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Detecting SARS‑CoV‑2 lineages 
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Stamatia Laidou1,2, Elisavet Vlachonikola1,2, Anastasia Chatzidimitriou1, Agis Papadopoulos6, 
Nikolaos Papaioannou3, Chrysostomos I. Dovas3, Anagnostis Argiriou1,7 & 
Fotis Psomopoulos1*

The COVID‑19 pandemic represents an unprecedented global crisis necessitating novel approaches 
for, amongst others, early detection of emerging variants relating to the evolution and spread of 
the virus. Recently, the detection of SARS‑CoV‑2 RNA in wastewater has emerged as a useful tool to 
monitor the prevalence of the virus in the community. Here, we propose a novel methodology, called 
lineagespot, for the monitoring of mutations and the detection of SARS‑CoV‑2 lineages in wastewater 
samples using next‑generation sequencing (NGS). Our proposed method was tested and evaluated 
using NGS data produced by the sequencing of 14 wastewater samples from the municipality of 
Thessaloniki, Greece, covering a 6‑month period. The results showed the presence of SARS‑CoV‑2 
variants in wastewater data. lineagespot was able to record the evolution and rapid domination of the 
Alpha variant (B.1.1.7) in the community, and allowed the correlation between the mutations evident 
through our approach and the mutations observed in patients from the same area and time periods. 
lineagespot is an open‑source tool, implemented in R, and is freely available on GitHub and registered 
on bio.tools.

Nearly a year after the first report of SARS-CoV-2 in Wuhan, China, the virus has spread at an unprecedented 
pace causing a global pandemic. The predominant transmission process of SARS-CoV-2 is through droplets 
and contact between people, and whether a person is infected can be identified by rapid molecular strate-
gies. SARS-CoV-2 genotyping for epidemiological investigations/to understand its molecular epidemiology 
relies on PCR-based methods, affordable for most laboratories. However, these methods are not easily scalable, 
especially in large urban areas, where a high number of individuals have to be tested to assess virus and variant 
spread among the population, or when new variant/mutation screening is needed, which can be attained only 
by sequencing methods. Interestingly, the viral RNA can also be detected in wastewater, with SARS-CoV-2 RNA 
levels in wastewater correlating with the COVID-19  epidemiology1–3. Indeed, in the previous work of Petala 
et al.3. normalized viral copy levels in Thessaloniki wastewater agreed with the epidemiological conditions in 
the city. Thessaloniki is the second largest city in Greece with around 1 million inhabitants. The city is a chief 
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gateway for entrepreneurs, traders, university students and tourists visiting Greece and, as such, it was the place 
where the Greek patient “zero” firstly appeared in March 2020 as well as the mutation characteristic for the Beta 
variant which was first detected in South Africa. In other words, the city of Thessaloniki is a suitable place as 
a case study for identifying new mutations in the city wastewater before scattering to the rest of the country.

The presence of SARS CoV-2 RNA in wastewater provides us with a unique opportunity, i.e., to identify the 
most prevalent virus lineages through the analysis of the traces evident in wastewater samples. Since the begin-
ning of the pandemic a lot of countries have been studying SARS-CoV-2 mutations in wastewater for COVID-19 
 surveillance4–9. Yet, it still remains an open issue as there are no widely accepted methods that can sufficiently 
address this. The most commonly used approaches involve the sequencing of the wastewater samples, and the 
consequent application of low frequency mutation analysis  methods10 or metagenomic  approaches11,12. In either 
case, the interpretation of the results focuses on the detection of specific  mutations10 or  lineages2 such as the 
Alpha (B.1.1.7) and Beta (B.1.351) variants or new uncharacterized  mutations12.

In this work we propose a novel methodology called lineagespot, implemented as a software tool that can 
facilitate the detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing (NGS). 
The method is tested and validated across 14 municipal wastewater samples retrieved in Thessaloniki, Greece 
in 14 different time periods, and correlated with the mutations and lineages observed in patients from the same 
area time points. Based on a variation of the Illumina ARTIC pipeline for the identification of mutations at low 
frequencies (< 0.01), and the lineage assignments defined by  Pangolin13, this method identifies all SARS-CoV-2 
variants present in the wastewater, and attempts to infer the potential distribution of the SARS-CoV-2 lineages. 
The methodology is proven to be effective in detecting the mutational load in the wastewater, with the inferred 
lineages being roughly aligned to the predominant lineages identified through targeted patient-derived genotypes.

