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Evolutionary conservation 
of a regulative pathway 
of erythropoiesis in Poikilothermic 
vertebrates
Rosa Manca1, Monia Delia2, Marianna Abate3, Silvia Zappavigna3, Sergio Papa4,5, 
Chester Glomski6 & Alessandra Pica1*

Apoptosis, programmed cell death, plays a central role in haematopoiesis. Mature erythrocytes 
of non-mammalian vertebrates maintain a permanent nucleus; these cells can undergo apoptosis 
(eryptosis), as do other somatic cells of a given non-mammalian vertebrate. In this study, we have 
investigated the expression and subcellular distribution of Bcl-2, Bcl-XL and Bax proteins in the 
maturation phases and after X-ray irradiation of nucleated erythrocytes of Torpedo marmorata 
and Caretta caretta and the effect of X-ray irradiation on nucleated circulating erythrocytes of 
Torpedo marmorata. The cellular distribution of proteins was detected in erythrocytes by using 
immunocytochemistry at light microscopy and immunoelectron microscopy. The electrophoretic 
separation and immunoblotting of pro- and anti-apoptotic proteins of immature and mature erythroid 
cells was performed too, after X-ray irradiation of torpedoes. The results of the immunocytochemical 
analyses show an increase, in the expression level of Bax in mature as compared to young 
erythrocytes and a corresponding decrease of Bcl-2 and Bcl-XL. This maturation pattern of Bax, Bcl-2 
and Bcl-XL was abrogated in X-ray irradiated torpedo erythrocytes. On the basis of these observations, 
Bax, Bcl-2 and Bcl-XL seems to play a role in the erythropoiesis of Torpedo marmorata Risso and in 
Caretta caretta. In conclusion, the same apoptotic proteins of somatic cells appear to be conserved in 
circulating nucleated erythrocytes thus suggesting to play a role in the maturation of these cells.

Mature circulating erythrocytes of non-mammalian vertebrates maintain the nucleus and organelles including 
mitochondria. These cells can undergo apoptosis (eryptosis) as do other somatic cells1.

Eryptosis of circulating nucleated erythrocytes2 of poikilothermic vertebrates, such as the elasmobranch 
Torpedo marmorata Risso and the sea turtle Caretta caretta, constitutes a useful model to study whether the 
maturation process of nucleated erythrocytes in circulation and the regulation of their apoptotic mechanism is 
similar to that one of non-erythroid somatic cell in mammalian vertebrates3.

Three maturation stages of red blood cells are identifiable in circulating blood of torpedoes4. The first is 
represented by basophilic erythroblasts, in which 50–60 small round mitochondria encircle the nucleus. These 
cells are spherical and present a large nucleus with small amounts of condensed chromatin and a nucleolus. The 
cytoplasm is filled with ribonucleoproteins, mitochondria and vacuoles. In a further maturation progression, 
the cells lose their round configuration becoming elliptical in shape and condensation of chromatin increases. 
In electron micrography the cytoplasm shows mitochondria, abundant ribosomes, profiles of rough endoplas-
mic reticulum, a small Golgi complex, vesicles and vacuoles. The second maturation stage, the acidophilic 
erythroblasts, representing around 17% of circulating erythrocytes, has larger, slightly elongated mitochondria, 
distributed near the nucleus, in number ranging from 40 to 50 per cell. The nuclear electron density is increased 
while the quantity of ribosomes is diminished. The mature erythrocytes, the third stage, have much larger but 
fewer mitochondria, than the two previous stages, mainly adjacent to the two poles of the ellipsoidal nucleus5,6.
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Circulating erythropoiesis is identifiable in the blood of the loggerhead turtles. The youngest recognizable 
immature precursor of the erythrocyte is the basophilic erythroblast, a spherical cell with centrally located 
round nucleus surrounded by a relatively narrow band of basophilic cytoplasm. With continued maturation 
the cell evolves into an intermediate form, the acidophilic erythroblast, which presents a flattened ellipsoidal 
configuration: the cytoplasm is completely acidophilic like that of mature erythrocyte, due to the accumulation 
of hemoglobin, while the nucleus is oval and the chromatin is less compact than in mature red cell. The log-
gerhead reticulocyte is a further developed cell and it is the immediate antecedent of the mature erythrocyte. It 
is identified by the detection of a small amount of residual cytoplasmic RNA7. The B cell lymphoma-2 protein 
family plays a key role in human apoptosis8. Anti- apoptotic members, such as Bcl-2 and Bcl-XL, inhibit apoptosis 
of haematopoietic progenitor cell counteracting apoptosis activators, such as Bax. Intrinsic apoptosis of mature 
erythrocyte can be affected by diverse stimuli including genotoxic damage by X-ray exposure9,10. Pica et al.11, 
have shown that in elasmobranchs the higher doses of X-rays than in mammals have to be used to cause hae-
mopoietic depletion. In the present study, we have detected the expression and subcellular distribution of Bcl-2, 
Bcl- XL and Bax proteins in the maturation phases of Torpedo marmorata and Caretta caretta and the effect of 
X-ray irradiation on nucleated circulating erythrocytes of Torpedo marmorata.

