS is constructed, the MOPSO optimization technique can search for the 
Pareto optimal solutions. The optimization procedure does need to perform welding but uses the RSM to 
replace the experiments to evaluate the value of the objective functions.
Step 6 Checking termination condition: The optimization procedure is terminated if the number of termina-
tion generations is satisfied. If not, the process returns to step 3, the new RS is constructed by adding new 
data to the design matrix.

Multi‑objective optimization algorithm. Multi-objective optimization involves the simultaneous optimization 
of several objectives. To achieve this, a Pareto front solution is  used18. For a minimization problem, point F1(x) 
dominates point F2(x) if and only if:

and for at least one j, 1 ≤ j ≤ 2, satisfying

That is, F1(x) is a Pareto solution if it is not worse than F2(x) in each of the objectives and better than F2(x) 
in at least one of the objectives.

Particle swarm optimization algorithm. PSO is an evolutionary optimization technique due to the use of algo-
rithm with only basic computational operators. Hence the implementation of this algorithm is simple and cost-
effective19,20.

Figure 3 shows the working principle of PSO algorithm. Each particle in the group can be represented by a 
position vector and velocity vector in a particular problem. Changing the position of each particle is possible 
by changing the previous position structure and velocity. Each particle carries information containing current 
position (Xi,(t )), personal best (Pbest, best fitness that it has ever achieved in the past iterations), and Global Best 
(Gbest, the best fitness ever obtained by the entire group)21.

Each particle changes its position to obtain the best answer using the current position (Xi,(t)), current veloc-
ity (Vi,(t)), the distance between the current and personal best positions, and the distance between the current 
position and the global best position. Therefore, the new velocity vector (Vi,(t+1)) for particle i is calculated based 
on the following equation:

(1)y(p) = co +
∑

1≤j≤nv

cjx
(p)
j +

∑

1≤j≤k≤nv

c(nv−1+j+k)x
(p)
j X

(p)
k

(2)Obj = A(PD)+B(SHD)+C(F)+D(S)+E(TA)+G(PD)2+H(SHD)2+I(F)2+J(S)2+K(TA)2+L

(3)f 1i (x) ≤ f 2i (x)i = 1 ≤ 2

(4)f 1j (x) < f 2j (x)
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where w is the inertia weight parameter. r1 and r2 are the random vectors between 0 and 1, used in maintain-
ing group diversity. C1 and C2 are the cognitive and social parameters (acceleration parameters), respectively. 
Selecting the appropriate value for these parameters accelerates the convergence of the algorithm and prevents 
premature convergence in the local optima. The new position of the particle is obtained from Eq. (6).

The PSO flowchart is also shown in Fig. 4. In every iteration, after updating the position of the particles, 
objective functions are calculated. Then, the fitness function is evaluated to update the Pbest and Gbest. After 
that, the positions and velocity of particles are updated until the termination criteria is achieved.

Multi‑objective particle swarm optimization algorithm. MOPSO is a generalization of the PSO algorithm used 
to solve multi-objective  problems22. In the MOPSO algorithm, a concept called archive or repository (also 

(5)Vi,(t+1) = wVi,(t) + C1r1
(

Pi,(t) − Xi,(t)

)

+ C2r2
(

G(t) − Xi,(t)

)

(6)Xi,(t+1) = Xi,(t) + Vi,(t+1)

Figure 3.  PSO algorithm performance.

Figure 2.  Multi-objective optimization procedure.
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known as the Hall of Fame) is added to the PSO algorithm. The MOPSO flowchart is shown in Fig. 5, which has 
the following steps:

1. Determining the parameters required for implementing the algorithm (MOPSO).
2. The initial population is created.
3. The best personal memory of each particle is determined.
4. The undominated members of the population are stored in the repository and sorted based on their crowding 

distance.
5. Each particle is selected a leader from among the repository members and performed its movement.
6. The best personal memories of each particle are updated.
7. New undominated members are added to the repository.
8. The dominated members of the repository are removed. If the termination conditions are not met, the algo-

rithm is repeated from 5 onwards.

The following considerations can be made to determine the best vector of personal best memory:

1. If the new personal best dominates the best personal memory, then the new personal best replaces the cur-
rent personal best memory.

2. If the new personal best is dominated by the best personal memory, then nothing will be done.

Figure 4.  PSO flowchart.
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3. If neither of them dominates each other, then one is randomly considered as the best position vector.