Results
All acronyms and abbreviation used in the text are explained in Table 7.

Comparison of variant calling methods reveals freebayes as the best‑performing tool for 
low‑frequency variant detection. The proposed methodology was initially applied on a selected 
wastewater sample (corresponding to the 05–11 February 2021 time period), using NC_045512 as the refer-
ence genome, and for which three different variant callers were assessed: (1) freebayes14, (2) mpileup15 and (3) 
GATK Mutect216 (cancer only mode). In terms of parameters, freebayes was used with a low mutation frequency 
parameter of 0.01, mpileup reported every position (either reference, or mutation), and GATK Mutect2 was used 
with the default parameters. The full bioinformatic pipeline used to identify the mutations is described in the 
“Raw data analysis” Section. Additionally, the proposed variant calling pipeline (with all set parameters) is also 
provided in the [lineagespot GitHub repository] (https:// github. com/ Bioda taAna lysis Group/ linea gespot/ blob/ 
master/ inst/ scrip ts/ raw- data- analy sis. md).

An example of the output produced by the comparison, is shown in Table 1. In this table the number of com-
mon mutations  (Nt) between the lineage definition (retrieved either as a Pangolin rule or through the outbreak.
info definition) and the mutations of the input dataset is captured for each lineage.

The number of common mutations are compared pairwise for the three variant callers. For each lineage, the 
absolute values of the differences between the  Nt metrics are calculated. As an example, for lineage B.1.1.7, the 
output produced by using the freebayes variant caller tool in the first step of the methodology, returns Nt = 10 
mutations satisfied, while the output of the GATK Mutect2 tool returns Nt = 4 mutations satisfied. As a result, 
the two outputs exhibit a difference of 
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In addition, Table 2 gathers the differences between the number of common mutations across the three vari-
ant callers, which are consequently used for their overall comparison (Figure 1A). In Table 3, a summary of the 

Table 1.  Each row in the table (used as an internal structure) corresponds to a single lineage. The columns 
correspond to the different number of SARS-CoV-2 mutations  (Nt) that are captured in the sample.

Lineage Total number of lineage’s characteristic mutations Nt
freebayes Nt

mpileup Nt
gatk

B.1.177 17 09 07 07

B.1.1.7 21 10 15 4

B.1.351 19 05 08 08

Table 2.  Difference between the number of common mutations across the three variant callers.

Lineage |Nt
freebayes −  Nt

gatk| |Nt
freebayes −  Nt

mpileup| |Nt
gatk −  Nt

mpileup|

B.1.177 2 2 0

B.1.1.7 6 5 11

B.1.351 3 3 0

https://github.com/BiodataAnalysisGroup/lineagespot/blob/master/inst/scripts/raw-data-analysis.md
https://github.com/BiodataAnalysisGroup/lineagespot/blob/master/inst/scripts/raw-data-analysis.md
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differences is provided containing the total number of differences for the compared lineages and the maximum 
Nt differences for each pair of files.

Based on the above comparison, we consider that the most productive and informative approach is to utilize 
freebayes as the variant calling tool. The rest of the results shown below, are based only on the freebayes tool 
output.

Evaluating lineage‑specific mutations across time periods. Sensitivity. In order to investigate 
how specific amino acid substitutions evolve over time, all VCF files were merged into a combined table in 

Table 3.  Summary table of the three output files produced by freebayes, mpileup and GATK mutect2 variant 
caller. The three variant callers are compared in pairs.

Variant calling comparison Number of differences Max absolute  Nt difference

freebayes–gatk 3791 31

freebayes–mpileup 3140 33

gatk–mpileup 1571 31

Figure 1.  Evolution of mutations across different low frequency parameters. (A) Density plot of the absolute 
Nt difference values between the number of common mutations of the three variant calling tools used (pairwise 
comparisons). (B) Number of reads for each replicate and for the common mutations. (C) The corresponding 
allele frequency for each replicate and for the common mutations.
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which all the detected nucleotide mutations along with the corresponding amino acid substitutions that have 
been identified are stored. Moreover, information about the allele frequency, and the overlapping gene is also 
provided for each mutation. Table 4 gives an example of the overall information.