Results
Bcl‑2, Bcl‑XL and Bax expression regulation during erythropoiesis.  The immunocytochemical 
reactions in light microscopy reveal a diffuse immunopositivity to Bcl-2 protein in the cytoplasm of torpedo 
basophilic erythroblasts. In the subsequent maturational stages, i.e., the acidophilic erythroblast, the immu-
nopositivity reacts lightly in the mitochondria. They display a perinuclear disposition following staining Janus 
green, as demonstrated by Pica et al.6 (Fig. 1a,b).

The immunopositivity to Bcl-XL protein is revealed only slightly and solely in the cytoplasm of the acidophilic 
erythroblasts, and not in mature erythrocytes (Fig. 1c).

Conversely, Bax is expressed as an intense immunopositivity in the mitochondria of the mature acido-
philic erythroblast and mature erythrocyte. No Bax reactivity is detected in basophilic erythroblasts (Fig. 1d,e). 
No differences have been observed between the two species of torpedoes.

Immunocytochemical reactions performed on turtle blood smears reveal a diffuse immunopositivity to Bcl-
2, which decreases until it disappears in the mature erythrocyte (Fig. 1f). Bcl-XL protein is detectable in the 
cytoplasm of acidophilic erythroblasts, displaying various intensity, while it is lacking in mature erythrocytes 
(Fig. 1g,h). On the other hand, Bax is absent in basophilic erythroblasts and progressively increases in acidophilic 
erythroblasts and mature erythrocytes (Fig. 1i).

X‑ray damage: effects on protein expression in Torpedo erythrocytes.  In torpedoes irradiated at 
40 Gy, a Bcl-2 weak positivity was detected in basophilic erythroblasts and in acidophilic erythroblasts (Fig. 2a). 
Bcl-XL positivity was revealed only in acidophilic erythroblasts (Fig. 2c). No Bax positivity was found in eryth-
roblasts or mature erythrocytes, after 40 Gy irradiation (Fig. 2e).

After higher radiation doses (90 Gy), no Bcl-2 immunopositivity was detected in all three stages of maturation 
(Fig. 2b). A very weak Bcl-XL positivity was observed in developing or mature erythrocytes (Fig. 2d).

The Bax expression was only revealed in acidophilic erythroblasts and in mature erythrocytes of torpedoes 
irradiated at 90 Gy. In the box, a young erythrocyte displaying Bax positivity in mitochondria (Fig. 2f).

Immunocytochemical findings in electron microscopy.  The immunocytochemical analysis of 
ultrafine sections of unirradiated torpedo erythrocytes shows that the anti-apoptotic protein Bcl-2 is mainly 
located in the cytosol but it is also present on the nuclear membrane as well as in the mitochondrial matrix 
(Figs. 3a, 4, 5a) of erythroblast. In particular, this protein, as indicated by colloidal gold particles, is distributed 
on the crests of torpedo’s mitochondria and not on the inner mitochondrial membrane (Figs. 4d,e, 5c).

In the erythrocytes of torpedo that have been irradiated at 90 Gy, Bcl-2 displays a predominantly cytosolic 
and mitochondrial localization (Figs. 3b, 4, 5a).

The anti-apoptotic protein Bcl-XL is localized in cytoplasm of unirradiated torpedo mature red blood cells 
while post-irradiation there is a decrease in cytoplasmic expression of this protein (Figs. 3c,d, 4, 5a).