Design of experiments (DOE). Different experimental design methods are studied based on the degree of 
effective parameters as well as the number of effective parameters and responses. Taguchi experimental design 
method was employed for the DOE (Table 1).

Materials. The used sheets were made of A-H121050 aluminum alloy with 5 mm thickness. The chemical 
composition and the base mechanical properties of this alloy are provided in Tables 2 and 3, respectively. Sam-
ples with dimensions of 50 × 50 mm were milled for welding and their surfaced were cleaned with acetone before 
the welding process.

Experiments. Welding tools and equipment. Hot work steel H13 was used to fabricate the tools with di-
ameters of 14, 16, and 18 mm, as it is the best material for welding aluminum  parts23. Based on the studies 
performed on the welding of aluminum alloys, the most common shapes of the pin are threaded cylindrical and 
 conical24.

The required tools are fabricated double-sided (one side of the threaded cylinder and the other side of a simple 
cone) to investigate the thread effects. All shoulders were prepared with a concave angle of 5°25 to obtain a more 

Figure 5.  The MOPSO flowchart.
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functional joint. In addition, the slant angle of the conical pin was considered 75°. Figure 6 shows a schematic 
view of the fabricated tools. After fabrication, the tools were hardened by heat treatment up to an HRC (Hardness 
Rockwell C) of 50. Table 4 lists the characteristics of the tools utilized in this study.

Tensile test. The fabricated specimens are provided from the welded parts for tensile test using a 15-ton 
DeghatAzma universal machine at room temperature. The cross-head velocity is adjusted 2 mm/min to sat-
isfy the quasi-static condition. The specimen geometry all utilized relations are considered in accordance with 
ASTM E8. Tensile tests are conducted up to specimen failure to determine the elastic behavior and plastic and 
failure properties.

Hardness measurement. The specimens hardness at the points located in the heat-affected zones (HAZs) on the 
advancing and retreating sides (HAZ Adv. and HAZ Ret.) was measured using a Shegarf Abzar hardness test-

Table 1.  Taguchi design of experiment parameters (Specimens labeled as c and b for conical and threaded 
cylindrical pins, respectively).

Code Pin diameter (mm) Shoulder diameter (mm) Feed speed (mm/min) Rotational speed (rpm) Tilt angle (°)

c1 b1 4.0 14.0 31.5 630 3.0

c2 b2 4.0 18.0 80.0 1000 3.0

c3 b3 5.0 14.0 50.0 1000 3.0

c4 b4 5.0 18.0 31.5 800 3.0

c5 b5 6.0 14.0 80.0 800 3.0

c6 b6 6.0 18.0 50.0 630 3.0

c7 b7 4.0 14.0 31.5 630 3.5

c8 b8 4.0 16.0 50.0 800 3.5

c9 b9 5.0 14.0 50.0 1000 3.5

c10 b10 5.0 16.0 80.0 630 3.5

c11 b11 6.0 14.0 80.0 800 3.5

c12 b12 6.0 16.0 31.5 1000 3.5

c13 b13 4.0 16.0 50.0 800 2.5

c14 b14 4.0 18.0 80.0 800 2.5

c15 b15 5.0 16.0 80.0 630 2.5

c16 b16 5.0 18.0 31.5 800 2.5

c17 b17 6.0 16.0 31.5 1000 2.5

c18 b18 6.0 18.0 50.0 630 2.5

Table 2.  Chemical composition of A-H121050 aluminum alloy.

No Element Weight percent

1 Aluminum Base

2 Iron 0.40

3 Copper 0.05

4 Magnesium 0.05

5 Manganese 0.05

6 Silicon 0.25

7 Titanium 0.05

8 Zinc 0.07

Table 3.  Mechanical properties of A-H121050 aluminum.

Property Value

Brinell hardness (HRB) 28

Shear strength (MPa) 58

Ultimate strength (MPa) 100

Yield strength (MPa) 70
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ing apparatus based on Rockwell B (1.16-inch diameter steel ball hardness tester). The tests were conducted by 
applying a 100 kgf force in 10 s in accordance with ASTM-E18.

Impact test. The specimen required for the impact test was prepared according to ASTM E23 with a V-notch. 
The impact properties were evaluated using a 200 J Santam Charpy impact test machine. The specimens were 
carefully placed on the support by a special tool to ensure that the V-notch was in the right place related to the 

Figure 6.  Schematic of the double-sided friction stir welding tool.