Having a structured format, we first examined if the number of reads that were produced during PCR ampli-
fication is affecting the number of mutations that are identified in every sample. For this reason, two replicates 
of the same biological specimen were produced. The first replicate (Replicate A) contained 181,880 reads while 
the second replicate (Replicate B) contained 69,706 reads. The two replicates were analyzed as described in the 
“Raw data analysis” section and two VCF files were produced which contained 401 and 293 mutations respec-
tively; of these, 59 mutations were common in both replicates, 342 mutations were unique for Replicate A and 
234 unique for Replicate B.

A Student’s t-test was performed in order to compare the mean values of the allele frequency between the two 
replicates and an F test to compare the variances. All tests resulted in p values higher than the 0.05 threshold, 
meaning that no statistically significant difference was found between the two replicates. On the contrary, when 
comparing two samples coming from different time periods there was a significant difference on the mutations’ 
allele frequency (p values from Student’s t-test and F test were below 0.05).

Moreover, for the same replicates, 6 different pairs of VCF files were generated in order to investigate how 
the number of mutations located changes while increasing the low mutation frequency parameter of 0.01 that 
was used at freebayes tool during the raw data analysis. The thresholds that were chosen were 0.01, 0.1, 0.2, 0.3, 
0.4 and 0.5. In Fig. 1B, the evolution of the number of mutations found is shown while Fig. 1C gives the cor-
responding allele frequency.

Mutational load detection. The proposed methodology was applied on the wastewater samples, across 14 
time periods. Information regarding the total number of reads, the number of reads mapping to SARS-CoV-2 
reference genome etc. are provided in Supplementary Table 1.

To this end, Table 4 was collapsed at the gene and amino acid substitution level, therefore reducing any data 
noise that is introduced by nucleotide mutations that correspond to the same amino acid change. In Fig. 2A 
all collapsed amino acid substitutions were clustered accordingly based on Euclidean distance, while Fig. 2B 
highlights specific mutations (cluster 1) that exhibit significant difference in behavior.

Moreover, we studied the number of amino acid substitutions per gene over each time period. In Fig. 2C 
the number of mutations were clustered based on Euclidean distance, after all count values were normalized by 
each gene’s length.

Detection of variants of concern/variants of interest. Furthermore, the evolution of lineage-specific 
mutations over the 14 time periods was studied. To this end, two Variants of Concern were selected; the Alpha 
(B.1.1.7) and the Beta (B.1.351) variants which are shown in Fig. 3.

Moreover, we examined the prevalence rate of the two variants of concern by calculating the average allele 
frequency of their mutations. The results for the 14 time periods are presented in Table 5 and show that it does 
not lead to 100% sum per time period. The latter is caused due to overlapping mutations among the lineages 
and implies that the average value of all the mutations is not a reliable metric to characterize a specific lineage’s 
presence.

Further in the analysis, we attempted to examine the minimal lineage support per time period. In this step 
we calculated the average allele frequency of the mutations unique to each variant of concern and produced a 
table which is more comparable with the clinical data metric. In this context, the minimum allele frequency of 
the present (greater than zero) mutations indicates the level of our confidence. The results of the two metrics 
are shown in Table 5.

Assessing lineage assignment. Qualitative assessment between the major lineages found in the targeted 
clinical samples, retrieved from the ENA study ID: PRJEB44141 (ERP128154), and across the 14 time periods. 
The clinical samples (specific ENA entries listed in Supplementary Information file) exhibit the lineage distribu-
tion shown in Supplementary Table 2.

Based on the clinical results, as derived from targeted and non-randomized sampling of the Thessaloniki 
area, we can perform a direct comparison between the level of presence in a particular variant of concern (Alpha 
variant—B.1.1.7) in clinical and wastewater data (Fig. 4).

Table 4.  Snapshot of table containing every mutation per sample along with the corresponding gene and the 
amino acid substitutions.