The expression of the pro-apoptotic protein Bax is weakly detectable in the cytosol of mature erythrocytes 
of unirradiated torpedoes and appears mostly on the crests of the mitochondria of the acidophilic erythroblasts 
and mature erythrocytes (Figs. 3e, 4f,g, 5c). In regard to the 90 Gy-irradiated torpedoes, their erythrocytes offer 
an intense positivity of the Bax reaction in the cytoplasm and mitochondria (Figs. 3f, 4, 5a).

Immunocytochemical reactions performed on loggerhead erythroblast revealed Bcl-2 and Bcl-XL positiv-
ity on the nuclear membrane, inner-mitochondrial cristae intercalated by flat inner-mitochondrial membrane 
and in the cytosol of young erythrocyte (Figs. 4a,b, 5b). Bax was detected on the crest of the mitochondria of 
acidophilic erythroblast and mature erythrocyte (Figs. 4c, 5b).

Apoptotic protein expression in young and old Torpedo erythrocytes.  The western blotting 
shows the protein bands detected with anti-Bax and anti-Bcl-2 antibodies after electrophoretic separation of 
proteins of torpedo immature and mature erythroid cells. Bcl-2 was expressed mainly in young erythrocytes. 
Contrarily, Bax was detected in mature red cells. Moreover, cleaved caspases-3/7 were expressed at higher levels 
in mature erythrocytes, compared to young ones. After irradiation, young and mature erythrocytes express both 
Bax and Bcl-2 (Fig. 5d).
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Figure 1.   Light microscopy images of red blood cells from Torpedo marmorata Risso and Caretta caretta. (a) 
Bcl-2 protein is located in the cytoplasm of torpedo basophilic erythroblast. Scale bar as in e. (b) In the torpedo 
acidophilic erythroblast and mature erythrocyte, Bcl-2 and mitochondria have perinuclear position. Scale bar 
as in e. (c) Bcl-XL is slightly detected in the torpedo acidophilic erythroblast (black arrowhead), but not in 
the mature erythrocyte (white arrowhead). Scale bar: 15 µm. (d,e) Bax immunolabeling is shown in torpedo 
acidophilic erythroblast (d) and mature erythrocyte (e). No Bax immunolabeling was showing in basophilic 
erythroblasts. Scale bar: 15.4 µm. (f) Demonstration of Bcl-2 immunopositivity in the turtle basophilic 
erythroblast (black arrowhead) and in the reticulocyte (white arrowhead). The reactivity is seen to decrease 
in the acidophilic erythroblast and the mature erythrocyte. Scale bar: 12 µm. (g) Bcl-XL is detectable in the 
acidophilic erythroblasts. Scale bar: 12 µm. (h) Detail of panel of G showing the intense Bcl-XL positivity of an 
acidophilic erythroblast, near a negative mature erythrocyte. Scale bar: 17 µm. (i) Bax is absent in immature 
turtle stages, while in mature stages it is localized in the cytoplasm. Scale bar: 15 µm.
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Discussion
In the unusual dichotomy, i.e., mammalian versus poikilothermic species’ red cells, the fully developed mature 
mammalian red blood cell has extruded its nucleus and has degraded and released most of its metabolic machin-
ery so that the cell is devoid of the metabolic capability to enter apoptotic activity. Such cells have often char-
acterized as plastids.

This exceptional well recognized status generates multiple questions. Do the erythrocytes that permanently 
retain their nuclei and maintain at least most of their metabolic machinery, i.e., the red blood cells of poikilo-
therms, enlist the same metabolic pathways observed in apoptotic somatic cells observed in all species? Apop-
totic activators and apoptotic inhibitors have been identified in mammalian non-erythroid somatic cells. Is this 
molecular interaction identifiable in the permanently nucleated red cells of the poikilotherm? Is it identifiable in 
the erythrocytes of the earliest evolutionary vertebrates (the elasmobranchs)? If this is indeed the case, is this 