Table 4.  The characteristics of the tools.

Pin type Pin diameter (mm) Shoulder diameter (mm) Pitch (mm) Concave degree (°) Pin height (mm)

Threaded cylindrical

4.0 14–16–18 0.7

5.0 4.7

5.0 14–16–18 0.8

6.0 14–16–18 1.0

Conical

4.0 14–16–18 –

5.0 14–16–18 –

6.0 14–16–18 –

Figure 7.  Prepared samples for (a) tensile test and (b) impact test.
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impact hammer. The welded specimens are prepared for tensile and impact tests by using the wire-cut machine 
as shown in Fig. 7.

Microstructural tests. The samples were fabricated in accordance with ASTME3-01. The specimens were 
mounted and sealed and polished using 200 to 5000 sandpapers. The samples were then etched with a 2.5% 
chlorine solution (HF + HCl +  HNO3 +  H2O). Subsequently, the transverse cross-sections of the parts were ana-
lyzed using scanning electron microscopy (SEM).

Figure 8.  Results of the tensile test and hardness measurement of welded specimens with threaded cylindrical 
and conical pins: (a) yield strength, (b) impact toughness, (c) failure strain, (d) hardness on HAZ adv., and (e) 
hardness on HAZ Ret.
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Results
Figure 8 shows the complete results of the tensile test and hardness measurement of the welded specimens with 
threaded cylindrical and conical pins. As the figure shows, 18 points were experimentally studied and the results 
are given as a bar chart for yield stress, impact toughness, failure strain and material hardness. It is worth noting 
that the mean value of each property is reported in the figure with the related error bar.

Response surface models. The response surface models of the objective functions were obtained as quad-
ratic polynomials. Tables 5 and 6 show the quadratic model coefficients of the response level for the objective 
functions for the conical and threaded cylindrical pins, respectively, based on Eq. (2).

Table 5.  The quadratic coefficients of response surface for the objective functions of conical pin.

Obj.\coefficient Sy Impact toughness Failure strain HAZ adv HAZ ret

A − 7.98 − 0.59 − 12.80 − 9.51 − 10.10

B − 44.1 − 1.6 − 81.5 5.8 6.1

C − 0.0579 0.0146 0.2790 − 0.2040 − 0.2950

D 0.0768 − 0.0038 − 0.0500 0.0498 0.0511

E − 73.5 − 4.21 − 191.0 − 24.9 − 31.1

G 0.76 0.06 1.47 0.99 1.06

H 1.370 0.049 2.590 − 0.182 − 0.191

I 1.56e−3 − 1.16e−4 − 1.48e−03 1.76e−03 2.66e−03

J − 3.96e−5 2.42e−6 3.44e−5 − 4.26e−05 − 4.39e−05

K 10.60 0.66 30.10 4.25 5.41

L 481.0 22.1 974.0 24.5 32.8

Table 6.  The quadratic coefficients of response surface for the objective functions of threaded cylindrical pin.

Obj.\coefficient Sy Impact toughness Failure strain HAZ adv HAZ ret

A 42.20 1.97 41.20 0.76 0.77

B 24.70 − 0.13 − 40.60 11.80 10.50

C 0.831 0.019 − 0.880 0.456 0.493

D − 0.258 0.002 0.444 0.070 0.036

E 116.0 − 1.5 − 146.0 − 10.8 10.5

G − 4.09 − 0.20 − 4.44 − 0.09 − 0.10

H − 0.79 0.00 1.28 − 0.34 − 0.30

I − 7.44e−03 − 1.70e−04 6.75e−03 − 4.15e−03 − 4.59e−03

J 1.44e−04 − 1.71e−06 − 2.73e−04 − 6.05e−05 − 3.95e−05

K − 16.50 0.24 24.80 1.95 − 1.81

L − 383.0 − 2.5 293.0 − 96.4 − 102.0

Table 7.  Statistical features of the response surfaces.