CHROM POS REF ALT DP AD alt Gene name HGVS AF Sample

NC_045512.2 326 T A 7 1 ORF1ab T21I 0.143 Sample A

NC_045512.2 378 T C 10 1 ORF1ab V38A 0.100 Sample A

NC_045512.2 408 A T 10 1 ORF1ab D48V 0.100 Sample B

NC_045512.2 433 T C 10 2 ORF1ab V56V 0.200 Sample C

NC_045512.2 442 C T 10 1 ORF1ab G59G 0.100 Sample C
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Discussion
Analyzing wastewater, i.e. used water that goes through the drainage system to a treatment facility, is a way that 
researchers and surveillance systems can track pathogens, such as SARS-CoV-2, or biomarkers that are excreted 
in urine or feces. Monitoring effluents could be a reliable and more effective tool to estimate SARS-CoV-2 spread 
compared to sampling and testing the population, because wastewater surveillance can account for those who 
have not been tested and have only mild or no symptoms. Moreover, an effective and reliable methodology able 
to detect viral load and SARS-CoV-2 variants from municipal wastewater samples could decrease the cost of 
virus variant detection in the general population based on whole genome sequencing, since only a few samples 
must be processed and analyzed.

In this manuscript we present and validate a methodology named lineagespot, making use of NGS data, able 
to detect lineages and mutational load of SARS-CoV-2. The methodology aims to aid the epidemiological system 
for the monitoring of COVID-19 pandemic in urban areas.

Figure 2.  Unsupervised mutation clustering was performed on a table containing all amino acid substitutions 
(A) Hierarchical clustering shows the clustered collapsed amino acid substitution using the Euclidean distance 
as a distance metric and ward.D as a clustering method. (B) Hierarchical clustering based on the cluster 1 of the 
(A). The heatmap shows the mutation evolution across the different periods. (C) Number of mutations per gene 
across the different periods. The values of the plot were normalized based on the length of each gene.
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Figure 3.  Clustering amino acid substitutions for the Alpha (B.1.1.7) and the Beta (B.1.351) variants. Heatmap 
displays the corresponding allele frequency (AF) of each period per amino acid substitution. (A) Evolution of 
B.1.1.7-detected mutations. (B) Evolution of B.1.351-detected mutations. Positions with low coverage (less than 
20 reads) are depicted with dark gray color.

Table 5.  Allele frequency metrics computed for the comparison with the clinical data. To this end the average 
allele frequency of all mutations, the average allele frequency of the unique mutations and the minimum 
allele frequency were calculated for each time period. Three metrics were used to quantify the presence of 
each lineage. Firstly, the “Average allele frequency of the mutation” which is the average allele frequency of all 
amino acid mutation of a lineage, the “Average allele frequency of the unique mutation” which is the average 
allele frequency of the unique (no shared with another lineage) amino acids mutations of a lineage, and finally 
the “Minimum allele frequency of the present (non-zero) unique mutation” which is the minimum allele 
frequency of the non-zero unique mutation of lineage.

Average allele frequency of 
variants’ mutations

Average allele frequency 
of the unique variants’ 
mutations

Minimum allele frequency 
of the present (non-zero) 
unique variant’s mutations

B.1.1.7 (%) B.1.351 (%) B.1.1.7 (%) B.1.351 (%) B.1.1.7 (%) B.1.351 (%)