Figure 2.   Light microscopy images of red blood cells from Torpedo after 40 Gy irradiation and after 
90 Gy irradiation. (a) After 40 Gy irradiation we observed a weakly Bcl-2 immunopositivity in basophilic 
erythroblasts (white arrowhead) and in acidophilic erythroblast (black arrowhead). (b) After 90 Gy irradiation, 
no Bcl-2 immunopositivity was detected in all three stages of maturation. (c) After 40 Gy irradiation, Bcl-XL 
immunopositivity was detected in the acidophilic erythroblast (black arrowhead). (d) After 90 Gy irradiation, 
a weakly Bcl-XL immunopositivity was observed. (e) After 40 Gy irradiation, no Bax immunopositivity was 
observed. (f) After 90 Gy irradiation, Bax was identified in the acidophilic erythroblast (black arrowhead) 
and in the mature erythrocyte (white arrowhead). In the box, a young erythrocyte displaying Bax positivity in 
mitochondria. Scale bar: (a) 15.5 µm, (b,f) 9 µm, (c,e) 11.5 µm, (d) 15 µm.
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capability conserved in further developed poikilothermic species? This present investigation is designed to 
address some of these questions.

In fishes, erythropoiesis is significantly dependent on environmental conditions (principally temperature 
and level of oxygen). Therefore, seasonal changes in the level of erythrocytes in the circulating blood occur. The 
availability of oxygen can vary considerably in an aquatic environment and fish react to hypoxic conditions with 
an enhanced rate of erythropoiesis12.

As previously demonstrated, sublethal x-irradiation of torpedoes followed by autohemotransplant fully 
restored erythropoiesis only on red pulp of the spleen11. Moreover splenectomy of torpedoes induced circulating 
erythropoiesis to restore the physiological number of circulating red blood cells13. In another species, the dogfish 
Scyliorhinus canicula, Fänge and Johansson-Sjöbeck (1975) did not identify erythropoiesis in lymphomyeloid 

Figure 3.   Electron microscopy images of red blood cells from Torpedo. (a) Immunoelectron microscopy 
reveals the Bcl-2 positivity, as indicated by colloidal gold particles (10 µm diameter), in the mitochondrial 
matrix (white arrowhead) and nuclear membrane (black arrowhead) of erythroblasts. (b) After 90 Gy 
irradiation, the localization of the Bcl-2 protein remains unchanged and its expression appears slightly reduced. 
(c) Bcl-XL positivity was detectable by numerous and dispersed gold colloidal particles in cytosol of mature 
red blood cells. (d) Bcl-XL positivity: some gold particle aggregates appears to be dispersed in cytosol after 
90 Gy irradiation. (e) Weak Bax reactivity is identified in the cytosol of mature erythrocytes. (f) An increased 
expression of Bax was observed in mitochondria and in cytosol after 90 Gy X ray in erythrocytes. Scale bar: 
0.5 µm. M mitochondria; N nucleus.
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tissues after splenectomy; nevertheless they hypothesized that early erythropoiesis could take place in lympho-
myeloid tissues (although they could not detect this activity) and complete the erythrocytic maturation in the 
circulating blood14.

The expression of some apoptotic proteins was investigated in this study to assess their involvement in 
the regulation of poikilothermic vertebrate erythropoiesis. The results indicate that these proteins, both anti-
apoptotic and pro-apoptotic, regulate erythropoietic equilibrium in Torpedo marmorata Risso and in Caretta 
caretta (loggerhead) turtles.

The immunocytochemical analysis of pro- and anti-apoptotic proteins of torpedo erythrocytes reveals that 
both appear on the internal membrane of mitochondria.

Anti-apoptotic and pro-apoptotic proteins seem to have different expression over time. Bcl-2 and Bcl-XL are 
identifiable in the juvenile stage of erythrocytes and its presence decreases in the subsequent maturational stage 
which is characterized by a decrease of RNA transcription, responsible for the diminished cytoplasmic basophilia 
of the further developed antecedent of the red cell.

Concomitantly, Bax expression increases. The Bax protein of the torpedo erythrocytes is expressed in the 
cytosol of the most mature erythroblast but in the further developed stages it is associated with the mitochon-
drial crest membrane.