Pin type Objective MSE RMSE R2

Conical

Sy 2.1200 1.460 0.944

Impact toughness 0.0004 0.021 0.975

Failure strain 2.2300 1.490 0.966

Hardness HAZ adv 0.1600 0.399 0.992

Hardness HAZ ret 0.3760 0.614 0.984

Threaded cylindrical

Sy 5.2600 2.290 0.956

Impact toughness 0.0004 0.020 0.985

Failure strain 1.8200 1.350 0.974

Hardness HAZ adv 0.3360 0.580 0.992

Hardness HAZ ret 0.4060 0.637 0.990
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Table 7 lists the statistical features of the response surfaces. The response surfaces and correlation diagrams 
of the objective functions are presented in supplementary materials. As the table shows, the best  R2 belongs to 
Hardness HAZ Adv. for both conical and threaded cylindrical pins. Since the p value for all objective functions is 
determined less than 0.05, the estimated models are found significant. In addition, the  R2 values show an excellent 
prediction capability of the models in the range of 0.944–0.991 for conical yield stress and the hardness of HAZ 
adv. Table 8 gives the analysis of variance summary (ANOVA) of the response surface of objective functions.

Effect of parameters on objective functions. Figures 9 and 10 depict the variations in the objective 
functions for each parameter in the design interval for the conical and threaded cylindrical pin, respectively. 
All of the parameters are normalized in the range of 0–1 based on their boundaries to plot these diagrams. The 
objective function is plotted by variation of every single parameter, while the other four parameters are fixed on 
the normalized value of 0.5. Figure 11 illustrates the relative importance of the parameters based on objective 
function variation between boundaries to better understand how parameters affect the objective functions.

As shown in Fig. 11a, the most important parameter for hardness HAZ adv. is S = 60%. However, this param-
eter is determined to be the least relevant for impact toughness by only 7%. As illustrated in the figure, S shows 
a significant effect on both Adv. and Ret. harnesses. In contrast, the shoulder diameter controls the impact 
toughness, yield strength, and failure strain by 35%, 22%, and 28%, respectively.

The order of the effect of the process parameters on the objective functions of the conical pin is given as 
follows:

1. Yield strength shoulder diameter, tilt angle, feed speed, rotational speed, and pin diameter.
2. Impact toughness tilt angle, shoulder diameter, feed speed, rotational speed, and pin diameter.
3. Failure strain shoulder diameter, tilt angle, feed speed, rotational speed, and pin diameter.
4. Hardness of HAZ Adv. rotational speed, pin diameter and tilt angle, feed speed, and shoulder diameter.
5. Hardness of HAZ Ret. rotational speed, tilt angle, pin diameter, feed speed, and shoulder diameter.

The order of the effect of the process parameters on the objective functions of the threaded cylindrical pin 
is listed as follows:

1. Yield strength tilt angle, rotational speed, pin diameter, feed speed, and shoulder diameter.
2. Impact toughness pin diameter, rotational speed, feed speed, tilt angle, and shoulder diameter.
3. Failure strain rotational speed, pin diameter, tilt angle, feed speed, and shoulder diameter.
4. Hardness of HAZ Adv. rotational speed, shoulder diameter, feed speed, tilt angle, and pin diameter.
5. Hardness of HAZ Ret. rotational speed, shoulder diameter, feed speed, tilt angle, and pin diameter.

In this research, MATLAB Model-Based Calibration Toolbox is used to perform RSM, and a MATLAB-based 
script is developed for ANOVA.

Optimization results. The optimization process is performed using the experimental data based on the 
multi-objective particle swarm method. Figure 12 demonstrates the Pareto front obtained for both conical and 
threaded cylindrical pins.

In Fig. 12 every point can be considered optimal, depending on the priority of the objective function; if an 
equal priority is required, the closest point to the origin can be selected as the optimal design. In this study, for 
each tool type, a point is selected for the experiment, two samples are welded with optimization solutions, and 
the objective functions are obtained using tensile, impact, and hardness tests (Fig. 13).

Table 9 presents the results of the experiments. As Table 9 suggests, the model accuracy in predicting objec-
tive functions with optimal values is excellent in most cases, indicating the reliability of the proposed model.

Table 8.  ANOVA summary.