2–14 Dec. 2020 0.00 0.00 0.00 0.00 0.00 0.00

5–11 Feb. 2021 32.71 0.00 35.15 0.00 16.67 0.00

12–18 Feb. 2021 51.92 9.05 49.20 0.21 39.53 1.47

19–25 Feb. 2021 79.78 22.15 85.84 14.20 58.06 35.48

26 Feb.–4 Mar. 2021 78.18 11.11 77.51 0.00 31.88 0.00

5–11 Mar. 2021 95.54 11.11 96.28 0.00 76.71 0.00

12–18 Mar. 2021 94.12 11.11 92.31 0.00 100.0 0.00

19–25 Mar. 2021 92.58 11.41 91.14 0.56 92.75 3.92

26 Mar.–1 Apr. 2021 74.09 11.51 74.27 0.63 89.49 4.44

2–8 Apr. 2021 96.89 12.30 95.98 1.56 92.14 2.03

9–15 Apr. 2021 86.20 11.10 81.99 0.00 77.15 0.00

16–22 Apr. 2021 74.32 10.97 74.50 0.00 89.22 0.00

23–29 Apr. 2021 81.60 11.11 83.81 0.00 93.41 0.00

30 Apr.–6 May 2021 93.54 11.11 91.55% 0.00 93.85 0.00
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The method has been tested in different time point samples taken from the main Municipal Wastewater 
Treatment Plant of Thessaloniki—Greece, where effluents from approx. 750,000 inhabitants are collected. The 
lineagespot method demonstrated to be sensitive enough to identify and quantify differences in the mutational 
load, across various time points and was capable of recording the evolution of the B.1.1.7 lineage in the com-
munity. The method is capable of identifying SARS-CoV-2 mutations and characterize the abundance of already 
defined variants (Alpha, Beta variant etc.) within the same sample, assuming that mutations detected in short 
reads are within that set of mutations already sequenced. In addition, lineagespot allows the identification of 
amino acid substitutions which are not linked with any variant of concern but are dominant in particular time 
periods in a specific area. Moreover, the quantitative data obtained using lineagespot are in accordance with the 
trends of well-known mutations (such as D614G) in the same period with the overall epidemiological status of 
the municipal area. The application of lineagespot in such complex samples, like those from Wastewater Treat-
ment Plants, was able to assign lineages and in agreement with the trend of the major lineages detected in the 
area of Thessaloniki, in the 14 time points by whole genome sequencing of samples from the general population.

Overall, the method developed herein was proven superior compared to other methodologies (Sanger 
sequencing)4,7, since it was more informative and sensitive enough to detect mutations with low frequency and 
able to assign with good approximation the correct lineage present in the municipality.

Methods
Sampling and isolation. Wastewater samples were collected from the entrance of the main Municipal 
Wastewater Treatment Plant of the city which accommodates sewerage of about 750,000 inhabitants. Waste-
water entering this plant refers exclusively to citizens from urban districts of the city. Typical values of certain 
physicochemical properties of wastewater samples tested in this study are displayed in Table 6. These properties 
demonstrate, among others, the existence of suspended solids, dissolved organic matter, dissolved oxygen and 
salinity that may have strong impact on viral adsorption and decay because of oxidation and increased meta-
bolic activity of microorganisms in wastewater. The residence time of wastewater until the entrance of the Plant 
is between 2 and 7 h (depending on the area), which is more than enough to allow viral adsorption and decay. 
Identification of mutations may be hindered by viral adsorption and decay and for this reason the present effort 
is particularly significant.

Sampling and handling of the wastewater samples were performed according to Petala et al.3. Briefly, samples 
were obtained using a refrigerated autosampler (6712 Teledyne ISCO) programmed to deliver a 24-h composite 

Figure 4.  Comparison between wastewater samples and clinical data. (A) SARS-CoV-2 lineages detected on 
clinical samples over all time periods. (B) The percentage of presence of the Alpha (B.1.1.7) variant of concern 
(VoC) in the clinical samples and the estimated minimum level of presence of the same VoC in the wastewater 
data. (C) Average percentage of the presence of each characteristic mutation of the B.1.1.7 variant of concern. 
The line corresponds to the average value per time period. Mutations that are not found in a particular time 
point are detected in the neighbouring ones, thus leading to the variations in the average.
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sample by mixing consecutive half-hour samples. Samples were transported to the lab on ice and were processed 
immediately. Three 50-mL aliquots of each untreated wastewater sample were subjected to centrifugation at 
4000×g for 30 min. Afterwards, a composite sample was obtained from supernatants and pH was adjusted to 4 
using 2 M HCl solution. Then, three aliquots of 40 mL each, were filtered through respective 0.45-μm pore-size, 
47-mm diameter electronegative membranes (HAWP04700; Merck Millipore, Ireland) for Sars-CoV-2 nucle-
ocapsid binding. Each membrane filter was rolled into a Falcon 15-mL conical centrifuge tube with the top side 
facing inward, and was subjected to RNA extraction real-time RT-PCR and testing for SARS-CoV-2 quantifica-
tion in a separate facility where no clinical samples are processed to exclude the possibility of contamination. 
For every round of wastewater samples, a blank negative water control was handled and processed by the same 
steps through the whole procedure.