These immunochemical data clearly demonstrate an increase in the expression of Bax and a correspond-
ing decrease of Bcl-2 during erythropoiesis. In immature stages of erythroid cells, the higher Bcl-2 and Bcl-XL 
expressions prevent apoptosis, meanwhile the increased Bax expression in maturative stages trigger the apoptotic 
process in the senescent cells. In fact, some apoptotic mechanisms are spontaneously activated for erythroid 
maturation e.g., the caspase activation during late stages of erythroid maturation15. Caspase-3/7 are the main 
apoptosis executioner and regulate mitochondrial events in the apoptotic pathway. Apoptosis can be also induced 
by the activation of caspase-7 that may partially substitute caspase-3 in caspase-3–deficient models16.

Figure 4.   Electron microscopy images of mitochondria of Caretta caretta and of Torpedo marmorata Risso. 
(a) Loggerhead erythroblast immunolabeling with Bcl-2 antibody shows the location of Bcl-2 (25 nm colloidal 
gold) on the nuclear membrane (white arrowhead), cristae of the inner mitochondrial membrane and in 
the cytosol. (b) Bcl-XL immunopositivity (25 nm colloidal gold) is observed on the internal mitochondrial 
membrane (white arrowhead) of young erythrocyte. (c) Bax is detected on the crest of a mitochondrion (white 
arrowhead) in mature erythrocyte. Scale bar: 0.5 µm. (d,e) Illustrations of Bcl-2 immunopositivity located 
on the internal mitochondrial membrane of torpedo young erythrocyte. (f,g) Bax positivity is observed to 
be mainly dispersed on the internal crests of the mitochondria of mature erythrocyte. Scale bar: 0.3 µm. M 
mitochondria, N nucleus.
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Caspase-3 is considered a reliable marker for cells that are dying, or have died by apoptosis17. Caspase-3 is a 
well executioner of eryptosis. Yange et al. demonstrated the role of caspase-3, as executioner of erythropoietin 
regulator apoptosis18.

On the other hand, during mammalian erythropoiesis, the origin of reticulocyte is due to trigger of apoptosis 
through caspases-3/7, which lead to the nucleus expulsion. This apoptotic process is not fully executed because 
of the exhaustion in caspase-3/719.

The caspase-3 sequence appears to be evolutionary conserved in Pacific cod by showing a prominent role as 
mediator of apoptosis20. The complete sequence of caspase-3 of sea bass cells (Dicentrarchus labrax L) shows a 
very close homology to the correspondent sequence from other vertebrates21.

Caspase-3 has been demonstrated to be involved even in invertebrate cell apoptosis, as regulator of aging 
in Daphnia pulex22, or associated with degenerative processes in various tissues in four species of Molluscs23.

Otherwise, in the present study, caspase-3/7 activation was demonstrated in mature torpedo erythrocytes 
compared to young ones; activation of caspase-3/7 that act further downstream and direct cellular breakdown 
through cleavage of structural proteins is a hallmark of apoptosis. In our case, the activation of caspases-3/7 
occurred in parallel with the increase of proapoptotic protein Bax and the decrease of antiapoptotic protein Bcl-2 
by suggesting the activation of apoptotic pathway.

The study of irradiated torpedoes was conducted to assess the activation of pro- and anti-apoptotic proteins 
following X-ray exposure. A comparable investigation of Caretta caretta, however, was not carried out because 
it is a protected species.

As for the erythroid cells of irradiated torpedoes, the expression of anti-apoptotic proteins (Bcl-2 and Bcl-
XL) is inhibited and the expression of the pro-apoptotic proteins (Bax) is increased, after 90 Gy irradiation. The 
observations derived from electron microscopy revealed a weak Bcl-2-positivity after X-ray exposure, that was 
not detectable under light microscopy. This status confirmed the information derived from immunoblotting. 
X-ray damage may alter physiological intracellular balance between pro-apoptotic and anti-apoptotic proteins. 
It is further of interest that the torpedo is particularly resistant to x-irradiation, very likely due to the known 