Pin type Objective Sum of squares
Degree of 
freedom Mean square F value p value prob > F Status

Threaded cylin-
drical

Sy 978.72 10 97.872 5.815 0.033 Significant

Impact toughness 0.19 10 0.019 12.65 0.013 Significant

Failure strain 535.82 10 53.58 9.19 0.012 Significant

Hard. HAZ adv 347.56 10 34.76 32.31 0.001 Significant

Hard. HAZ ret 336.00 10 33.60 25.87 0.001 Significant

Conical

Sy 241.80 10 24.180 4.880 0.033 Significant

Impact toughness 0.12 10 0.012 7.65 0.032 Significant

Failure strain 503.60 10 50.36 7.04 0.022 Significant

Hard. HAZ adv 167.17 10 16.72 36.98 0.000 Significant

Hard. HAZ ret 196.65 10 19.67 18.42 0.001 Significant
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Metallography. Two low-quality (b17 and c12) and two optimal samples are compared using microstruc-
tural tests to evaluate the weld quality. Excessive heat causes a coarse-grained structure and reduces the weld 
strength. The grain shape and size are the functions of material heat and flow. Due to the frictional contact 
between shoulder and work surface, heat is generated during the rotation of the tool, and the material undergoes 

Figure 9.  Variations in conical pin objective functions for (a) yield strength, (b) impact toughness, (c) failure 
strain, (d) hardness on HAZ adv., and (e) hardness on HAZ Ret.
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a severe deformation at high temperature of the joint with the pin rotational movement. Thus, small and coaxial 
recrystallized grains are formed. The pin shape can adjust the material flow and causes fine graining. Once an 

Figure 10.  Variations in threaded cylindrical pin objective functions for (a) yield strength, (b) impact 
toughness, (c) failure strain, (d) hardness on HAZ adv., and (e) hardness on HAZ Ret.
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Figure 11.  Relative importance of parameters affecting objective functions: (a) conical pin, (b) threaded 
cylindrical pin.

Figure 12.  Multi-objective optimization Pareto front: (a) conical pin, (b) threaded cylindrical pin.

Figure 13.  The welded specimens with the optimized welding values.
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optimal pin is employed, the forging forces in the welding zone are increased. This implies an improvement in 
material microstructures.

Figure 14 shows SEM images of the stir zone in the optimal samples. In this region, the grains are coaxial 
and fine, indicating the occurrence of dynamic recrystallization. This can be attributed to the reduction of heat 
compared to weak samples during welding operations.

Figure 15 presents SEM images of the stir zone of the low-quality samples. In comparison with Fig. 14, 
it is clear that the grains are more prominent and defective. The observed holes are formed due to the 

Table 9.  The mechanical properties of samples fabricated with the optimal welding values.

Parameter/objective Threaded cylindrical pin Conical pin

Pin diameter (mm) 4.49 4.50

Shoulder diameter (mm) 16.62 14.03

Feed rate (mm/min) 41.23 67.66

Rotational speed (rpm) 814.72 867.73

Tool tilt angle (°) 3.41 2.54

Predicted yield stress (MPa) 27.15 32.15

Experimental yield stress (MPa) 31.04 27.60

Yield stress prediction error (%) 14.34 14.14

Predicted impact toughness (MJ/m2) 0.47 0.37

Experimental impact toughness (MJ/m2) 0.44 0.36

Impact toughness prediction error (%) 5.64 1.36

Predicted failure strain 15.91 17.51

Experimental failure strain 16.81 16.49

Failure strain prediction error (%) 5.69 5.81

Predicted HAZ hardness on advancing side (HRB) 22.98 16.48

Experimental HAZ hardness on advancing side (HRB) 24.56 14.90

HAZ hardness on advancing side prediction error (%) 6.88 9.58

Predicted HAZ hardness on retreating side (HRB) 21.24 15.38

Experimental HAZ hardness on retreating side (HRB) 22.34 14.20

HAZ hardness on retreating side prediction error (%) 5.17 7.67

Figure 14.  SEM images of the stir zone in the optimal samples: (a) conical pin, (b) threaded cylindrical pin.
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Figure 15.  SEM images of the stir zone in the low-quality samples: (a) conical pin (c12), (b) threaded 
cylindrical pin (b17).

Figure 16.  Macroscopic images of the weld cross-section of (a) b17 and (b) c12 samples.
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high-temperature deformation and they are reduced the joint strength and hardness. Comparing the obtained 
experimental strength and stiffness proves the above observations.

Lower heat is generated in the optimal samples owing to low rotational speed and high feed speed. In low-
quality samples, more heat is generated due to the higher rotational speed and lower feed speed. Figure 16 shows 
microscopic images of the weld cross-section of b17 and c12 samples. The presence of tunnel cavities is significant 
because the extra heat is generated in the process.