RNA extraction and SARS‑CoV‑2 quantification. Each electronegative membrane was subjected to RNA 
extraction process based on a phenol–chloroform-method17 coupled with magnetic bead binding. The follow-
ing reagents were added sequentially: (a) 900 μL of guanidinium isothiocyanate-based “Lysis buffer I” [5 M 
guanidinium isothiocyanate, 25 mM EDTA, 25 mM sodium citrate (pH 6.2), 25 mM phosphate buffer (pH 6.4)] 
containing 1% N-Lauroylsarcosine, 2% Triton X-100, 2% CTAB and 2% PVP, (b) 18 μL β-mercaptoethanol, (c) 
300 μL  H2O. Tubes were mixed thoroughly by inversion and incubated at 4 °C on horizontal rotator (50 rpm) for 
10–30 min. Subsequently, 1.2 mL of “Lysis buffer II” [prepared by mixing 152.5 gr guanidinium hydrochloride, 
31.25 mL of 2 M acetate buffer (pH 3.8), 12 mL acetic acid and water-saturated phenol stabilized (pH 4), at a 
final volume of 500 mL] was added, followed by incubation on a horizontal rotator (150 rpm, 10 min, RT). The 
liquid phase was transferred into a 2-mL microcentrifuge tube, was clarified by centrifugation (21,000×g, 5 min, 
4 °C) and 1.6 mL of the supernatant were transferred to a new 2-mL tube, wherein 200 μL chloroform-isoamyl 
alcohol (24:1) were added, followed by vigorous shaking for 30 s, incubation (− 20 °C, 30 min) and centrifuga-
tion (21,000×g, 10 min, 4 °C). The upper aqueous phase (800 μL) was transferred and mixed with 667 μL iso-
propanol and 20 μL of magnetic beads (IDEXX Water DNA/RNA Magnetic Bead Kit; IDEXX Laboratories Inc., 
Westbrook, ME, USA), followed by incubation on a horizontal rotator (150 rpm, 15 min, RT). The beads were 
washed according to the manufacturer’s protocol. RNA was eluted in 100 μL buffer, and eluates were subjected 
to filtration, using the OneStep PCR Inhibitor Removal Kit (Zymo Research Corporation, Irvine, CA, USA) and 
were stored at − 80 °C. Extracted RNAs originating from 12 processed electronegative membranes and spanning 
6 different days of sampling were pooled (1.1 mL total RNA extract) and mixed with 2.2 mL binding buffer con-
taining isopropanol (IDEXX Water DNA/RNA Magnetic Bead Kit). Half of the mixture (1.65 mL) was incubated 
with 20 μL of magnetic beads on a horizontal rotator (150 rpm, 15 min, RT). After the magnetic separation of 
beads, the supernatant was removed and the procedure was repeated by adding the remaining 1.65 mL of the 
mixture. The beads were washed according to the manufacturer’s protocol and RNA was eluted in 60 μL buffer.

Concentrated RNAs were subjected to real-time RT-PCR testing for SARS-CoV-2 quantification, utilizing the 
N2 protocol proposed by the Centers for Disease Control and Prevention (CDC) for the diagnosis of COVID-19 
in humans (CDC, 2020). The assay was performed on a CFX96 Touch Real-Time PCR Detection System (Bio-
Rad Laboratories, Hercules, CA, USA). Calibration curves were generated using the synthetic single-stranded 

Table 6.  Main quality characteristics of wastewater samples.

pH

Electrical 
conductivity 
(S/cm)

Total 
suspended 
solids (mg/L) BOD5 (mg/L) COD (mg/L)

Dissolved 
organic 
carbon 
(mg/L)

UV 
absorption 
at 254 nm (1/
cm)

Total 
nitrogen 
(mg/L)

Ammonium 
nitrogen 
(mg/L)

Total 
phosphorus 
(mg/L) Copies/μL

02–14 Dec. 
2021 7.5 8.5 620 385 960 35 0.35 62 28.5 11.5 36

05–11 Feb. 
2021 7.8 9.6 930 525 1250 49 0.4 76 33 11.5 68

12–18 Feb. 
2021 7.8 4.6 1200 650 1570 44 0.45 95 38 12 53

19–25 Feb. 
2021 7.9 3.5 1225 684 1610 56 0.49 95 38.2 15.2 82

26 Feb.–4 
Mar. 2021 7.8 2.9 1225 535 1383 53.5 0.47 78.5 36.7 12.4 179

5–11 Mar. 
2021 7.6 2.8 1017 540 1373 50.2 0.47 71.7 36.8 12.1 102

12–18 Mar. 
2021 7.8 4.5 852 580 1285 66.3 0.48 76.4 37.4 11.7 277

19–25 Mar. 
2021 7.6 4.1 926 582 1467 60.8 0.48 79.3 39.6 11.6 467

26 Mar.–3 
Apr. 2021 7.6 3.4 1095 660 1708 52.1 0.44 85.9 41.4 12.3 494

2–08 Apr. 
2021 7.6 4.2 1054 667 1537 52 0.48 88.1 40.5 13.2 498

09–15 Apr. 
2021 7.7 4.1 1025 579 1464 55.6 0.5 80 32.1 11.4 505
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RNA standard “EURM-019” (Joint Research Centre, European Commission) and SARS-CoV-2 viral loads were 
expressed as genome copies per μL of RNA extract.