Figure 5.   Quantifying immunogold labelling in transmission electron microscopy and western blotting. (a) In 
torpedo erythrocytes a significant decrease of Bcl-2 and Bcl-XL and a significant increase of Bax were detected 
after 90 Gy irradiation (p < 0.5). (b,c) Quantifying immunogold labelling in young and in old loggerhead 
erythrocytes and in mitochondria of Torpedo marmorata Risso. A significant increase of Bax and a significant 
decrease of Bcl-2 and Bcl-XL were detected in old loggerhead erythrocytes, as compared to young cells (p < 0.5), 
in agreement with light microscopy images. (d) Western blotting showing apoptotic proteins involved in 
erythropoiesis in young and old Torpedo erythrocytes. Bcl-2 was expressed mainly in young erythrocytes. On 
the contrary, Bax was detected in mature red cells. After irradiation, young erythrocytes (Ir. Young) and mature 
erythrocytes (Ir. Old) express both Bax and Bcl-2. Moreover, cleaved caspases-3/7 were expressed at higher 
levels in mature erythrocytes, compared to young ones. The β-actin was used as control.
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high amount of antioxidant molecules in their tissues24. As demonstrated in prior studies, the sublethal dose 
for the torpedo is 100 Gy while the lethal dose for humans is 7 Gy10,11. Peslak et al. demonstrated that the pro-
erythroblast population of mice underwent radiation-induced apoptosis following 1 Gy total body irradiation25. 
This dose is almost the threshold of sub-lethal dose for mammals. Moreover many authors demonstrated that 
elasmobranchs have a lower incidence of neoplasia than that of any other vertebrate group26. Interesting applica-
tions of these features are the study of compounds produced by immune tissues of elasmobranch fishes, which 
can be used for development of new antibiotics and novel treatments for cancer, macular degeneration, viral 
pathogens, and Parkinson’s disease27,28. These observations suggest that further studies in this area should gener-
ate substantive results.

The present investigation of the sea turtle Caretta caretta reveals that anti-apoptotic and pro-apoptotic pro-
teins appear to be involved in the maturation of erythroid cells. Diffuse immunopositivity of both Bcl-2 and 
Bcl-XL is obtained in the cytoplasm of the earliest precursor of the erythrocyte and this reactivity weakens 
thereafter. Conversely, Bax, not identifiable in the basophilic erythroblasts, is evident in the subsequent stages.

In conclusion, Bcl-2 sub-family is involved in regulation of erythropoiesis in non-mammalian vertebrates. 
Hence, apoptotic mechanism appears to be conserved among the species that maintain permanently nucleated 
erythrocytes regardless of the evolutionary interval among them (see also29).

Methods
Animals and blood samples.  Juvenile and adult torpedoes (two specimens of Torpedo marmorata Risso, 
one male and one female, seven specimens of Torpedo ocellata Rafinesque, two male and two female, weigh-
ing 500–600 g, and three samples, two female and one male, weighing 300 g), six specimens (2 T. marmorata 
and 4 T. ocellata) used as controls, and 20 specimens of loggerhead turtles Caretta caretta (weighing between 
1.33–53.78 kg, 8 male and 12 female) were caught in the bay of Naples and in the Adriatic and Tyrrhenian Seas, 
were kept in suitable-sized tanks filled with flowing sea water at 18–20 °C and regularly fed fresh fish and mol-
lusks at the zoological station of Naples. All animals used in the present study were healthy, as confirmed by 
hemogram performed.

All torpedoes were similar in weight; they were divided in two groups (treated and controls) by species and 
sex.

Torpedo blood samples were quickly taken from the caudal vessel by using a 2.5 mL syringe and collected into 
tubes containing the anticoagulant EDTA and thin blood smears for light microscopy were made immediately 
with non-anticoagulated blood. The blood was centrifuged at 1000 rpm for 15 min and two erythrocyte frac-
tions were separated: the immature erythrocyte-rich level (under the discarded buffy coat layer of the red cell 
column) and the mature red cells (the deep region of the red cell column). The two samples were then subjected 
to lyophilization and used for subsequent assays.

Turtle blood samples were quickly drawn from the dorsal occipital venous sinus into evacuated tubes con-
taining 0.1% lithium heparin (BD, Buccinasco, Milan, Italy). Stabulated turtles actively collaborated to blood 
withdrawal, by lowering their heads, waiting for the prize fish following blood collection. Thin smears were made 
immediately from non‐anticoagulated blood and cytochemical reactions were performed.

Fish care, experimental protocols and all methods were performed in accordance with relevant guidelines 
and regulations. The study was carried out in compliance with the ARRIVE guidelines and was approved by the 
“Committee for the Protection of Animals used for Experimental and other Scientific Purposes of the University 
of Naples Federico II”.