The formed holes are observable in the upper third of the weld, which is affected by the tool shoulder and 
forging force. Excessive heat also causes some welding layers to oxidize, as shown in Fig. 17.

Figure 18 shows SEM images of the thermo-mechanically affected zones of the samples, and no defects and 
separation are seen in the intersection in the optimum parts. In both cases, acceptable welding is achieved due 
to sufficient heat production caused by rotational and proper feed speeds. Improvement in the material flow 
is observed for the threaded cylindrical pin compared with the conical pin due to the geometric shape of the 
tool pin. Proper penetration of particles into each other is clearly seen in these images, and this enhances the 
material strength and prevents crack formation in the welded specimen. As expected, no dendrite formation 
is detected in the stir and thermo-mechanically affected zones after the welding process. This defect type is not 
usually found in semi-solid  materials26,27.

By dividing the welding section into three parts, we can see that the main stirring zone is placed in the upper 
third of the weld, affected by the tool shoulder. In this region, before two parts are forged, a paste state is formed 
in the joint parts, and the particles penetrate each other. The lower two-thirds of the weld is affected by the pin. 
In this area, the metal is extruded from the front to back of tool; therefore, stirring is less than one-third of the 
upper. As stated before, it can be concluded that fine-grained and flawless structures are occurred at lower tem-
peratures, and coarser and weaker structures are produced at higher temperatures.

However, it should be noted that in addition to rotational and feed speeds that cause heat changes, other 
factors such as the tool penetration depth could also affect the heat production. For example, in b10, despite the 
low rotational speed and high feed speed, heat is obtained lower than others due to the lower tool penetration 
depth into the workpiece. Hence no appropriate mechanical connection is formed, and the lower strength and 
hardness values for this sample are achieved. In the c17 sample, although the high rotational speed and the low 
feed is utilized, due to the reduction of the penetration depth of the tool, heating is reduced to the optimal level 
and a joint with the desired strength and mechanical properties can be obtained.

In addition to the tool penetration depth, the tilt angle also affects the heat production and, as a result, the 
formation of microstructure and desirable or undesirable mechanical properties. This is evident in the compari-
son of the results of b6 and b18. In these two samples, increasing the tool tilt angle is reduced the mechanical 
properties (Fig. 7).

Conclusion and discussion
In this study, multi-objective optimization of the objective functions including yield strength, impact toughness, 
fracture strain, and hardness in HAZ on the advancing and retreating in frictional stir welding of 1050A-H12 
aluminum was performed using the response surface method and MOPSO method. In addition, the effects of 
pin and shoulder diameter, pin geometry, rotational and feed speeds, and tilt angle on the above objectives were 
investigated, and the following results were obtained.

Figure 17.  Macroscopic image of oxide layers in sample c12.
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Figure 18.  SEM images of the thermo-mechanically affected zone region of the samples: (a) threaded 
cylindrical pin, (b) conical pin, (c) b17, and (d) c12.
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1. The lower rotational speed and higher feed speed are generated lower heat; consequently, the material 
strength and hardness are improved.

2. Based on the metallographic analysis, the proposed model is desirable for achieving a fine-grained structure 
with minimum defects and optimal mechanical properties for samples fabricated at low temperatures.

3. In addition to the rotational and feed speeds, which could change the generated heat, other factors such as 
the tool penetration depth affect heat production. For example, in b10, despite the low rotational speed and 
high feed speed, heat production is low due to the low tool penetration depth into the workpiece, prevent-
ing the formation of a proper mechanical connection. Therefore, the strength and hardness values for this 
sample are low. In addition, in the c17 sample, although the rotational speed is high and the feed is low, it 
still results from the reduction of the penetration depth of the tool, heating is reduced to the optimal level, 
and a joint with the desired strength and mechanical properties can be observed.

4. Improvement in the material flow is observed for the threaded cylindrical pin compared with the conical 
pin due to the geometric shape of the tool pin leading to more functional mechanical properties.

5. Increasing the tool tilt angle is reduced the mechanical properties by comparing the results of b6 and b18.
6. The combination of the response surface methodology and the multi-objective particle swarm algorithm led 

to the modeling and optimization of the process with outstanding accuracy and low experimental cost.
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