Library preparation and sequencing. The targeted sequencing method was applied by preparing 400 
nt amplicons using the ARTIC v3 protocol developed by Wellcome Sanger  Institute18, with some modifications. 
First, cDNA synthesis was prepared from 10 μL of RNA using Super Script II reverse transcriptase (Invitrogen—
Thermo Fisher Scientific, USA) and 50 ng/μL of random primers according to the protocol guidelines. For sub-
sequent cDNA amplification, 2.5 μL of the generated cDNA was used instead of 6 μL, using ARTIC PCR primer 
pools (v3). Depending on the sequencing platform, libraries were submitted or not to the FS DNA Workflow 
for Illumina by a fragmentation step for 30 min at 37 °C, using the NEBNext Ultra II FS reagents (NEB#7658). 
Finally, the NEBNext adaptor (New England Biolabs, US, #7335) was used in the ligation reaction, diluted with 
adaptor dilution buffer at 10 μΜ final concentration. All purification steps were performed according to the 
ARTIC protocol. The samples were paired‐end, sequenced either on a MiSeq or a NextSeq500 platform (Illu-
mina, USA) with a read length of 2 × 300 and 2 × 150 bp, respectively.

Library construction and sequencing was performed at the premises of CERTH INAB. The diagnostic facility 
at CERTH is an ISO 15189 certified unit. All steps are performed in dedicated physically separated areas with the 
appropriate measures. All the appropriate controls, both negative and positive ones according to Good Labora-
tory Practices and the adopted SOPs, have been used during the entire process.

Raw data analysis. The initial phase of the bioinformatics analysis is to produce an alignment of the 
sequencing reads, while maintaining extremely strict criteria, in order to remove any potential contaminants 
and/or sequencing errors. The first step is the adaptor removal process, where any adaptors were removed from 
the raw fastq sequences, with the cleaned reads mapped to the SARS-CoV-2 reference genome (Wuhan variant, 
NC_045512), using Minimap2  tool19 with a minimal chaining score (matching bases minus log gap penalty) 
equal to 40. From this process, only the paired-end sequences were retained, while any other (unmatched, mul-
tiple mappings, etc.) were removed. In the next step, two different computational workflows were employed 
corresponding to the two different sequence lengths of 150-base or 300-base paired-end, used depending on 
the NGS platform. For the first seven samples and the last three (2 December 2020–18 March 2021 and 16 April 
2021–06 May 2021), the primer sequences are excluded using the iVar  tool20, setting a minimum of 200 length 
in nucleotides for a read to be retained after trimming, and a minimum threshold for sliding window of 15 qual-
ity to pass (width of sliding window equal to 4). The final sequences are then remapped to the same reference 
genome (minimal chaining score equal to 40). For the four samples between 19 March 2021 and 15 April 2021 
primer trimming and remapping to reference genome was not applied, as the updated protocol used did not 
necessitate this step. Finally, in order to be able to detect low frequency mutations, the freebayes variant caller 
was used with a low mutation frequency parameter of 0.01. Ultimately, all identified mutations were annotated 
using the SnpEff  tool21 and the NC_045512.2 (version 5.0) database. The proposed variant calling pipeline (with 
all set parameters) is provided on the GitHub repository.

Downstream analysis of lineages detection. In order to identify and assign different SARS-CoV-2 
lineages based on the mutations detected from a single wastewater sample, we implemented the proposed meth-
odology in a tool named lineagespot.

The tool accepts as input a VCF file, which contains all nucleotide (and the corresponding amino acid) 
mutations identified in a sample, along with a file containing all lineage-assignment mutations. After analyz-
ing all inputs, a tab-delimited file (TSV file) is produced containing the identified mutations that are related to 
SARS-CoV-2 lineages. In addition, we compute average allele frequencies to quantify lineage abundance metrics. 
Figure 5 shows an overview of the tool’s functionalities.