Torpedo irradiation.  Torpedoes were irradiated at 40 and 90 Gray (Gy) using the linear accelerator (Sie-
mens) to study the changes induced by radiation on the apoptotic mechanisms that regulate erythropoiesis. The 
animals were kept in the tank with circulating sea water and after seven days post-irradiation and subsequently 
once a week blood samples were taken from the caudal vein, as described, to perform hemogram, blood smears 
and the described methods.

Immunocytochemistry at light microscopy.  The blood smears were fixed in 4% paraformaldehyde 
for 2 min and then washed in distilled water. The high temperature antigen unmasking technique using citrate 
buffer was performed. A microwave oven (MW 310 DeLonghi,Treviso, Italy) was used. The blood smears were 
submerged in 10 mM citrate buffer (pH 6.0) and microwaved at 400 W 2 treatments 2 times for 5 min. Subse-
quently, the smears were left in the citrate buffer at room temperature for 20 min.

The blood smears were washed and reacted for 15 min in 3% H2O2 to inactivate endogenous peroxidase 
activity and incubated for 60 min at room temperature in 5% normal goat serum (NGS; Dako, Glostrup, Den-
mark) in 0.1 M phosphate-buffered saline pH 7.4 (PBS), containing 0.1% Triton X-100 (Sigma, St. Louis, MO). 
The smears were then incubated overnight, in a humid chamber, in rabbit polyclonal antibodies that recognize 
Bcl-2 (Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1:100 in NGS. After several rinses, the smears were 
incubated for 2 h in biotinylated goat anti-rabbit IgGs (Vector Laboratories, Burlingame, CA) diluted 1:50 in 
NGS, followed by incubation for 1 h at room temperature in the avidin–biotin-peroxidase solution (ABC Kit; 
Vectastain, Vector) in PBS, and then for 10 min in 0.05% 3–3’diaminobenzidine (DAB) and 0.01% H2O2 in 
0.01 M Tris–HCl-buffered saline, pH 7.6 (TBS). Negative control smears were processed with the same protocol 
omitting the primary antibody. No immunostaining was detected in these sections.

The same procedure was followed for Bcl-XL and Bax immunostaining using rabbit polyclonal anti-Bcl-XL 
and anti-Bax antibodies (Santa Cruz Biotechnology, Santa Cruz, CA; diluted 1:100 in NGS).
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Isolation of red blood cell mitochondria.  Isolation of red blood cell mitochondria was described by 
Pica et al.6. Briefly, the red blood cells were centrifuged at 800g for 15 min to obtain a mitochondrial pellet which 
was then fixed for electron microscopy. The cell pellet was diluted three-fold with buffer solution (800  mM 
sucrose, 2 mM K-EDTA, 10 mM Tris, pH 7.4) and incubated with 200 µg/mL digitonin for 15 min at 4 °C. After 
a centrifugation at 8000g, 4 °C for 10 min, the pellet of Hb-free permeabilized cells was resuspended in the same 
initial volume of the previous buffer solution and incubated with 400 µg/mL lysozyme and 200 µg/mL nagarse 
for 20 min at 4 °C. This cell suspension was then disrupted at 0 °C with a Potter–Elvehjem homogenizer. The 
homogenate was centrifuged at 1500g and the supernatant collected by glass fiber filtration and centrifuged twice 
at 7000g. The mitochondrial pellet was resuspended, centrifuged at 22,000g for 10 min. Mitochondrial pellet was 
collected in the buffer solution at a concentration of 5–6 mg prot/mL. The protein concentration was determined 
by using the Bradford method.

Isolation of mitoplasts.  The red blood cells were centrifuged at 14000g for 10 min and resuspended in 
phosphate buffered saline (PBS) containing 5 mM NaF, 500 nM okadaic acid and 1 mM sodium orthovana-
date as phosphatase inhibitors. The protein concentration was determined by using the Bradford method and 
digitonin (0.2 mg/mg of protein) was added to cell suspension. The sample was incubated in ice for 10 min 
and subsequently diluted five-fold in PBS and centrifuged at 10,000g for 10 min. The supernatant containing 
the cytosolic fraction was removed and the pellet of mitoplasts was re-suspended in PBS and re-centrifuged to 
remove digitonin residues, as described by Technikova-Dobrova et al.30.