lineagespot is dependent on the source used for retrieving lineage definitions. In our case, the two potential 
sources are (1) lineage-characteristic mutation profiles pre-calculated by outbreak.info and (2) lineage-character-
istic mutation profiles derived from the trained Pangolin models. Both outbreak.info and Pangolin are available 
resources (https:// cov- linea ges. org/ resou rces. html) for monitoring the SARS-CoV-2 outbreak, and have their 
data provided from GISAID. In this section we will describe the process for both cases; however, given the fact 
that the Pangolin definitions are based on a trained machine learning model that is not necessarily interpretable, 
lineagespot is using by default the first option (i.e. outbreak.info as the source of definitions):

 i. Outbreak.info as the source of lineage definitions
   By default, lineagespot uses outbreak.info to retrieve information about lineage assignments. In order 

to do this, either an API is used, from which information regarding variants of concern or user specified 
variants and the related amino acid substitutions are retrieved, or user provided tab-delimited files can be 
given as an input to the tool in case a user is interested in specific mutations or lineages. Based on these 
inputs lineagespot identifies potential SARS-CoV-2 variants in the input samples and produces metrics 
to quantify the presence of each lineage.

 ii. Pangolin as the source of definitions
   Initially, a vector of all genome positions is created, for which each position is set to be equal to the 

reference genome nucleotides. Then, every VCF file is read and a set of new rules is formed by setting 
each position of the file with the reported mutation or multiple mutations (in case there is more than one 
reported mutation at the same position). It should be noted that positions that have been detected with 
more than one mutation, should include all of them at the VCF’s ALT column in a comma-delimited 
format. Most of the variant caller tools (freebayes, GATK, etc.) are doing this by default. Finally, positions 

https://cov-lineages.org/resources.html
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with reference read depth equal to zero are removed from the first vector. The remaining two vectors are 
merged into one. In addition to finding all positions that need to be set equal to the base that has been 
allocated, four more rules are added for each genome position. These rules contain all bases not equal 
to the nucleotide of the original rule. For example, if position 5388 is equal to base ‘A’ (representing rule 
5388 =  = ‘A’), then four new rules are added containing all bases not equal to ‘A’, e.g., 5888! = ‘T’, 5388! = ‘G’, 
5388! = ‘C’, 5388! = ‘–’ (where the ‘–’ symbol stands for a gap in the referred sequence). Finally, all rules 
are merged into a single vector representing this particular lineage.

The second phase aims to compare the mutations derived from the VCF file with a lineage’s mutations. 
Specifically, all decision rules are read from the input Pangolin file, and for each lineage, the related rules are 
compared with the final rule vector.

It should be noted that having pangolin as a source of lineages’ definitions relies on the following assumption. 
Given a group of reads that satisfy a rule A of lineage L, and another group of reads that satisfy rule B from the 
same lineage L, then the lineage L is incorrectly assigned. As an example, suppose that a group of reads satisfy 
only the first two rules from lineage B.1.177.17 (28,931! = ’A’, 25,613! = ’G’), and another group of reads satisfy the 
next two rules from the same lineage (407! = ‘–’, 22,087! = ’A’). Based on the method description above, lineage 
B.1.177.17 will be marked as an identified lineage, even though none of the reads satisfy all of the lineage’s rules. 
In order to mitigate this risk, we are taking into consideration a number of different indicators that reflect the 
number of total rules satisfied, the number of rules that are satisfied based on the detected mutations, and the 
overall number of reads that support both reference and allele for each of the rules. Three metrics are computed 
and stored in the output file; the total number of rules leading to the related lineage, the number of rules satisfied 

Figure 5.  Snapshots of the intermediate steps. (A) A summary plot showing the overall process from the 
sampling to lineagespot. (B) A VCF file produced by the chosen variant caller (C) SARS-CoV-2 characteristic 
substitutions retrieved either from a public source (such as Pangolin or outbreak.info), or be user-provided. (D). 
A tab-delimited file as produced by lineagespot.
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by the created rule vector, considering pangolin’s rules as a decision tree, and the total number of rules satisfied. 
Also, the related ratio values are being computed, giving a satisfaction percentage of each lineage.

Source of lineage‑specific mutations. For the detection of lineage-specific mutations, three different 
data sources were used; pangolin, VEO and outbreak.info. An example of the differences of the three sources is 
provided in Supplementary Fig. 1, which compares the detection of B.1.1.7 using (A) outbreak.info, (B) pangolin 
and (C) VEO data. lineagespot uses by default outbreak.info reports.

Abbreviation matrix. See Table 7.
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