Immunoelectron microscopy.  The red blood cell pellet and isolated mitochondria were fixed in 0.1% 
glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer, for 30 min and washed in 0.1 M 
sodium cacodylate buffer for 1 h at 37 °C, postfixed with 1% OsO4 for 1 h, dehydrated in an ethanol-gradient, 
embedded in resin Epon 812 and polymerised for 24 h at room temperature and 24 h at 60 °C. For immunoelec-
tron studies, ultrathin sections were processed according to a postembedding immunogold procedure. Ultrathin 
sections were achieved using a Reichert ultramicrotome and the sections were mounted on nickel grids.

The high temperature antigen unmasking technique was performed using citrate buffer and a microwave 
oven. The sections, having been placed on grids, were soaked in 10 mM citrate buffer, pH 6.0, in capped plastic 
jars and microwaved at 400 W (2 treatments for 5 min) and then the grids were left in the citrate buffer at room 
temperature for 20 min. The sections were incubated in 10% hydrogen peroxide for 10 min, rinsed in PBS for 
15 min and blocked for 15 min in 1% bovine serum albumin (BSA) in PBS. The sections were then incubated with 
rabbit anti-Bcl-2, anti-Bcl-XL and anti-Bax (Santa Cruz Biotechnology, Santa Cruz, CA) (dilution 1:50) overnight 
at 4 °C, followed by 25 nm colloidal gold labelled anti-rabbit secondary antibodies (Aurion, Netherlands, 1:20) 
for 2 h at room temperature. Sections were rinsed in PBS (pH 7.4) and distilled water prior to counterstaining 
with uranyl acetate and lead citrate. Ultrathin sections were examined in a Philips 400-TEM.

Quantifying immunogold labelling in transmission electron microscopy.  The quantification of 
immunogold labelling in transmission electron microscopy was detected by counting all gold particles per area 
unit (µm2), according to D’Amico et al.31. All values were expressed as means ± standard deviation of three dif-
ferent experiments (p < 0.5).

Electrophoresis, immuno‑ and western‑ blotting.  The pellets of mitoplasts and untreated mitochon-
dria were re-suspended in lysis buffer (50 mM Tris-Cl, 15% glycerol, 2% β-mercaptoethanol, 5% sodium dodecyl 
sulphate, pH 6.8) and subjected to sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) 
(12% polyacrylamide, 1% SDS). The separated proteins were subsequently electro-transferred into a nitrocellu-
lose filter membrane, previously activated by immersion in a blotting buffer (200 mM glycine, 25 mM Tris, 20% 
methanol, 0.1% SDS) for 30 min.

After 1 h, the nitrocellulose filter membrane was washed in TTBS buffer (20 mM Tris/HCl, 0.5 M NaCl, 
0.005% PBS-Tween, pH 7.5) and incubated overnight with primary polyclonal anti-rabbit antibody anti-Bax 
(Santa Cruz Biotechnology, Santa Cruz, CA; 1:100 in TTBS). After washing, the membrane was incubated with a 
conjugated goat anti-rabbit secondary antibody labeled with peroxidase (Vector, CA; 1:3000) for 1 h and washed 
in TTBS. The chemiluminescence was detected by ECL kit (Dupont/NEN, USA). The same protocol was used for 
the detection of Bcl-2 (polyclonal antibody anti-rabbit anti-Bcl-2—Santa Cruz Biotechnology, Santa Cruz, CA).

For the detection of caspases, proteins were extracted from cells by using RIPA Lysis Buffer (Millipore) and 
following the manufacturer’s instructions. Western blot was performed by 20 µg total protein (quantified using 
Bradford assay, Bio-Rad) on a 10% polyacrylamide gel and blotted onto PVDF membranes (Millipore, Marlbor-
ough, MA). Primary antibodies against Bax (#2772), Bcl-2 (#3498), caspase-3 (#9662) and caspase-7 (#9492) 
were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA). The chemiluminescent system (ECL; 
Amersham Life Science, Buckinghamshire, UK) visualized protein bands. The membrane was captured using 
LI-COR System and quantified with Quantity One 1-D analysis software (Biorad Laboratories). Protein bands 
were normalized against β-actin level (# 4970, Cell signaling Technology).

Ethics declarations.  The experiments were performed under institutional approval and all efforts were 
made to avoid animal suffering.
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